metal-organic compounds
Tris(ethane-1,2-diamine-κ2N,N′)cobalt(III) carbonate iodide tetrahydrate
aDepartment of Chemistry, Georgetown University, 620 Michigan Av. NE, Washington, DC 20064, USA, bDepartment of Chemistry, Howard University, 525 College St. NW, Washington, DC 20059, USA, and cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu
The title compound, [Co(C2H8N2)3](CO3)I·4H2O, crystallizes with a [Co(en)3]3+ cation (en is ethane-1,2-diamine), CO32− and I− anions and four water molecules in the In the cation, the three rings formed by the ethylenediamine units and the CoIII metal ion are in slightly distorted twist conformations. Numerous O—H⋯O, N—H⋯O, N—H⋯I and O—H⋯I intermolecular hydrogen bonds between the cation and two anions in concert with the four water molecules dominate the crystal packing and create a supramolecular infinite three-dimensional framework.
Related literature
For background to double salts, see: Dvorkin et al. (1989, 1991); Farago et al. (1967). Brewer & Butcher (2009). For the synthesis, see: Broomhead et al. (1960). For hydrolysis of cyanate to give carbonate at elevated temperatures, see: Seifer & Tarasova (1982); Seifer et al. (1981); Piazzesi et al. (2007). For thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion, see: Mironov et al. (1973, 1976). For related structures containing the [Co(en)3]3+ cation, see: Brouty et al. (1976); Liu et al. (1995); Lappin et al. (1993); Mizuta et al. (1988).
Experimental
Crystal data
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810033143/bt5324sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033143/bt5324Isup2.hkl
[Co(en)3]I3 was prepared as described previously (Broomhead et al., 1960). [Co(en)3]I3 was reacted with an excess of KOCN in water. The red blockish crystals were removed a week later by filtration.
The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H = 0.92 Å, and C—H = 0.99 Å and with Uiso(H) = 1.17–1.20 Ueq(N) and Uiso(H) = 1.19–1.21 Ueq(C). H atoms on the water molecules were located by Fourier maps, and refined isotropically with O-H restrained to 0.82 (2)Å and H..H restrained to 1.297 (2)Å and Uiso(H) = 1.50 Ueq(O).
[Ni(en)3]2+ and [Zn(en)3]2+ react with MX (M = K or NH4, X = SCN– or SeCN–) to form double salts, [Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and [Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or [Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Structural studies of these thiocyanate double salts reveal a linear polymeric anion, [(M(SCN)3)2-]n. The reaction of [Co(en)3]3+ with potassium cyanate (Brewer & Butcher, 2009) was conducted to determine if the [(K(OCN)3)2-]n ion could be formed and isolated as its salt with the [Co(en)3]3+ cation. Analysis of the reaction product by single-crystal diffraction revealed the [Co(en)3]3+ cation and carbonate and iodide ions. This suggests hydroysis of cyanate as it is the only source of a carbon atom in the reaction mixture other than the ethylenediamine ligand, (i.e., [Co(en)3](I)3 + KOCN + 2H2O → [Co(en)3](CO3)(I).4H2O + NH4I + KI). The hydrolysis of cyanate to give carbonate has been observed with nickel (Seifer & Tarasova, 1982) and yttrium (Seifer et al., 1981) at elevated temperatures. In addition HNCO (Piazzesi et al., 2007) was hydrolyzed at elevated temperatures in the presence of solid catalysts. However, the present reaction takes place at room temperature. The thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion (added as a carbonate salt) have been reported (Mironov, et al., 1973, 1976). Similar structures containing the [Co(en)3]3+ cation have been reported (Brouty et al. 1976; Liu et al., 1995). Additional related structures have been also been reported (Lappin, et al., 1993; Mizuta et al., 1988). Hence in continuation with our studies of the potential catalytic role of [Co(en)3]3+ in the hydrolysis of and urea and the relationship to urease this new tris(ethane-1,2-diamine-K2 N,N')cobalt(III) carbonate iodide tetrahydrate compound is synthesized and its is reported.
The title compound crystallizes with a [Co(en)3]3+ cation, (CO3)2- and I- anions and four water molecules in the
(Fig. 1). In the cation the three rings formed by the ethylenediamine units and Co3+metal ion are in slightly distorted twist conformations with C11—C12, C21—C22 and C31—C32 being twisted within rings 1 (Co/N11/C11/C12/N12), 2 (Co/N21/C21/C22/N22) and 3 (Co/N31/C31/C32/N32), respectively. Numerous O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bonds (Table 1) between the cation and two anions in concert with the four water molecules dominate the crystal packing and create a supramolecular infinite three-dimensional framework that extends throughout the crystalline lattice (Fig. 2).For background to double salts, see: Dvorkin et al. (1989, 1991); Farago et al. (1967). Brewer & Butcher (2009); For the synthesis, see Broomhead et al. (1960). For hydrolysis of cyanate to give carbonate at elevated temperatures, see: Seifer et al. (1982, 1981); Piazzesi et al. (2007). For thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion, see: Mironov, et al. (1973, 1976). For related structures containing the [Co(en)3]3+ cation, see: Brouty et al. (1976); Liu et al. (1995); Lappin et al. (1993); Mizuta et al. (1988).
Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell
CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. Molecular structure of C7H32CoIN6O7, showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bonds (Table 1) in the asymmetric unit. | |
Fig. 2. Packing diagram of the C7H32CoIN6O7 viewed down the b axis. Dashed lines indicate O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bond interactions (Table 1). |
[Co(C2H8N2)3](CO3)I·4H2O | F(000) = 1008 |
Mr = 498.22 | Dx = 1.812 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 14059 reflections |
a = 16.6907 (2) Å | θ = 4.6–34.7° |
b = 8.7031 (1) Å | µ = 2.67 mm−1 |
c = 12.5718 (2) Å | T = 123 K |
V = 1826.19 (4) Å3 | Chunk, orange |
Z = 4 | 0.52 × 0.46 × 0.35 mm |
Oxford Diffraction Gemini R diffractometer | 7440 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 6109 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.5081 pixels mm-1 | θmax = 34.9°, θmin = 4.6° |
φ and ω scans | h = −26→26 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | k = −13→13 |
Tmin = 0.737, Tmax = 1.000 | l = −20→19 |
25329 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.023 | w = 1/[σ2(Fo2) + (0.0247P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.048 | (Δ/σ)max = 0.004 |
S = 0.97 | Δρmax = 0.50 e Å−3 |
7440 reflections | Δρmin = −0.52 e Å−3 |
224 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
13 restraints | Extinction coefficient: 0.0039 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 3466 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.034 (8) |
[Co(C2H8N2)3](CO3)I·4H2O | V = 1826.19 (4) Å3 |
Mr = 498.22 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 16.6907 (2) Å | µ = 2.67 mm−1 |
b = 8.7031 (1) Å | T = 123 K |
c = 12.5718 (2) Å | 0.52 × 0.46 × 0.35 mm |
Oxford Diffraction Gemini R diffractometer | 7440 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) | 6109 reflections with I > 2σ(I) |
Tmin = 0.737, Tmax = 1.000 | Rint = 0.028 |
25329 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.048 | Δρmax = 0.50 e Å−3 |
S = 0.97 | Δρmin = −0.52 e Å−3 |
7440 reflections | Absolute structure: Flack (1983), 3466 Friedel pairs |
224 parameters | Absolute structure parameter: 0.034 (8) |
13 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co | 0.253677 (10) | 0.80188 (2) | 0.618078 (18) | 0.01164 (4) | |
N11 | 0.18624 (8) | 0.71681 (17) | 0.50344 (11) | 0.0151 (3) | |
H11A | 0.1933 | 0.6121 | 0.4995 | 0.018* | |
H11B | 0.1331 | 0.7358 | 0.5179 | 0.018* | |
N12 | 0.31791 (8) | 0.89092 (17) | 0.50246 (11) | 0.0158 (3) | |
H12A | 0.3066 | 0.9939 | 0.4957 | 0.019* | |
H12B | 0.3716 | 0.8805 | 0.5174 | 0.019* | |
N21 | 0.31973 (7) | 0.61537 (14) | 0.62246 (13) | 0.0166 (2) | |
H21A | 0.2875 | 0.5297 | 0.6213 | 0.020* | |
H21B | 0.3529 | 0.6121 | 0.5641 | 0.020* | |
N22 | 0.32782 (8) | 0.88267 (16) | 0.72458 (11) | 0.0153 (3) | |
H22A | 0.3444 | 0.9794 | 0.7050 | 0.018* | |
H22B | 0.3023 | 0.8900 | 0.7892 | 0.018* | |
N31 | 0.18243 (8) | 0.71917 (17) | 0.72761 (12) | 0.0153 (3) | |
H31A | 0.1657 | 0.6224 | 0.7083 | 0.018* | |
H31B | 0.2097 | 0.7114 | 0.7910 | 0.018* | |
N32 | 0.18705 (7) | 0.98751 (14) | 0.62582 (13) | 0.0161 (2) | |
H32A | 0.2190 | 1.0736 | 0.6239 | 0.019* | |
H32B | 0.1526 | 0.9909 | 0.5687 | 0.019* | |
C11 | 0.20837 (10) | 0.7882 (2) | 0.40106 (13) | 0.0185 (3) | |
H11C | 0.1811 | 0.8885 | 0.3928 | 0.022* | |
H11D | 0.1925 | 0.7210 | 0.3412 | 0.022* | |
C12 | 0.29845 (10) | 0.8098 (2) | 0.40232 (13) | 0.0189 (3) | |
H12C | 0.3259 | 0.7091 | 0.3998 | 0.023* | |
H12D | 0.3158 | 0.8714 | 0.3402 | 0.023* | |
C21 | 0.36832 (10) | 0.6175 (2) | 0.72172 (14) | 0.0226 (4) | |
H21C | 0.4138 | 0.5449 | 0.7160 | 0.027* | |
H21D | 0.3350 | 0.5877 | 0.7836 | 0.027* | |
C22 | 0.39832 (9) | 0.7795 (2) | 0.73421 (14) | 0.0222 (3) | |
H22C | 0.4241 | 0.7927 | 0.8045 | 0.027* | |
H22D | 0.4382 | 0.8035 | 0.6783 | 0.027* | |
C31 | 0.11178 (10) | 0.8214 (2) | 0.74117 (14) | 0.0218 (3) | |
H31C | 0.0884 | 0.8080 | 0.8130 | 0.026* | |
H31D | 0.0702 | 0.7965 | 0.6877 | 0.026* | |
C32 | 0.14064 (10) | 0.9841 (2) | 0.72663 (17) | 0.0218 (3) | |
H32C | 0.0946 | 1.0555 | 0.7225 | 0.026* | |
H32D | 0.1750 | 1.0151 | 0.7871 | 0.026* | |
O1S | 0.25421 (6) | 0.80615 (15) | 1.08978 (9) | 0.0194 (2) | |
O2S | 0.23978 (8) | 0.67827 (14) | 0.93676 (10) | 0.0232 (3) | |
O3S | 0.27443 (8) | 0.92499 (15) | 0.93456 (10) | 0.0244 (3) | |
C1S | 0.25620 (8) | 0.80301 (18) | 0.98495 (13) | 0.0159 (3) | |
O1W | 0.48655 (10) | 1.0158 (3) | 0.4929 (2) | 0.0495 (6) | |
H1W1 | 0.4953 (16) | 1.003 (5) | 0.4303 (16) | 0.074* | |
H1W2 | 0.5264 (15) | 1.041 (4) | 0.522 (2) | 0.074* | |
O2W | 0.38714 (8) | 1.18109 (17) | 0.64128 (11) | 0.0285 (3) | |
H2W1 | 0.3484 (10) | 1.228 (3) | 0.625 (2) | 0.043* | |
H2W2 | 0.4135 (11) | 1.177 (3) | 0.5871 (16) | 0.043* | |
O3W | 0.10686 (8) | 0.44224 (16) | 0.64602 (12) | 0.0281 (3) | |
H3W1 | 0.1450 (11) | 0.385 (3) | 0.635 (2) | 0.042* | |
H3W2 | 0.0811 (12) | 0.406 (3) | 0.6930 (17) | 0.042* | |
O4W | 0.49798 (8) | 1.1631 (2) | 0.80022 (14) | 0.0363 (4) | |
H4W1 | 0.4993 (11) | 1.238 (3) | 0.839 (3) | 0.054* | |
H4W2 | 0.4597 (13) | 1.180 (3) | 0.7605 (19) | 0.054* | |
I | 0.500266 (6) | 0.526338 (14) | 0.47581 (2) | 0.02884 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co | 0.01398 (8) | 0.01044 (7) | 0.01049 (7) | 0.00031 (6) | 0.00016 (8) | −0.00020 (9) |
N11 | 0.0174 (6) | 0.0146 (7) | 0.0132 (6) | 0.0009 (5) | −0.0016 (5) | −0.0011 (5) |
N12 | 0.0166 (6) | 0.0155 (7) | 0.0152 (6) | 0.0000 (5) | 0.0015 (4) | 0.0001 (5) |
N21 | 0.0190 (5) | 0.0138 (6) | 0.0170 (6) | 0.0029 (4) | 0.0011 (6) | 0.0012 (6) |
N22 | 0.0173 (6) | 0.0136 (7) | 0.0151 (6) | −0.0006 (5) | 0.0001 (5) | −0.0009 (5) |
N31 | 0.0202 (6) | 0.0118 (7) | 0.0139 (6) | −0.0018 (5) | 0.0007 (5) | −0.0002 (5) |
N32 | 0.0184 (5) | 0.0151 (6) | 0.0149 (6) | 0.0000 (4) | 0.0004 (6) | −0.0007 (5) |
C11 | 0.0239 (8) | 0.0189 (8) | 0.0125 (7) | 0.0003 (6) | −0.0022 (6) | 0.0009 (6) |
C12 | 0.0246 (8) | 0.0210 (9) | 0.0111 (7) | 0.0010 (6) | 0.0032 (6) | −0.0012 (6) |
C21 | 0.0249 (8) | 0.0232 (10) | 0.0199 (8) | 0.0072 (7) | −0.0038 (7) | 0.0039 (6) |
C22 | 0.0178 (7) | 0.0265 (9) | 0.0223 (8) | 0.0036 (7) | −0.0060 (6) | −0.0027 (7) |
C31 | 0.0193 (7) | 0.0263 (9) | 0.0197 (8) | 0.0011 (6) | 0.0058 (6) | 0.0005 (7) |
C32 | 0.0232 (7) | 0.0226 (9) | 0.0195 (7) | 0.0065 (7) | 0.0042 (8) | −0.0033 (6) |
O1S | 0.0242 (5) | 0.0213 (6) | 0.0129 (5) | −0.0016 (4) | −0.0006 (4) | −0.0013 (4) |
O2S | 0.0389 (7) | 0.0136 (6) | 0.0172 (6) | −0.0040 (5) | −0.0030 (5) | −0.0013 (4) |
O3S | 0.0428 (7) | 0.0138 (6) | 0.0166 (5) | −0.0044 (5) | 0.0023 (5) | 0.0001 (5) |
C1S | 0.0195 (6) | 0.0146 (6) | 0.0136 (6) | 0.0023 (5) | 0.0001 (7) | 0.0005 (7) |
O1W | 0.0317 (8) | 0.0663 (12) | 0.0506 (18) | −0.0069 (7) | 0.0049 (8) | −0.0220 (10) |
O2W | 0.0264 (6) | 0.0335 (8) | 0.0257 (7) | 0.0008 (5) | −0.0022 (5) | 0.0036 (6) |
O3W | 0.0262 (6) | 0.0259 (7) | 0.0321 (8) | −0.0011 (5) | 0.0036 (5) | −0.0006 (6) |
O4W | 0.0326 (8) | 0.0494 (10) | 0.0269 (7) | 0.0031 (6) | −0.0040 (6) | −0.0047 (7) |
I | 0.02008 (5) | 0.04341 (7) | 0.02305 (5) | −0.00295 (5) | −0.00117 (4) | −0.00428 (9) |
Co—N22 | 1.9541 (14) | C11—H11C | 0.9900 |
Co—N31 | 1.9566 (14) | C11—H11D | 0.9900 |
Co—N21 | 1.9630 (12) | C12—H12C | 0.9900 |
Co—N32 | 1.9637 (12) | C12—H12D | 0.9900 |
Co—N12 | 1.9654 (14) | C21—C22 | 1.505 (3) |
Co—N11 | 1.9729 (14) | C21—H21C | 0.9900 |
N11—C11 | 1.476 (2) | C21—H21D | 0.9900 |
N11—H11A | 0.9200 | C22—H22C | 0.9900 |
N11—H11B | 0.9201 | C22—H22D | 0.9900 |
N12—C12 | 1.479 (2) | C31—C32 | 1.507 (3) |
N12—H12A | 0.9200 | C31—H31C | 0.9900 |
N12—H12B | 0.9200 | C31—H31D | 0.9900 |
N21—C21 | 1.488 (2) | C32—H32C | 0.9900 |
N21—H21A | 0.9201 | C32—H32D | 0.9900 |
N21—H21B | 0.9200 | O1S—C1S | 1.3186 (19) |
N22—C22 | 1.485 (2) | O2S—C1S | 1.273 (2) |
N22—H22A | 0.9201 | O3S—C1S | 1.273 (2) |
N22—H22B | 0.9200 | O1W—H1W1 | 0.808 (18) |
N31—C31 | 1.487 (2) | O1W—H1W2 | 0.788 (17) |
N31—H31A | 0.9199 | O2W—H2W1 | 0.791 (15) |
N31—H31B | 0.9201 | O2W—H2W2 | 0.811 (15) |
N32—C32 | 1.486 (2) | O3W—H3W1 | 0.820 (15) |
N32—H32A | 0.9200 | O3W—H3W2 | 0.795 (15) |
N32—H32B | 0.9201 | O4W—H4W1 | 0.818 (17) |
C11—C12 | 1.515 (2) | O4W—H4W2 | 0.824 (16) |
N22—Co—N31 | 92.01 (6) | Co—N32—H32A | 109.9 |
N22—Co—N21 | 85.56 (6) | C32—N32—H32B | 109.9 |
N31—Co—N21 | 90.99 (6) | Co—N32—H32B | 109.9 |
N22—Co—N32 | 91.64 (6) | H32A—N32—H32B | 108.3 |
N31—Co—N32 | 85.62 (6) | N11—C11—C12 | 106.94 (12) |
N21—Co—N32 | 175.53 (8) | N11—C11—H11C | 110.3 |
N22—Co—N12 | 91.11 (5) | C12—C11—H11C | 110.3 |
N31—Co—N12 | 175.62 (6) | N11—C11—H11D | 110.3 |
N21—Co—N12 | 92.32 (6) | C12—C11—H11D | 110.3 |
N32—Co—N12 | 91.21 (6) | H11C—C11—H11D | 108.6 |
N22—Co—N11 | 175.48 (6) | N12—C12—C11 | 106.62 (13) |
N31—Co—N11 | 91.68 (5) | N12—C12—H12C | 110.4 |
N21—Co—N11 | 91.75 (6) | C11—C12—H12C | 110.4 |
N32—Co—N11 | 91.25 (6) | N12—C12—H12D | 110.4 |
N12—Co—N11 | 85.35 (6) | C11—C12—H12D | 110.4 |
C11—N11—Co | 109.64 (10) | H12C—C12—H12D | 108.6 |
C11—N11—H11A | 109.7 | N21—C21—C22 | 106.28 (14) |
Co—N11—H11A | 109.7 | N21—C21—H21C | 110.5 |
C11—N11—H11B | 109.7 | C22—C21—H21C | 110.5 |
Co—N11—H11B | 109.7 | N21—C21—H21D | 110.5 |
H11A—N11—H11B | 108.2 | C22—C21—H21D | 110.5 |
C12—N12—Co | 108.75 (10) | H21C—C21—H21D | 108.7 |
C12—N12—H12A | 109.9 | N22—C22—C21 | 107.12 (13) |
Co—N12—H12A | 109.9 | N22—C22—H22C | 110.3 |
C12—N12—H12B | 109.9 | C21—C22—H22C | 110.3 |
Co—N12—H12B | 109.9 | N22—C22—H22D | 110.3 |
H12A—N12—H12B | 108.3 | C21—C22—H22D | 110.3 |
C21—N21—Co | 108.63 (11) | H22C—C22—H22D | 108.5 |
C21—N21—H21A | 110.0 | N31—C31—C32 | 107.14 (13) |
Co—N21—H21A | 110.0 | N31—C31—H31C | 110.3 |
C21—N21—H21B | 110.0 | C32—C31—H31C | 110.3 |
Co—N21—H21B | 110.0 | N31—C31—H31D | 110.3 |
H21A—N21—H21B | 108.3 | C32—C31—H31D | 110.3 |
C22—N22—Co | 109.88 (10) | H31C—C31—H31D | 108.5 |
C22—N22—H22A | 109.7 | N32—C32—C31 | 106.79 (15) |
Co—N22—H22A | 109.7 | N32—C32—H32C | 110.4 |
C22—N22—H22B | 109.7 | C31—C32—H32C | 110.4 |
Co—N22—H22B | 109.7 | N32—C32—H32D | 110.4 |
H22A—N22—H22B | 108.2 | C31—C32—H32D | 110.4 |
C31—N31—Co | 110.04 (11) | H32C—C32—H32D | 108.6 |
C31—N31—H31A | 109.7 | O2S—C1S—O3S | 121.71 (16) |
Co—N31—H31A | 109.7 | O2S—C1S—O1S | 119.20 (15) |
C31—N31—H31B | 109.7 | O3S—C1S—O1S | 119.08 (15) |
Co—N31—H31B | 109.7 | H1W1—O1W—H1W2 | 109 (2) |
H31A—N31—H31B | 108.2 | H2W1—O2W—H2W2 | 104 (2) |
C32—N32—Co | 108.74 (11) | H3W1—O3W—H3W2 | 108 (2) |
C32—N32—H32A | 109.9 | H4W1—O4W—H4W2 | 104 (2) |
N31—Co—N11—C11 | 165.33 (12) | N21—Co—N31—C31 | −172.33 (12) |
N21—Co—N11—C11 | −103.63 (11) | N32—Co—N31—C31 | 10.59 (11) |
N32—Co—N11—C11 | 79.67 (11) | N11—Co—N31—C31 | −80.54 (12) |
N12—Co—N11—C11 | −11.44 (11) | N22—Co—N32—C32 | −74.29 (11) |
N22—Co—N12—C12 | 159.63 (11) | N31—Co—N32—C32 | 17.60 (11) |
N21—Co—N12—C12 | 74.03 (11) | N12—Co—N32—C32 | −165.44 (11) |
N32—Co—N12—C12 | −108.70 (11) | N11—Co—N32—C32 | 109.19 (11) |
N11—Co—N12—C12 | −17.54 (11) | Co—N11—C11—C12 | 37.13 (14) |
N22—Co—N21—C21 | 17.86 (11) | Co—N12—C12—C11 | 41.99 (14) |
N31—Co—N21—C21 | −74.07 (11) | N11—C11—C12—N12 | −51.59 (16) |
N12—Co—N21—C21 | 108.80 (11) | Co—N21—C21—C22 | −42.12 (15) |
N11—Co—N21—C21 | −165.78 (11) | Co—N22—C22—C21 | −36.80 (16) |
N31—Co—N22—C22 | 101.65 (11) | N21—C21—C22—N22 | 51.17 (17) |
N21—Co—N22—C22 | 10.81 (11) | Co—N31—C31—C32 | −36.00 (17) |
N32—Co—N22—C22 | −172.68 (11) | Co—N32—C32—C31 | −41.51 (15) |
N12—Co—N22—C22 | −81.43 (11) | N31—C31—C32—N32 | 50.28 (18) |
N22—Co—N31—C31 | 102.08 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···O3Si | 0.92 | 1.90 | 2.7625 (19) | 155 |
N11—H11B···Iii | 0.92 | 3.08 | 3.8409 (14) | 141 |
N12—H12A···O2Siii | 0.92 | 1.93 | 2.8042 (19) | 158 |
N12—H12B···O1W | 0.92 | 2.27 | 3.020 (2) | 138 |
N21—H21A···O1Si | 0.92 | 2.10 | 2.9891 (18) | 161 |
N21—H21B···I | 0.92 | 2.80 | 3.6165 (13) | 149 |
N22—H22A···O2W | 0.92 | 2.06 | 2.970 (2) | 172 |
N22—H22B···O3S | 0.92 | 1.91 | 2.8104 (19) | 166 |
N31—H31A···O3W | 0.92 | 2.01 | 2.907 (2) | 165 |
N31—H31B···O2S | 0.92 | 1.92 | 2.821 (2) | 165 |
N32—H32A···O1Siii | 0.92 | 2.12 | 2.9760 (18) | 155 |
N32—H32A···O2Siii | 0.92 | 2.61 | 3.146 (2) | 117 |
N32—H32B···Iii | 0.92 | 2.80 | 3.6456 (13) | 153 |
O1W—H1W1···O4Wiv | 0.81 (2) | 2.19 (3) | 2.892 (3) | 146 (4) |
O1W—H1W2···O3Wv | 0.79 (2) | 2.07 (2) | 2.805 (3) | 156 (3) |
O2W—H2W1···O1Siii | 0.79 (2) | 1.90 (2) | 2.6775 (17) | 170 (2) |
O2W—H2W2···O1W | 0.81 (2) | 2.21 (2) | 2.881 (2) | 141 (2) |
O3W—H3W1···O1Si | 0.82 (2) | 1.90 (2) | 2.6982 (17) | 163 (2) |
O3W—H3W2···O4Wii | 0.80 (2) | 2.03 (2) | 2.811 (2) | 169 (2) |
O4W—H4W1···Ivi | 0.82 (2) | 2.67 (2) | 3.4897 (18) | 176 (3) |
O4W—H4W2···O2W | 0.82 (2) | 1.93 (2) | 2.728 (2) | 164 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, z−1/2; (ii) x−1/2, −y+3/2, z; (iii) −x+1/2, y+1/2, z−1/2; (iv) −x+1, −y+2, z−1/2; (v) x+1/2, −y+3/2, z; (vi) −x+1, −y+2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Co(C2H8N2)3](CO3)I·4H2O |
Mr | 498.22 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 123 |
a, b, c (Å) | 16.6907 (2), 8.7031 (1), 12.5718 (2) |
V (Å3) | 1826.19 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.67 |
Crystal size (mm) | 0.52 × 0.46 × 0.35 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2007) |
Tmin, Tmax | 0.737, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25329, 7440, 6109 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.804 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.048, 0.97 |
No. of reflections | 7440 |
No. of parameters | 224 |
No. of restraints | 13 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.50, −0.52 |
Absolute structure | Flack (1983), 3466 Friedel pairs |
Absolute structure parameter | 0.034 (8) |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H11A···O3Si | 0.92 | 1.90 | 2.7625 (19) | 155.3 |
N11—H11B···Iii | 0.92 | 3.08 | 3.8409 (14) | 141.3 |
N12—H12A···O2Siii | 0.92 | 1.93 | 2.8042 (19) | 158.1 |
N12—H12B···O1W | 0.92 | 2.27 | 3.020 (2) | 138.0 |
N21—H21A···O1Si | 0.92 | 2.10 | 2.9891 (18) | 161.1 |
N21—H21B···I | 0.92 | 2.80 | 3.6165 (13) | 148.6 |
N22—H22A···O2W | 0.92 | 2.06 | 2.970 (2) | 171.7 |
N22—H22B···O3S | 0.92 | 1.91 | 2.8104 (19) | 165.7 |
N31—H31A···O3W | 0.92 | 2.01 | 2.907 (2) | 165.0 |
N31—H31B···O2S | 0.92 | 1.92 | 2.821 (2) | 165.1 |
N32—H32A···O1Siii | 0.92 | 2.12 | 2.9760 (18) | 155.1 |
N32—H32A···O2Siii | 0.92 | 2.61 | 3.146 (2) | 117.4 |
N32—H32B···Iii | 0.92 | 2.80 | 3.6456 (13) | 152.9 |
O1W—H1W1···O4Wiv | 0.808 (18) | 2.19 (3) | 2.892 (3) | 146 (4) |
O1W—H1W2···O3Wv | 0.788 (17) | 2.066 (19) | 2.805 (3) | 156 (3) |
O2W—H2W1···O1Siii | 0.791 (15) | 1.896 (15) | 2.6775 (17) | 170 (2) |
O2W—H2W2···O1W | 0.811 (15) | 2.206 (19) | 2.881 (2) | 141 (2) |
O3W—H3W1···O1Si | 0.820 (15) | 1.904 (15) | 2.6982 (17) | 163 (2) |
O3W—H3W2···O4Wii | 0.795 (15) | 2.026 (15) | 2.811 (2) | 169 (2) |
O4W—H4W1···Ivi | 0.818 (17) | 2.673 (17) | 3.4897 (18) | 176 (3) |
O4W—H4W2···O2W | 0.824 (16) | 1.927 (17) | 2.728 (2) | 164 (3) |
Symmetry codes: (i) −x+1/2, y−1/2, z−1/2; (ii) x−1/2, −y+3/2, z; (iii) −x+1/2, y+1/2, z−1/2; (iv) −x+1, −y+2, z−1/2; (v) x+1/2, −y+3/2, z; (vi) −x+1, −y+2, z+1/2. |
Acknowledgements
RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.
References
Brewer, G. & Butcher, R. J. (2009). 238th National ACS Meeting, Aug. 16–20. Washinton, DC, USA. Google Scholar
Broomhead, J. A., Dwyer, F. P. & Hogarth, J. W. (1960). Inorganic Synthesis, Vol. 6, pp. 186–188. New York: McGraw–Hill. Google Scholar
Brouty, C., Spinat, P., Whuler, A. & Herpin, P. (1976). Acta Cryst. B32, 2153–2159. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Simonov, Y. A. (1991). Ukr. Khim. Zh. 57, 5–8. CAS Google Scholar
Dvorkin, A. A., Kokozei, V. N., Petrusenko, S. R. & Sinkevich, A. V. (1989). Dokl. Acad. Nauk Ukr. SSR, Ser. B, 10, 31–34. Google Scholar
Farago, M. E., James, J. M. & Trew, V. C. G. (1967). J. Chem. Soc. A, 5, 728–729. CrossRef Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Lappin, A. G., Haller, K. J., Warren, R. M. L. & Tatehata, A. (1993). Inorg. Chem. 32, 4498–4504. CSD CrossRef CAS Web of Science Google Scholar
Liu, Y.-H., Fronczek, F. R., Watkins, S. F., Shaffer, G. W. & Musselman, R. L. (1995). Acta Cryst. C51, 1992–1994. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Mironov, V. E., Pyartman, A. K. & Kolobov, N. P. (1976). Zh. Fiz. Khim. 50, 1967–1970. CAS Google Scholar
Mironov, V. E., Ragulin, G. K., Solov'ev, Y. B., Fadeev, V. M. & Kolobov, N. P. (1973). Zh. Fiz. Khim. 47, 530–532. CAS Google Scholar
Mizuta, T., Tada, T., Kushi, Y. & Yoneda, H. (1988). Inorg. Chem., 27, 3836–3841. CSD CrossRef CAS Web of Science Google Scholar
Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Piazzesi, G., Nicosia, D., Devedas, M., Kroecher, O., Elsener, M. & Wokaun, A. (2007). Catal. Lett. 115, 33–39. Web of Science CrossRef CAS Google Scholar
Seifer, G. B., Chumaevskii, N. A., Minaeva, N. A. & Tarasova, Z. A. (1981). Zh. Neorg. Khim. 27, 1731–1735. Google Scholar
Seifer, G. B. & Tarasova, Z. A. (1982). Zh. Neorg. Khim. 27, 1587–1589. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
[Ni(en)3]2+ and [Zn(en)3]2+ react with MX (M = K or NH4, X = SCN– or SeCN–) to form double salts, [Ni(en)3](SCN)2.NH4(SCN) (Dvorkin et al., 1991) and [Ni(en)3](SeCN)2.K(SeCN) (Farago et al., 1967) or [Zn(en)3](SCN)2.K(SCN) (Dvorkin et al., 1989). Structural studies of these thiocyanate double salts reveal a linear polymeric anion, [(M(SCN)3)2-]n. The reaction of [Co(en)3]3+ with potassium cyanate (Brewer & Butcher, 2009) was conducted to determine if the [(K(OCN)3)2-]n ion could be formed and isolated as its salt with the [Co(en)3]3+ cation. Analysis of the reaction product by single-crystal diffraction revealed the [Co(en)3]3+ cation and carbonate and iodide ions. This suggests hydroysis of cyanate as it is the only source of a carbon atom in the reaction mixture other than the ethylenediamine ligand, (i.e., [Co(en)3](I)3 + KOCN + 2H2O → [Co(en)3](CO3)(I).4H2O + NH4I + KI). The hydrolysis of cyanate to give carbonate has been observed with nickel (Seifer & Tarasova, 1982) and yttrium (Seifer et al., 1981) at elevated temperatures. In addition HNCO (Piazzesi et al., 2007) was hydrolyzed at elevated temperatures in the presence of solid catalysts. However, the present reaction takes place at room temperature. The thermodynamics of the outer sphere solution interaction of [Co(en)3]3+ with the carbonate ion (added as a carbonate salt) have been reported (Mironov, et al., 1973, 1976). Similar structures containing the [Co(en)3]3+ cation have been reported (Brouty et al. 1976; Liu et al., 1995). Additional related structures have been also been reported (Lappin, et al., 1993; Mizuta et al., 1988). Hence in continuation with our studies of the potential catalytic role of [Co(en)3]3+ in the hydrolysis of amides and urea and the relationship to urease this new tris(ethane-1,2-diamine-K2 N,N')cobalt(III) carbonate iodide tetrahydrate compound is synthesized and its crystal structure is reported.
The title compound crystallizes with a [Co(en)3]3+ cation, (CO3)2- and I- anions and four water molecules in the asymmetric unit (Fig. 1). In the cation the three rings formed by the ethylenediamine units and Co3+metal ion are in slightly distorted twist conformations with C11—C12, C21—C22 and C31—C32 being twisted within rings 1 (Co/N11/C11/C12/N12), 2 (Co/N21/C21/C22/N22) and 3 (Co/N31/C31/C32/N32), respectively. Numerous O–H···O, N–H···H, N–H···I and O–H···I intermolecular hydrogen bonds (Table 1) between the cation and two anions in concert with the four water molecules dominate the crystal packing and create a supramolecular infinite three-dimensional framework that extends throughout the crystalline lattice (Fig. 2).