organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-2-methyl-N-(4-methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 10 August 2010; accepted 11 August 2010; online 18 August 2010)

The asymmetric unit of the title compound, C14H14ClNO2S, contains two independent mol­ecules. The torsion angles of the C—SO2—NH—C segments in the two mol­ecules are −76.5 (5) and −48.3 (4)°. The two aromatic rings are tilted relative to each other by 76.6 (2)° in one mol­ecule and 70.7 (2)° in the other. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For the preparation of the title compound, see: Savitha & Gowda (2006[Savitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600-606.]). For our studies of the effect of substituents on the structures of N-(ar­yl)aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o476.], 2010[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o2000.]). For related structures, see: Gelbrich et al. (2007[Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621-632.]); Perlovich et al. (2006[Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780-o782.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Monoclinic, P 21 /c

  • a = 10.544 (1) Å

  • b = 10.674 (1) Å

  • c = 25.196 (3) Å

  • β = 96.83 (1)°

  • V = 2815.6 (5) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.77 mm−1

  • T = 299 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.398, Tmax = 0.453

  • 5050 measured reflections

  • 4826 independent reflections

  • 3917 reflections with I > 2σ(I)

  • Rint = 0.086

  • 3 standard reflections every 120 min intensity decay: 2.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.097

  • wR(F2) = 0.317

  • S = 1.43

  • 4826 reflections

  • 347 parameters

  • H-atom parameters constrained

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.86 2.02 2.874 (5) 171
N2—H2A⋯O2i 0.86 2.23 2.968 (5) 144
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4-PC (Enraf–Nonius, 1996[Enraf-Nonius (1996). CAD-4-PC. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4-PC; data reduction: REDU4 (Stoe & Cie, 1987[Stoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of N-(aryl)arylsulfonamides (Gowda et al., 2009, 2010), in the present work, the structure of 4-chloro-2-methyl-N-(4-methylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit of (I) contains two independent molecules. In one of the molecules, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds. The conformation of the N—H bonds are syn to the ortho-methyl groups in the sulfonyl benzene rings of both the molecules, similar to that observed in 4-chloro-2-methyl-N-(phenyl)benzenesulfonamide (II) (Gowda et al., 2009) and 4-chloro-2-methyl-N-(4-chlorophenyl)benzenesulfonamide (III) (Gowda et al., 2010).

The torsion angles of the C—SO2—NH—C segments in the two molecules of (I) are -76.5 (5)° and -48.3 (4)°, compared to the values of -61.9 (4)° and 69.7 (4)° in the two independent molecules of (II) and 55.0 (2)° in (III).

The sulfonyl and the aniline benzene rings in (I) are tilted relative to each other by 76.6 (2)° in molecule 1 and 70.7 (2)° in molecule 2, compared to the values of 86.6 (2)° and 83.0 (2)° in the two independent molecules of (II) and 67.0 (1)° in (III).

The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal, the intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite zigzag row like chains. Part of the crystal structure is shown in Fig. 2.

Related literature top

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Experimental top

The solution of m-chlorotoluene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2-methyl-4-chlorobenzenesulfonylchloride was treated with 4-methylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 cc). The resultant solid 4-chloro-2-methyl-N-(4-methylphenyl)benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by recording its infrared and NMR spectra (Savitha & Gowda, 2006).

The prism like colourless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.96 Å] and were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

The residual electron-density features are located in the region of O1 and S2. The highest peak is 0.77 Å from O1 and the deepest hole is 0.83 Å from S2.

Structure description top

As part of a study of the substituent effects on the crystal structures of N-(aryl)arylsulfonamides (Gowda et al., 2009, 2010), in the present work, the structure of 4-chloro-2-methyl-N-(4-methylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit of (I) contains two independent molecules. In one of the molecules, the conformation of the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds. The conformation of the N—H bonds are syn to the ortho-methyl groups in the sulfonyl benzene rings of both the molecules, similar to that observed in 4-chloro-2-methyl-N-(phenyl)benzenesulfonamide (II) (Gowda et al., 2009) and 4-chloro-2-methyl-N-(4-chlorophenyl)benzenesulfonamide (III) (Gowda et al., 2010).

The torsion angles of the C—SO2—NH—C segments in the two molecules of (I) are -76.5 (5)° and -48.3 (4)°, compared to the values of -61.9 (4)° and 69.7 (4)° in the two independent molecules of (II) and 55.0 (2)° in (III).

The sulfonyl and the aniline benzene rings in (I) are tilted relative to each other by 76.6 (2)° in molecule 1 and 70.7 (2)° in molecule 2, compared to the values of 86.6 (2)° and 83.0 (2)° in the two independent molecules of (II) and 67.0 (1)° in (III).

The other bond parameters in (I) are similar to those observed in (II), (III) and other aryl sulfonamides (Perlovich et al., 2006; Gelbrich et al., 2007).

In the crystal, the intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into infinite zigzag row like chains. Part of the crystal structure is shown in Fig. 2.

For the preparation of the title compound, see: Savitha & Gowda (2006). For our studies of the effect of substituents on the structures of N-(aryl)arylsulfonamides, see: Gowda et al. (2009, 2010). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).

Computing details top

Data collection: CAD-4-PC (Enraf–Nonius, 1996); cell refinement: CAD-4-PC (Enraf–Nonius, 1996); data reduction: REDU4 (Stoe & Cie, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound with hydrogen bonding shown as dashed lines.
4-Chloro-2-methyl-N-(4-methylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 1232
Mr = 295.77Dx = 1.395 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 10.544 (1) Åθ = 5.9–19.1°
b = 10.674 (1) ŵ = 3.77 mm1
c = 25.196 (3) ÅT = 299 K
β = 96.83 (1)°Prism, colourless
V = 2815.6 (5) Å30.30 × 0.30 × 0.25 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
3917 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.086
Graphite monochromatorθmax = 66.9°, θmin = 3.5°
ω/2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 121
Tmin = 0.398, Tmax = 0.453l = 030
5050 measured reflections3 standard reflections every 120 min
4826 independent reflections intensity decay: 2.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.097H-atom parameters constrained
wR(F2) = 0.317 w = 1/[σ2(Fo2) + (0.2P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.43(Δ/σ)max = 0.019
4826 reflectionsΔρmax = 1.01 e Å3
347 parametersΔρmin = 1.01 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0106 (15)
Crystal data top
C14H14ClNO2SV = 2815.6 (5) Å3
Mr = 295.77Z = 8
Monoclinic, P21/cCu Kα radiation
a = 10.544 (1) ŵ = 3.77 mm1
b = 10.674 (1) ÅT = 299 K
c = 25.196 (3) Å0.30 × 0.30 × 0.25 mm
β = 96.83 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3917 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.086
Tmin = 0.398, Tmax = 0.4533 standard reflections every 120 min
5050 measured reflections intensity decay: 2.4%
4826 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0970 restraints
wR(F2) = 0.317H-atom parameters constrained
S = 1.43Δρmax = 1.01 e Å3
4826 reflectionsΔρmin = 1.01 e Å3
347 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7092 (4)0.2838 (5)0.52199 (18)0.0526 (11)
C20.6915 (4)0.2131 (5)0.4758 (2)0.0597 (12)
H20.70450.12690.47760.072*
C30.6546 (5)0.2695 (5)0.42696 (19)0.0607 (12)
H30.64290.22200.39580.073*
C40.6356 (5)0.3958 (6)0.4252 (2)0.0659 (13)
C50.6518 (5)0.4666 (5)0.4711 (2)0.0700 (14)
H50.63760.55250.46870.084*
C60.6879 (4)0.4148 (5)0.5198 (2)0.0602 (12)
C71.0129 (4)0.2164 (4)0.58974 (17)0.0538 (11)
C81.0262 (4)0.1581 (7)0.54233 (19)0.0756 (17)
H80.95400.13540.51950.091*
C91.1459 (5)0.1329 (6)0.5282 (2)0.0711 (15)
H91.15260.09070.49630.085*
C101.2545 (4)0.1677 (5)0.5594 (2)0.0607 (12)
C111.2403 (5)0.2234 (5)0.6070 (3)0.0746 (16)
H111.31300.24410.62990.090*
C121.1218 (5)0.2505 (5)0.6226 (2)0.0621 (12)
H121.11560.29120.65480.075*
C130.7039 (5)0.4992 (5)0.5701 (2)0.0690 (14)
H13A0.78560.48360.59010.083*
H13B0.63750.48080.59190.083*
H13C0.69840.58560.55940.083*
C141.3851 (5)0.1446 (7)0.5412 (3)0.0877 (18)
H14A1.37860.15050.50290.105*
H14B1.41450.06250.55220.105*
H14C1.44440.20620.55680.105*
N10.8949 (4)0.2489 (5)0.60621 (16)0.0686 (12)
H1A0.89810.30050.63250.082*
O10.7566 (4)0.0734 (3)0.56948 (14)0.0688 (10)
O20.6724 (3)0.2426 (4)0.62092 (13)0.0732 (11)
Cl10.59229 (18)0.46510 (19)0.36388 (7)0.0995 (7)
S10.75361 (10)0.20254 (13)0.58248 (4)0.0579 (5)
C150.1219 (3)0.6717 (4)0.20092 (16)0.0433 (9)
C160.0837 (4)0.6148 (4)0.15189 (19)0.0539 (11)
H160.08220.52780.14960.065*
C170.0488 (5)0.6840 (5)0.10744 (19)0.0623 (12)
H170.02230.64560.07490.075*
C180.0536 (4)0.8125 (5)0.1117 (2)0.0627 (13)
C190.0895 (5)0.8706 (4)0.1592 (2)0.0630 (13)
H190.08990.95760.16080.076*
C200.1252 (4)0.8023 (4)0.20515 (18)0.0522 (10)
C210.4121 (4)0.6191 (4)0.24823 (16)0.0447 (9)
C220.4261 (4)0.5450 (4)0.20440 (19)0.0554 (11)
H220.36610.48350.19360.066*
C230.5307 (5)0.5634 (4)0.1766 (2)0.0591 (12)
H230.53980.51250.14730.071*
C240.6215 (5)0.6541 (4)0.1908 (2)0.0585 (11)
C250.6048 (5)0.7257 (5)0.2357 (3)0.0754 (16)
H250.66530.78650.24700.090*
C260.5028 (4)0.7098 (5)0.2637 (2)0.0630 (13)
H260.49430.75990.29330.076*
C270.1653 (5)0.8727 (4)0.2580 (2)0.0624 (13)
H27A0.25180.85140.27110.075*
H27B0.10990.84920.28390.075*
H27C0.15900.96140.25180.075*
C280.7328 (6)0.6763 (6)0.1611 (3)0.0906 (19)
H28A0.70710.72750.13040.109*
H28B0.76440.59760.14980.109*
H28C0.79890.71820.18390.109*
N20.3102 (3)0.6066 (4)0.27950 (14)0.0513 (9)
H2A0.32640.61760.31340.062*
O30.1584 (3)0.4483 (3)0.23600 (13)0.0591 (9)
O40.0901 (3)0.6035 (3)0.29782 (12)0.0591 (9)
Cl20.01664 (19)0.9034 (2)0.05495 (7)0.1068 (7)
S20.16441 (9)0.57267 (10)0.25564 (4)0.0463 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.039 (2)0.067 (3)0.051 (2)0.0111 (19)0.0023 (17)0.014 (2)
C20.050 (2)0.065 (3)0.063 (3)0.008 (2)0.001 (2)0.009 (2)
C30.056 (3)0.078 (3)0.046 (2)0.007 (2)0.0031 (19)0.009 (2)
C40.051 (2)0.087 (4)0.059 (3)0.000 (2)0.006 (2)0.007 (3)
C50.061 (3)0.061 (3)0.088 (4)0.005 (2)0.007 (3)0.002 (3)
C60.043 (2)0.076 (3)0.062 (3)0.003 (2)0.0063 (19)0.016 (2)
C70.048 (2)0.065 (3)0.046 (2)0.0028 (19)0.0032 (18)0.0065 (19)
C80.041 (2)0.137 (5)0.045 (2)0.005 (3)0.0059 (19)0.014 (3)
C90.048 (2)0.107 (4)0.058 (3)0.006 (3)0.003 (2)0.009 (3)
C100.044 (2)0.055 (3)0.081 (3)0.002 (2)0.001 (2)0.007 (2)
C110.051 (3)0.068 (3)0.099 (4)0.006 (2)0.017 (3)0.010 (3)
C120.059 (3)0.058 (3)0.065 (3)0.008 (2)0.009 (2)0.005 (2)
C130.060 (3)0.069 (3)0.080 (3)0.001 (2)0.017 (2)0.030 (3)
C140.047 (3)0.092 (4)0.124 (5)0.004 (3)0.010 (3)0.003 (4)
N10.047 (2)0.110 (3)0.048 (2)0.008 (2)0.0038 (16)0.024 (2)
O10.076 (2)0.073 (2)0.058 (2)0.0125 (18)0.0113 (17)0.0022 (17)
O20.0535 (18)0.124 (3)0.0464 (18)0.0222 (19)0.0228 (14)0.0159 (18)
Cl10.0931 (11)0.1265 (15)0.0774 (10)0.0192 (10)0.0034 (8)0.0262 (9)
S10.0474 (7)0.0810 (9)0.0457 (7)0.0131 (5)0.0077 (5)0.0067 (5)
C150.0366 (18)0.048 (2)0.046 (2)0.0015 (16)0.0062 (15)0.0090 (17)
C160.051 (2)0.053 (2)0.058 (3)0.0032 (19)0.0037 (19)0.009 (2)
C170.062 (3)0.076 (3)0.048 (2)0.009 (2)0.004 (2)0.003 (2)
C180.050 (2)0.083 (3)0.056 (3)0.020 (2)0.010 (2)0.008 (2)
C190.055 (3)0.051 (3)0.085 (4)0.016 (2)0.016 (2)0.003 (2)
C200.049 (2)0.048 (2)0.060 (3)0.0078 (18)0.0066 (19)0.0085 (19)
C210.0405 (19)0.048 (2)0.045 (2)0.0003 (17)0.0023 (16)0.0022 (17)
C220.056 (3)0.048 (2)0.063 (3)0.0056 (19)0.013 (2)0.007 (2)
C230.066 (3)0.051 (2)0.064 (3)0.004 (2)0.020 (2)0.004 (2)
C240.056 (2)0.053 (2)0.070 (3)0.002 (2)0.023 (2)0.004 (2)
C250.057 (3)0.070 (3)0.103 (4)0.019 (2)0.026 (3)0.027 (3)
C260.052 (2)0.071 (3)0.067 (3)0.009 (2)0.013 (2)0.023 (3)
C270.073 (3)0.042 (2)0.070 (3)0.010 (2)0.001 (2)0.019 (2)
C280.086 (4)0.082 (4)0.114 (5)0.015 (3)0.053 (4)0.006 (4)
N20.0413 (17)0.070 (2)0.0421 (18)0.0051 (16)0.0027 (14)0.0000 (16)
O30.065 (2)0.0463 (17)0.066 (2)0.0074 (14)0.0089 (15)0.0000 (14)
O40.0509 (17)0.082 (2)0.0487 (17)0.0144 (15)0.0230 (13)0.0088 (15)
Cl20.1074 (13)0.1270 (15)0.0883 (12)0.0445 (11)0.0214 (10)0.0449 (10)
S20.0427 (6)0.0495 (6)0.0469 (7)0.0047 (4)0.0062 (4)0.0025 (4)
Geometric parameters (Å, º) top
C1—C21.381 (7)C15—C161.392 (6)
C1—C61.416 (7)C15—C201.399 (6)
C1—S11.768 (5)C15—S21.753 (4)
C2—C31.384 (7)C16—C171.356 (7)
C2—H20.9300C16—H160.9300
C3—C41.362 (8)C17—C181.377 (8)
C3—H30.9300C17—H170.9300
C4—C51.374 (8)C18—C191.360 (7)
C4—Cl11.726 (5)C18—Cl21.734 (5)
C5—C61.360 (8)C19—C201.381 (7)
C5—H50.9300C19—H190.9300
C6—C131.547 (6)C20—C271.543 (6)
C7—C81.369 (7)C21—C221.381 (6)
C7—C121.382 (6)C21—C261.384 (6)
C7—N11.401 (6)C21—N21.412 (5)
C8—C91.378 (7)C22—C231.389 (7)
C8—H80.9300C22—H220.9300
C9—C101.362 (7)C23—C241.379 (7)
C9—H90.9300C23—H230.9300
C10—C111.363 (8)C24—C251.394 (7)
C10—C141.522 (7)C24—C281.484 (7)
C11—C121.384 (8)C25—C261.365 (7)
C11—H110.9300C25—H250.9300
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
N1—S11.615 (4)N2—S21.623 (3)
N1—H1A0.8600N2—H2A0.8600
O1—S11.418 (4)O3—S21.415 (3)
O2—S11.433 (3)O4—S21.432 (3)
C2—C1—C6120.2 (5)C16—C15—C20120.3 (4)
C2—C1—S1116.9 (4)C16—C15—S2117.1 (3)
C6—C1—S1122.9 (3)C20—C15—S2122.7 (3)
C1—C2—C3120.5 (5)C17—C16—C15121.1 (4)
C1—C2—H2119.8C17—C16—H16119.4
C3—C2—H2119.8C15—C16—H16119.4
C4—C3—C2118.9 (5)C16—C17—C18118.3 (5)
C4—C3—H3120.5C16—C17—H17120.8
C2—C3—H3120.5C18—C17—H17120.8
C3—C4—C5120.9 (5)C19—C18—C17121.8 (5)
C3—C4—Cl1118.4 (4)C19—C18—Cl2118.9 (4)
C5—C4—Cl1120.7 (5)C17—C18—Cl2119.3 (4)
C6—C5—C4121.9 (5)C18—C19—C20121.1 (5)
C6—C5—H5119.0C18—C19—H19119.5
C4—C5—H5119.0C20—C19—H19119.5
C5—C6—C1117.6 (5)C19—C20—C15117.4 (4)
C5—C6—C13119.6 (5)C19—C20—C27119.0 (4)
C1—C6—C13122.8 (5)C15—C20—C27123.6 (4)
C8—C7—C12118.6 (5)C22—C21—C26119.4 (4)
C8—C7—N1123.9 (4)C22—C21—N2123.6 (4)
C12—C7—N1117.5 (4)C26—C21—N2117.1 (4)
C7—C8—C9120.5 (4)C21—C22—C23119.3 (4)
C7—C8—H8119.8C21—C22—H22120.3
C9—C8—H8119.8C23—C22—H22120.3
C10—C9—C8122.0 (5)C24—C23—C22122.4 (4)
C10—C9—H9119.0C24—C23—H23118.8
C8—C9—H9119.0C22—C23—H23118.8
C9—C10—C11117.0 (5)C23—C24—C25116.4 (4)
C9—C10—C14120.7 (5)C23—C24—C28123.2 (5)
C11—C10—C14122.3 (5)C25—C24—C28120.4 (5)
C10—C11—C12122.6 (5)C26—C25—C24122.3 (5)
C10—C11—H11118.7C26—C25—H25118.8
C12—C11—H11118.7C24—C25—H25118.8
C11—C12—C7119.2 (5)C25—C26—C21120.1 (5)
C11—C12—H12120.4C25—C26—H26119.9
C7—C12—H12120.4C21—C26—H26119.9
C6—C13—H13A109.5C20—C27—H27A109.5
C6—C13—H13B109.5C20—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C6—C13—H13C109.5C20—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C10—C14—H14A109.5C24—C28—H28A109.5
C10—C14—H14B109.5C24—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C10—C14—H14C109.5C24—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
C7—N1—S1128.8 (3)C21—N2—S2124.3 (3)
C7—N1—H1A115.6C21—N2—H2A117.8
S1—N1—H1A115.6S2—N2—H2A117.8
O1—S1—O2118.6 (2)O3—S2—O4118.0 (2)
O1—S1—N1109.8 (2)O3—S2—N2109.8 (2)
O2—S1—N1104.9 (2)O4—S2—N2104.56 (19)
O1—S1—C1106.8 (2)O3—S2—C15107.08 (19)
O2—S1—C1108.5 (2)O4—S2—C15109.5 (2)
N1—S1—C1107.9 (2)N2—S2—C15107.42 (19)
C6—C1—C2—C30.9 (7)C20—C15—C16—C170.2 (7)
S1—C1—C2—C3178.9 (4)S2—C15—C16—C17179.8 (4)
C1—C2—C3—C40.2 (7)C15—C16—C17—C180.9 (7)
C2—C3—C4—C50.5 (8)C16—C17—C18—C191.4 (8)
C2—C3—C4—Cl1178.9 (4)C16—C17—C18—Cl2177.0 (4)
C3—C4—C5—C60.5 (8)C17—C18—C19—C201.3 (8)
Cl1—C4—C5—C6178.9 (4)Cl2—C18—C19—C20177.2 (4)
C4—C5—C6—C10.2 (8)C18—C19—C20—C150.5 (7)
C4—C5—C6—C13179.7 (5)C18—C19—C20—C27179.9 (4)
C2—C1—C6—C50.9 (7)C16—C15—C20—C190.0 (6)
S1—C1—C6—C5178.8 (4)S2—C15—C20—C19180.0 (3)
C2—C1—C6—C13179.0 (4)C16—C15—C20—C27179.6 (4)
S1—C1—C6—C131.1 (6)S2—C15—C20—C270.5 (6)
C12—C7—C8—C90.8 (9)C26—C21—C22—C230.3 (7)
N1—C7—C8—C9177.9 (6)N2—C21—C22—C23179.1 (4)
C7—C8—C9—C102.1 (10)C21—C22—C23—C240.6 (7)
C8—C9—C10—C113.3 (9)C22—C23—C24—C251.4 (8)
C8—C9—C10—C14176.7 (6)C22—C23—C24—C28179.1 (5)
C9—C10—C11—C123.4 (8)C23—C24—C25—C261.5 (9)
C14—C10—C11—C12176.6 (5)C28—C24—C25—C26179.0 (6)
C10—C11—C12—C72.2 (9)C24—C25—C26—C210.7 (9)
C8—C7—C12—C110.8 (8)C22—C21—C26—C250.3 (8)
N1—C7—C12—C11178.1 (5)N2—C21—C26—C25179.1 (5)
C8—C7—N1—S114.5 (8)C22—C21—N2—S237.0 (6)
C12—C7—N1—S1168.4 (4)C26—C21—N2—S2144.2 (4)
C7—N1—S1—O139.5 (5)C21—N2—S2—O367.9 (4)
C7—N1—S1—O2167.9 (5)C21—N2—S2—O4164.5 (4)
C7—N1—S1—C176.5 (5)C21—N2—S2—C1548.3 (4)
C2—C1—S1—O12.3 (4)C16—C15—S2—O34.1 (4)
C6—C1—S1—O1175.6 (4)C20—C15—S2—O3175.9 (3)
C2—C1—S1—O2131.2 (4)C16—C15—S2—O4125.0 (3)
C6—C1—S1—O246.7 (4)C20—C15—S2—O455.0 (4)
C2—C1—S1—N1115.6 (4)C16—C15—S2—N2122.0 (3)
C6—C1—S1—N166.5 (4)C20—C15—S2—N258.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.022.874 (5)171
N2—H2A···O2i0.862.232.968 (5)144
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupMonoclinic, P21/c
Temperature (K)299
a, b, c (Å)10.544 (1), 10.674 (1), 25.196 (3)
β (°) 96.83 (1)
V3)2815.6 (5)
Z8
Radiation typeCu Kα
µ (mm1)3.77
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.398, 0.453
No. of measured, independent and
observed [I > 2σ(I)] reflections
5050, 4826, 3917
Rint0.086
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.317, 1.43
No. of reflections4826
No. of parameters347
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.01

Computer programs: CAD-4-PC (Enraf–Nonius, 1996), REDU4 (Stoe & Cie, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.862.022.874 (5)170.5
N2—H2A···O2i0.862.232.968 (5)144.4
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationEnraf–Nonius (1996). CAD-4-PC. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009). Acta Cryst. E65, o476.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2010). Acta Cryst. E66, o2000.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPerlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSavitha, M. B. & Gowda, B. T. (2006). Z. Naturforsch. Teil A, 60, 600–606.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1987). REDU4. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds