metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Methanol-κO)(2-methyl-3-nitro­benzoato-κO)tri­phenyl­tin(IV)

aDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, 31900 Kampar, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia, cSchool of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and dDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 August 2010; accepted 20 August 2010; online 28 August 2010)

The five-coordinate Sn atom in the title compound, [Sn(C6H5)3(C8H6NO4)(CH3OH)], exists in a trans-C3SnO2 trigonal-bipyramidal coordination polyhedron of which the O atoms of the methanol mol­ecule and carboxyl­ate group occupy the apical sites. In the crystal, adjacent mol­ecules are linked by inter­molecular O—H⋯O inter­actions, generating a helical hydrogen-bonded chain running along the b axis.

Related literature

For other methanol/ethanol-coordinated triphenyl­tin carboxyl­ates, see: Alcock & Roe (1989[Alcock, N. W. & Roe, S. M. (1989). J. Chem. Soc. Dalton Trans. pp. 1589-1598.]); Gao et al. (2006[Gao, Z.-J., Yin, H.-D., Li, G. & Xu, H.-L. (2006). Chin. J. Struct. Chem. 25, 1228-1232.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m489.]); Ma et al. (2004[Ma, C.-L., Jiang, Q. & Zhang, Q.-R. (2004). Can. J. Chem. 62, 608-615.]); Ng (1998[Ng, S. W. (1998). Acta Cryst. C54, 745-750.], 1999[Ng, S. W. (1999). Acta Cryst. C55, 523-531.]); Wang et al. (2007[Wang, H., Yin, H. & Sun, Y. (2007). Acta Cryst. E63, m2994.]); Yeap & Teoh (2003[Yeap, L.-L. & Teoh, S.-G. (2003). J. Coord. Chem. 56, 701-708.]); Yin et al. (2002[Yin, H.-D., Ma, C.-L., Wang, Y., Fang, H.-X. & Shao, J.-X. (2002). Acta Chim. Sin. 60, 897-903.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)3(C8H6NO4)(CH4O)]

  • Mr = 562.17

  • Monoclinic, P 21 /n

  • a = 10.8385 (13) Å

  • b = 14.8791 (18) Å

  • c = 15.8243 (19) Å

  • β = 94.004 (2)°

  • V = 2545.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.681, Tmax = 0.903

  • 15231 measured reflections

  • 5739 independent reflections

  • 4515 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.08

  • 5739 reflections

  • 313 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.15 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.118 (4)
Sn1—C7 2.110 (4)
Sn1—C13 2.121 (4)
Sn1—O1 2.146 (2)
Sn1—O5 2.410 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O2i 0.85 (1) 1.87 (2) 2.676 (4) 158 (5)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Triphenyltin(IV) carboxylates generally exist as tetrahedral molecules in which the carboxylate anion is only unidentate to the tin atom. However, there are examples of such compounds having an alcohol molecule into its coordination sphere, as noted in several examples (Alcock & Roe, 1989, Gao et al., 2006; Lo & Ng, 2009; Ma et al., 2004; Ng, 1998; Ng, 1999; Wang et al., 2007; Yeap & Teoh, 2003; Yin et al. 2002). The alcohol (either methanol or ethanol) serves as the reaction medium. The condensation of triphenyltin hydroxide and 2-methyl-3-nitrobenzoic acid in methanol gave the expected product as a methanol-coordinated compound (Scheme I, Fig. 1). The five-coordinate tin atom in Sn(C6H5)3(CH4O)(C8H6NO4) exists in a trans-C3SnO2 trigonal bipyramidal coordination polyhedron for which the O atoms of the methanol and carboxylate occupy the apical sites. As found in the other examples, the tin-oxygenalcohol bond is longer than the tin-oxygencarboxylate bond (Table 1). However, the C3Sn girdle is nearly planar [Σangles 358.6 (5) °]. Adjacent molecules are linked by an O–H···O interaction to generate a helical hydrogen-bonded chain running along the b-axis of the monoclinic unit cell (Fig. 2, Table 2).

Related literature top

For other methanol/ethanol-coordinated triphenyltin carboxylates, see: Alcock & Roe (1989); Gao et al. (2006); Lo & Ng (2009); Ma et al. (2004); Ng (1998, 1999); Wang et al. (2007); Yeap & Teoh (2003); Yin et al. (2002).

Experimental top

Triphenyltin hydroxide (0.73 g, 2 mmol) and 2-methyl-3-nitrobenzoic acid (0.36 g, 2 mmole) were heated in methanol (50 ml) for an hour. The mixture was filtered to give a clear yellow solution. The filtrate was set aside for the formation of crystals, which were isolated in 80% yield; m.p. 394.5 K. CHN&Sn elemental analysis for C27H25N1O5Sn: C 57.53, H 4.04, N 2.45, Sn 21.02%. Calc.: C 57.68, H 4.48, N 2.49, Sn 21.11%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The methanol H-atom was located in a difference Fourier map, and was refined isotropically with a distance restraint of O–H 0.85±0.01 Å.

The final difference Fourier map had two peaks in the vicinity of Sn1.

Structure description top

Triphenyltin(IV) carboxylates generally exist as tetrahedral molecules in which the carboxylate anion is only unidentate to the tin atom. However, there are examples of such compounds having an alcohol molecule into its coordination sphere, as noted in several examples (Alcock & Roe, 1989, Gao et al., 2006; Lo & Ng, 2009; Ma et al., 2004; Ng, 1998; Ng, 1999; Wang et al., 2007; Yeap & Teoh, 2003; Yin et al. 2002). The alcohol (either methanol or ethanol) serves as the reaction medium. The condensation of triphenyltin hydroxide and 2-methyl-3-nitrobenzoic acid in methanol gave the expected product as a methanol-coordinated compound (Scheme I, Fig. 1). The five-coordinate tin atom in Sn(C6H5)3(CH4O)(C8H6NO4) exists in a trans-C3SnO2 trigonal bipyramidal coordination polyhedron for which the O atoms of the methanol and carboxylate occupy the apical sites. As found in the other examples, the tin-oxygenalcohol bond is longer than the tin-oxygencarboxylate bond (Table 1). However, the C3Sn girdle is nearly planar [Σangles 358.6 (5) °]. Adjacent molecules are linked by an O–H···O interaction to generate a helical hydrogen-bonded chain running along the b-axis of the monoclinic unit cell (Fig. 2, Table 2).

For other methanol/ethanol-coordinated triphenyltin carboxylates, see: Alcock & Roe (1989); Gao et al. (2006); Lo & Ng (2009); Ma et al. (2004); Ng (1998, 1999); Wang et al. (2007); Yeap & Teoh (2003); Yin et al. (2002).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
(Methanol-κO)(2-methyl-3-nitrobenzoato-κO)triphenyltin(IV) top
Crystal data top
[Sn(C6H5)3(C8H6NO4)(CH4O)]F(000) = 1136
Mr = 562.17Dx = 1.467 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 918 reflections
a = 10.8385 (13) Åθ = 2.7–25.1°
b = 14.8791 (18) ŵ = 1.04 mm1
c = 15.8243 (19) ÅT = 293 K
β = 94.004 (2)°Block, yellow
V = 2545.7 (5) Å30.40 × 0.25 × 0.10 mm
Z = 4
Data collection top
Bruker SMART
diffractometer
5739 independent reflections
Radiation source: fine-focus sealed tube4515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1413
Tmin = 0.681, Tmax = 0.903k = 1819
15231 measured reflectionsl = 2010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0581P)2 + 1.4418P]
where P = (Fo2 + 2Fc2)/3
5739 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 1.15 e Å3
1 restraintΔρmin = 0.29 e Å3
Crystal data top
[Sn(C6H5)3(C8H6NO4)(CH4O)]V = 2545.7 (5) Å3
Mr = 562.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.8385 (13) ŵ = 1.04 mm1
b = 14.8791 (18) ÅT = 293 K
c = 15.8243 (19) Å0.40 × 0.25 × 0.10 mm
β = 94.004 (2)°
Data collection top
Bruker SMART
diffractometer
5739 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4515 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.903Rint = 0.024
15231 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.15 e Å3
5739 reflectionsΔρmin = 0.29 e Å3
313 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.63268 (2)0.197738 (16)0.687848 (16)0.04465 (10)
O10.6379 (3)0.32447 (16)0.62345 (18)0.0566 (7)
O20.7358 (3)0.40787 (19)0.72344 (18)0.0635 (7)
O30.7290 (6)0.5035 (5)0.3367 (3)0.140 (2)
O40.7949 (6)0.6315 (4)0.3673 (4)0.160 (2)
O50.6168 (3)0.05094 (19)0.7505 (2)0.0617 (7)
H50.679 (3)0.016 (3)0.758 (3)0.089 (17)*
N10.7459 (5)0.5650 (4)0.3876 (4)0.0993 (15)
C10.8227 (4)0.1658 (3)0.6847 (3)0.0530 (9)
C20.8560 (5)0.0862 (3)0.6479 (3)0.0705 (12)
H20.79510.04850.62360.085*
C30.9784 (7)0.0619 (5)0.6469 (4)0.103 (2)
H30.99980.00740.62310.124*
C41.0676 (6)0.1176 (7)0.6805 (5)0.118 (3)
H41.15020.10080.68010.141*
C51.0378 (5)0.1978 (5)0.7148 (5)0.108 (2)
H5A1.10010.23600.73680.130*
C60.9150 (4)0.2230 (3)0.7172 (3)0.0756 (14)
H60.89460.27800.74050.091*
C70.5464 (4)0.2443 (3)0.7950 (2)0.0512 (9)
C80.5951 (5)0.2284 (4)0.8764 (3)0.0766 (13)
H80.66740.19510.88510.092*
C90.5383 (7)0.2609 (5)0.9442 (4)0.0999 (19)
H90.57280.24960.99860.120*
C100.4323 (7)0.3094 (4)0.9338 (4)0.101 (2)
H100.39440.33120.98060.121*
C110.3822 (6)0.3257 (4)0.8546 (5)0.1000 (19)
H110.30930.35850.84710.120*
C120.4384 (5)0.2940 (3)0.7847 (4)0.0764 (14)
H120.40350.30610.73060.092*
C130.5186 (3)0.1510 (2)0.5826 (2)0.0473 (8)
C140.3968 (4)0.1301 (3)0.5878 (3)0.0704 (12)
H140.36310.12960.64020.085*
C150.3226 (5)0.1094 (4)0.5146 (4)0.0900 (17)
H150.23960.09540.51870.108*
C160.3702 (6)0.1096 (3)0.4381 (4)0.0908 (18)
H160.31980.09720.38950.109*
C170.4918 (7)0.1280 (4)0.4322 (3)0.0914 (17)
H170.52570.12580.37990.110*
C180.5658 (5)0.1501 (3)0.5044 (3)0.0701 (12)
H180.64860.16440.49970.084*
C190.6831 (4)0.3978 (3)0.6536 (3)0.0520 (9)
C200.6661 (4)0.4765 (2)0.5946 (2)0.0493 (9)
C210.5921 (4)0.5464 (3)0.6191 (3)0.0634 (11)
H210.55640.54290.67080.076*
C220.5704 (5)0.6205 (3)0.5691 (4)0.0773 (15)
H220.51980.66660.58610.093*
C230.6240 (5)0.6255 (3)0.4942 (4)0.0747 (14)
H230.61110.67570.45970.090*
C240.6958 (4)0.5577 (3)0.4699 (3)0.0660 (11)
C250.7200 (4)0.4793 (3)0.5179 (3)0.0589 (10)
C260.8001 (6)0.4023 (4)0.4908 (4)0.0979 (18)
H260.84470.37710.53970.147*
H26B0.85760.42420.45220.147*
H26C0.74860.35690.46340.147*
C270.5104 (5)0.0158 (4)0.7849 (4)0.0936 (18)
H27A0.52870.00210.84370.140*
H27B0.48490.03800.75500.140*
H27C0.44500.05940.77940.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.04851 (16)0.03856 (15)0.04577 (16)0.00015 (10)0.00464 (10)0.00265 (10)
O10.0819 (19)0.0289 (12)0.0569 (16)0.0078 (12)0.0114 (14)0.0025 (11)
O20.087 (2)0.0475 (15)0.0527 (16)0.0111 (14)0.0160 (15)0.0024 (13)
O30.152 (5)0.195 (6)0.075 (3)0.012 (4)0.021 (3)0.002 (4)
O40.187 (5)0.158 (5)0.139 (5)0.054 (4)0.028 (4)0.063 (4)
O50.0636 (18)0.0493 (15)0.073 (2)0.0051 (13)0.0088 (15)0.0157 (14)
N10.099 (3)0.111 (4)0.087 (4)0.007 (3)0.003 (3)0.037 (3)
C10.050 (2)0.054 (2)0.055 (2)0.0003 (17)0.0007 (17)0.0189 (19)
C20.078 (3)0.069 (3)0.066 (3)0.012 (2)0.018 (2)0.012 (2)
C30.098 (5)0.114 (5)0.103 (5)0.041 (4)0.040 (4)0.027 (4)
C40.061 (4)0.165 (8)0.130 (6)0.031 (4)0.031 (4)0.067 (6)
C50.054 (3)0.130 (6)0.140 (6)0.019 (3)0.005 (3)0.047 (5)
C60.063 (3)0.069 (3)0.093 (4)0.010 (2)0.011 (3)0.024 (3)
C70.056 (2)0.045 (2)0.052 (2)0.0054 (16)0.0022 (17)0.0023 (17)
C80.075 (3)0.100 (4)0.053 (3)0.004 (3)0.007 (2)0.002 (3)
C90.108 (5)0.135 (6)0.056 (3)0.030 (4)0.007 (3)0.015 (3)
C100.115 (5)0.104 (5)0.090 (5)0.041 (4)0.048 (4)0.040 (4)
C110.085 (4)0.091 (4)0.128 (6)0.008 (3)0.033 (4)0.020 (4)
C120.078 (3)0.077 (3)0.074 (3)0.015 (2)0.006 (3)0.005 (2)
C130.058 (2)0.0339 (17)0.049 (2)0.0034 (15)0.0081 (17)0.0018 (15)
C140.067 (3)0.077 (3)0.066 (3)0.015 (2)0.010 (2)0.003 (2)
C150.077 (3)0.094 (4)0.095 (4)0.026 (3)0.024 (3)0.001 (3)
C160.127 (5)0.061 (3)0.077 (4)0.014 (3)0.044 (4)0.006 (3)
C170.124 (5)0.096 (4)0.052 (3)0.005 (4)0.011 (3)0.015 (3)
C180.076 (3)0.076 (3)0.058 (3)0.008 (2)0.003 (2)0.013 (2)
C190.059 (2)0.045 (2)0.052 (2)0.0048 (17)0.0002 (19)0.0010 (17)
C200.061 (2)0.0312 (16)0.054 (2)0.0017 (15)0.0105 (18)0.0013 (15)
C210.072 (3)0.042 (2)0.074 (3)0.0043 (18)0.010 (2)0.0046 (19)
C220.085 (3)0.042 (2)0.101 (4)0.015 (2)0.020 (3)0.002 (2)
C230.078 (3)0.044 (2)0.097 (4)0.001 (2)0.031 (3)0.014 (2)
C240.071 (3)0.067 (3)0.059 (3)0.008 (2)0.007 (2)0.015 (2)
C250.069 (3)0.044 (2)0.062 (3)0.0004 (18)0.001 (2)0.0051 (18)
C260.122 (5)0.088 (4)0.088 (4)0.030 (3)0.039 (4)0.010 (3)
C270.095 (4)0.065 (3)0.124 (5)0.001 (3)0.034 (4)0.022 (3)
Geometric parameters (Å, º) top
Sn1—C12.118 (4)C11—C121.383 (8)
Sn1—C72.110 (4)C11—H110.9300
Sn1—C132.121 (4)C12—H120.9300
Sn1—O12.146 (2)C13—C181.371 (6)
Sn1—O52.410 (3)C13—C141.364 (6)
O1—C191.275 (5)C14—C151.397 (7)
O2—C191.218 (4)C14—H140.9300
O3—N11.225 (7)C15—C161.349 (8)
O4—N11.179 (6)C15—H150.9300
O5—C271.410 (6)C16—C171.356 (9)
O5—H50.850 (10)C16—H160.9300
N1—C241.450 (7)C17—C181.389 (7)
C1—C61.384 (6)C17—H170.9300
C1—C21.378 (6)C18—H180.9300
C2—C31.376 (8)C19—C201.500 (5)
C2—H20.9300C20—C211.385 (5)
C3—C41.354 (10)C20—C251.384 (6)
C3—H30.9300C21—C221.367 (6)
C4—C51.360 (10)C21—H210.9300
C4—H40.9300C22—C231.358 (8)
C5—C61.386 (8)C22—H220.9300
C5—H5A0.9300C23—C241.346 (7)
C6—H60.9300C23—H230.9300
C7—C81.378 (6)C24—C251.407 (6)
C7—C121.383 (6)C25—C261.517 (6)
C8—C91.363 (8)C26—H260.9600
C8—H80.9300C26—H26B0.9600
C9—C101.357 (9)C26—H26C0.9600
C9—H90.9300C27—H27A0.9600
C10—C111.351 (10)C27—H27B0.9600
C10—H100.9300C27—H27C0.9600
C7—Sn1—C1125.41 (16)C11—C12—H12119.8
C7—Sn1—C13118.16 (15)C18—C13—C14118.4 (4)
C1—Sn1—C13114.98 (16)C18—C13—Sn1118.6 (3)
C7—Sn1—O196.93 (13)C14—C13—Sn1122.7 (3)
C1—Sn1—O197.32 (13)C13—C14—C15120.2 (5)
C13—Sn1—O187.06 (12)C13—C14—H14119.9
C7—Sn1—O585.35 (13)C15—C14—H14119.9
C1—Sn1—O584.49 (13)C16—C15—C14120.6 (5)
C13—Sn1—O588.38 (12)C16—C15—H15119.7
O1—Sn1—O5175.43 (10)C14—C15—H15119.7
C19—O1—Sn1126.7 (3)C17—C16—C15119.7 (5)
C27—O5—Sn1125.3 (3)C17—C16—H16120.1
C27—O5—H5112 (4)C15—C16—H16120.1
Sn1—O5—H5122 (4)C16—C17—C18120.0 (6)
O4—N1—O3119.9 (7)C16—C17—H17120.0
O4—N1—C24120.7 (7)C18—C17—H17120.0
O3—N1—C24119.2 (5)C13—C18—C17120.9 (5)
C6—C1—C2118.8 (4)C13—C18—H18119.5
C6—C1—Sn1122.1 (4)C17—C18—H18119.5
C2—C1—Sn1119.1 (3)O2—C19—O1126.0 (4)
C1—C2—C3120.8 (6)O2—C19—C20119.9 (3)
C1—C2—H2119.6O1—C19—C20114.1 (3)
C3—C2—H2119.6C21—C20—C25120.7 (4)
C4—C3—C2119.8 (6)C21—C20—C19117.4 (4)
C4—C3—H3120.1C25—C20—C19121.8 (3)
C2—C3—H3120.1C22—C21—C20121.5 (5)
C5—C4—C3120.7 (6)C22—C21—H21119.2
C5—C4—H4119.6C20—C21—H21119.2
C3—C4—H4119.6C21—C22—C23118.8 (5)
C4—C5—C6120.3 (6)C21—C22—H22120.6
C4—C5—H5A119.9C23—C22—H22120.6
C6—C5—H5A119.9C24—C23—C22120.0 (4)
C1—C6—C5119.6 (6)C24—C23—H23120.0
C1—C6—H6120.2C22—C23—H23120.0
C5—C6—H6120.2C23—C24—C25123.8 (5)
C8—C7—C12117.8 (4)C23—C24—N1117.5 (5)
C8—C7—Sn1122.1 (3)C25—C24—N1118.6 (5)
C12—C7—Sn1120.0 (3)C20—C25—C24115.1 (4)
C9—C8—C7120.7 (5)C20—C25—C26120.7 (4)
C9—C8—H8119.6C24—C25—C26124.2 (4)
C7—C8—H8119.6C25—C26—H26109.5
C8—C9—C10121.2 (6)C25—C26—H26B109.5
C8—C9—H9119.4H26—C26—H26B109.5
C10—C9—H9119.4C25—C26—H26C109.5
C11—C10—C9119.3 (6)H26—C26—H26C109.5
C11—C10—H10120.3H26B—C26—H26C109.5
C9—C10—H10120.3O5—C27—H27A109.5
C10—C11—C12120.6 (6)O5—C27—H27B109.5
C10—C11—H11119.7H27A—C27—H27B109.5
C12—C11—H11119.7O5—C27—H27C109.5
C7—C12—C11120.3 (6)H27A—C27—H27C109.5
C7—C12—H12119.8H27B—C27—H27C109.5
C7—Sn1—O1—C1953.5 (3)C1—Sn1—C13—C1835.2 (4)
C1—Sn1—O1—C1973.7 (3)O1—Sn1—C13—C1861.5 (3)
C13—Sn1—O1—C19171.5 (3)O5—Sn1—C13—C18118.4 (3)
C7—Sn1—O5—C2746.3 (4)C7—Sn1—C13—C1415.7 (4)
C1—Sn1—O5—C27172.6 (4)C1—Sn1—C13—C14151.3 (3)
C13—Sn1—O5—C2772.1 (4)O1—Sn1—C13—C14112.0 (3)
C7—Sn1—C1—C648.3 (4)O5—Sn1—C13—C1468.2 (3)
C13—Sn1—C1—C6145.8 (3)C18—C13—C14—C150.7 (7)
O1—Sn1—C1—C655.7 (4)Sn1—C13—C14—C15172.7 (4)
O5—Sn1—C1—C6128.6 (4)C13—C14—C15—C160.1 (8)
C7—Sn1—C1—C2132.7 (3)C14—C15—C16—C171.6 (9)
C13—Sn1—C1—C233.2 (4)C15—C16—C17—C182.6 (9)
O1—Sn1—C1—C2123.4 (3)C14—C13—C18—C170.3 (7)
O5—Sn1—C1—C252.4 (3)Sn1—C13—C18—C17174.1 (4)
C6—C1—C2—C32.9 (7)C16—C17—C18—C132.0 (8)
Sn1—C1—C2—C3178.1 (4)Sn1—O1—C19—O23.2 (6)
C1—C2—C3—C41.5 (9)Sn1—O1—C19—C20176.5 (3)
C2—C3—C4—C50.5 (10)O2—C19—C20—C2164.5 (5)
C3—C4—C5—C61.2 (11)O1—C19—C20—C21115.2 (4)
C2—C1—C6—C52.2 (7)O2—C19—C20—C25116.6 (5)
Sn1—C1—C6—C5178.8 (4)O1—C19—C20—C2563.7 (5)
C4—C5—C6—C10.2 (9)C25—C20—C21—C220.5 (6)
C1—Sn1—C7—C823.2 (4)C19—C20—C21—C22179.4 (4)
C13—Sn1—C7—C8142.3 (4)C20—C21—C22—C230.7 (7)
O1—Sn1—C7—C8127.3 (4)C21—C22—C23—C240.8 (7)
O5—Sn1—C7—C856.6 (4)C22—C23—C24—C250.2 (7)
C1—Sn1—C7—C12155.6 (3)C22—C23—C24—N1177.2 (5)
C13—Sn1—C7—C1238.8 (4)O4—N1—C24—C2348.4 (8)
O1—Sn1—C7—C1251.5 (4)O3—N1—C24—C23126.4 (6)
O5—Sn1—C7—C12124.5 (4)O4—N1—C24—C25134.5 (6)
C12—C7—C8—C90.1 (7)O3—N1—C24—C2550.7 (8)
Sn1—C7—C8—C9178.8 (4)C21—C20—C25—C241.4 (6)
C7—C8—C9—C100.3 (9)C19—C20—C25—C24179.7 (4)
C8—C9—C10—C110.0 (10)C21—C20—C25—C26179.5 (5)
C9—C10—C11—C120.4 (10)C19—C20—C25—C260.6 (6)
C8—C7—C12—C110.3 (7)C23—C24—C25—C201.3 (7)
Sn1—C7—C12—C11179.2 (4)N1—C24—C25—C20178.3 (4)
C10—C11—C12—C70.6 (9)C23—C24—C25—C26179.6 (5)
C7—Sn1—C13—C18157.8 (3)N1—C24—C25—C262.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.85 (1)1.87 (2)2.676 (4)158 (5)
Symmetry code: (i) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C8H6NO4)(CH4O)]
Mr562.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.8385 (13), 14.8791 (18), 15.8243 (19)
β (°) 94.004 (2)
V3)2545.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.681, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
15231, 5739, 4515
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.08
No. of reflections5739
No. of parameters313
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.15, 0.29

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.118 (4)Sn1—O12.146 (2)
Sn1—C72.110 (4)Sn1—O52.410 (3)
Sn1—C132.121 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O2i0.85 (1)1.87 (2)2.676 (4)158 (5)
Symmetry code: (i) x+3/2, y1/2, z+3/2.
 

Acknowledgements

We thank Universiti Tunku Abdul Rahman (Vote No. 6200/Y02) and the University of Malaya for supporting this study.

References

First citationAlcock, N. W. & Roe, S. M. (1989). J. Chem. Soc. Dalton Trans. pp. 1589–1598.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Z.-J., Yin, H.-D., Li, G. & Xu, H.-L. (2006). Chin. J. Struct. Chem. 25, 1228–1232.  CAS Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m489.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, C.-L., Jiang, Q. & Zhang, Q.-R. (2004). Can. J. Chem. 62, 608–615.  Web of Science CSD CrossRef Google Scholar
First citationNg, S. W. (1998). Acta Cryst. C54, 745–750.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNg, S. W. (1999). Acta Cryst. C55, 523–531.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Yin, H. & Sun, Y. (2007). Acta Cryst. E63, m2994.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYeap, L.-L. & Teoh, S.-G. (2003). J. Coord. Chem. 56, 701–708.  Web of Science CSD CrossRef CAS Google Scholar
First citationYin, H.-D., Ma, C.-L., Wang, Y., Fang, H.-X. & Shao, J.-X. (2002). Acta Chim. Sin. 60, 897–903.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds