organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[4-(3,5-Di­fluoro­benz­yl­oxy)-2-hy­dr­oxy­phen­yl]ethanone

aCollege of Science, Northwest A&F University, Yangling 712100, People's Republic of China
*Correspondence e-mail: jinminggaocn@yahoo.com.cn

(Received 22 July 2010; accepted 21 August 2010; online 28 August 2010)

The title compound, C15H12F2O3, has been obtained by the reaction of 2,4-dihy­droxy­lacetonephenone, potassium carbonate and 3,5-difluoro­benzyl bromide. The hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond in each of the two independent mol­ecules in the asymmetric unit. The dihedral angle between the aromatic rings is 0.5 (2)° in one molecule and 1.9 (2)° in the other. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into tetra­meric units aligned perpendicular to b.

Related literature

For background to the Williamson reaction in organic synthesis, see: Dermer (1934[Dermer, O. C. (1934). Chem. Rev. 14, 385-430.]). For a related structure, see: Ma et al. (2010[Ma, Y.-T., Wang, J.-J., Liu, X.-W., Yang, S.-X. & Gao, J.-M. (2010). Acta Cryst. E66, o52.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12F2O3

  • Mr = 278.25

  • Triclinic, [P \overline 1]

  • a = 7.4220 (8) Å

  • b = 13.0329 (14) Å

  • c = 14.1171 (16) Å

  • α = 83.921 (2)°

  • β = 77.913 (1)°

  • γ = 76.501 (1)°

  • V = 1296.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.40 × 0.32 × 0.28 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.968

  • 6817 measured reflections

  • 4491 independent reflections

  • 2244 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.231

  • S = 0.96

  • 4491 reflections

  • 363 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1 0.82 1.81 2.533 (4) 147
O5—H5⋯O4 0.82 1.80 2.525 (4) 147
C8—H8⋯O5 0.93 2.49 3.382 (5) 161
C13—H13⋯O1i 0.93 2.44 3.342 (5) 165
C28—H28⋯O4ii 0.93 2.40 3.315 (5) 168
Symmetry codes: (i) x+1, y, z-1; (ii) x-1, y, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkylhalide (Dermer, 1934).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2,4-dihydroxylacetonephenone, potassium carbonate and 3,5-difluorobenzyl bromide. In (I) (Fig. 1), the bond lengths and angles are normal and the dihedral angle between the aromatic rings is 0.51 (4)°. In addition to the intramolecular O—H···O hydrogen bonds, there are weak C—H···O interactions which link the molecules into tetrameric units aligned perpendicular to b (see Fig. 2).

Related literature top

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For a related structure, see: Ma et al. (2010).

Experimental top

2,4-Dihydroxylacetonephenone (4 mmol), potassium carbonate (8 mmol), 3,5-difluorobenzyl bromide (4 mmol), and 40 ml acetone were mixed in 100 ml flask. After 3 h stirring at 331 K, the crude product was obtained. The crystals were obtained by recrystallization from n-hexane/ethyl acetate.

Refinement top

The positions of all H atoms were fixed geometrically and distance to H atoms were set by the program, with C—H distance in the range 0.93–0.97 Å and O—H distance of 0.82 Å.

Structure description top

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkylhalide (Dermer, 1934).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2,4-dihydroxylacetonephenone, potassium carbonate and 3,5-difluorobenzyl bromide. In (I) (Fig. 1), the bond lengths and angles are normal and the dihedral angle between the aromatic rings is 0.51 (4)°. In addition to the intramolecular O—H···O hydrogen bonds, there are weak C—H···O interactions which link the molecules into tetrameric units aligned perpendicular to b (see Fig. 2).

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For a related structure, see: Ma et al. (2010).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. Both the C—H···O interaction and the intramolecular hydrogen bonds are shown by dashed lines.
[Figure 2] Fig. 2. The packing viewed down the b axis showing the tetrameric units linked by C—H···O interactions. Both these interactions and the intramolecular hydrogen bonds are shown by dashed lines.
(I) top
Crystal data top
C15H12F2O3Z = 4
Mr = 278.25F(000) = 576
Triclinic, P1Dx = 1.426 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4220 (8) ÅCell parameters from 1571 reflections
b = 13.0329 (14) Åθ = 2.4–23.0°
c = 14.1171 (16) ŵ = 0.12 mm1
α = 83.921 (2)°T = 298 K
β = 77.913 (1)°Triclinic, colorless
γ = 76.501 (1)°0.40 × 0.32 × 0.28 mm
V = 1296.1 (2) Å3
Data collection top
Siemens SMART CCD area-detector
diffractometer
4491 independent reflections
Radiation source: fine-focus sealed tube2244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.955, Tmax = 0.968k = 1315
6817 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.231H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1234P)2]
where P = (Fo2 + 2Fc2)/3
4491 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H12F2O3γ = 76.501 (1)°
Mr = 278.25V = 1296.1 (2) Å3
Triclinic, P1Z = 4
a = 7.4220 (8) ÅMo Kα radiation
b = 13.0329 (14) ŵ = 0.12 mm1
c = 14.1171 (16) ÅT = 298 K
α = 83.921 (2)°0.40 × 0.32 × 0.28 mm
β = 77.913 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
4491 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2244 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.968Rint = 0.036
6817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.231H-atom parameters constrained
S = 0.96Δρmax = 0.27 e Å3
4491 reflectionsΔρmin = 0.22 e Å3
363 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.1302 (5)0.2012 (2)0.40710 (17)0.1012 (10)
F21.0857 (4)0.1549 (2)0.36867 (17)0.0938 (10)
O10.3966 (4)0.0294 (2)0.39116 (18)0.0685 (9)
O20.5359 (4)0.1407 (2)0.24593 (18)0.0660 (9)
H20.48390.12780.30200.099*
O30.7935 (4)0.0311 (2)0.04745 (16)0.0550 (8)
C10.3850 (7)0.1531 (3)0.3919 (3)0.0710 (13)
H1A0.33600.14140.45970.106*
H1B0.29130.20230.36260.106*
H1C0.49580.18150.38440.106*
C20.4350 (6)0.0503 (3)0.3436 (3)0.0537 (10)
C30.5232 (5)0.0463 (3)0.2413 (2)0.0429 (9)
C40.5740 (5)0.0511 (3)0.1963 (2)0.0450 (9)
C50.6623 (5)0.0580 (3)0.1002 (2)0.0457 (9)
H5A0.69320.12270.07190.055*
C60.7044 (5)0.0296 (3)0.0468 (2)0.0425 (9)
C70.6561 (5)0.1271 (3)0.0888 (2)0.0499 (10)
H70.68320.18710.05220.060*
C80.5688 (5)0.1336 (3)0.1839 (2)0.0486 (10)
H80.53870.19870.21130.058*
C90.8450 (6)0.0657 (3)0.0942 (2)0.0511 (10)
H9A0.73360.09360.09150.061*
H9B0.93190.11710.06100.061*
C100.9362 (5)0.0474 (3)0.1973 (2)0.0453 (9)
C110.9919 (6)0.1327 (3)0.2559 (3)0.0585 (11)
H110.97240.19900.23090.070*
C121.0756 (6)0.1181 (4)0.3505 (3)0.0630 (12)
C131.1114 (6)0.0235 (4)0.3913 (3)0.0592 (11)
H131.17140.01550.45560.071*
C141.0529 (6)0.0592 (3)0.3312 (3)0.0582 (11)
C150.9681 (6)0.0493 (3)0.2359 (3)0.0543 (10)
H150.93270.10730.19780.065*
F30.1980 (4)0.6542 (2)0.85834 (18)0.1013 (10)
F40.0009 (4)0.2932 (2)0.93069 (17)0.0972 (10)
O40.6255 (5)0.4794 (2)0.11718 (18)0.0730 (9)
O50.5718 (4)0.3646 (2)0.27167 (18)0.0697 (9)
H50.61430.37930.21470.104*
O60.1814 (4)0.5295 (2)0.55010 (16)0.0569 (8)
C160.4955 (7)0.6621 (4)0.1001 (3)0.0734 (14)
H16A0.56100.65230.03430.110*
H16B0.54330.71210.12770.110*
H16C0.36300.68830.10100.110*
C170.5250 (6)0.5590 (3)0.1580 (3)0.0551 (11)
C180.4401 (5)0.5514 (3)0.2605 (2)0.0426 (9)
C190.4657 (6)0.4531 (3)0.3139 (2)0.0487 (10)
C200.3820 (5)0.4430 (3)0.4103 (2)0.0476 (10)
H200.39950.37740.44410.057*
C210.2719 (5)0.5314 (3)0.4563 (2)0.0425 (9)
C220.2473 (6)0.6292 (3)0.4062 (2)0.0519 (10)
H220.17480.68860.43770.062*
C230.3298 (5)0.6385 (3)0.3104 (2)0.0501 (10)
H230.31190.70470.27750.060*
C240.2003 (6)0.4312 (3)0.6062 (2)0.0500 (10)
H24A0.33250.40140.60700.060*
H24B0.15130.38180.57720.060*
C250.0940 (5)0.4486 (3)0.7071 (2)0.0452 (9)
C260.0051 (6)0.5473 (3)0.7369 (3)0.0533 (10)
H260.00670.60630.69360.064*
C270.1003 (6)0.5569 (3)0.8303 (3)0.0602 (12)
C280.1032 (6)0.4739 (3)0.8982 (3)0.0573 (11)
H280.16890.48210.96160.069*
C290.0026 (6)0.3781 (3)0.8659 (3)0.0575 (11)
C300.0951 (6)0.3632 (3)0.7736 (3)0.0564 (11)
H300.16190.29620.75560.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.142 (3)0.099 (2)0.0589 (15)0.0326 (19)0.0144 (17)0.0386 (15)
F20.127 (3)0.0745 (19)0.0608 (16)0.0203 (17)0.0172 (16)0.0074 (14)
O10.083 (2)0.070 (2)0.0420 (15)0.0189 (17)0.0142 (15)0.0045 (14)
O20.090 (2)0.0521 (18)0.0466 (15)0.0224 (16)0.0132 (15)0.0016 (13)
O30.0694 (19)0.0644 (18)0.0293 (13)0.0207 (15)0.0041 (13)0.0077 (12)
C10.086 (3)0.074 (3)0.049 (2)0.019 (3)0.007 (2)0.022 (2)
C20.056 (3)0.062 (3)0.039 (2)0.015 (2)0.0019 (19)0.005 (2)
C30.043 (2)0.051 (2)0.0352 (19)0.0133 (18)0.0034 (17)0.0077 (17)
C40.043 (2)0.052 (2)0.037 (2)0.0114 (18)0.0008 (17)0.0014 (18)
C50.047 (2)0.051 (2)0.036 (2)0.0091 (18)0.0026 (18)0.0065 (18)
C60.041 (2)0.054 (2)0.0288 (18)0.0096 (18)0.0004 (16)0.0030 (17)
C70.064 (3)0.047 (2)0.037 (2)0.018 (2)0.0015 (19)0.0012 (18)
C80.053 (2)0.046 (2)0.043 (2)0.0099 (18)0.0010 (19)0.0058 (17)
C90.057 (3)0.061 (3)0.0338 (19)0.015 (2)0.0017 (18)0.0044 (19)
C100.041 (2)0.061 (3)0.0335 (19)0.0099 (19)0.0082 (17)0.0045 (18)
C110.066 (3)0.069 (3)0.041 (2)0.023 (2)0.002 (2)0.013 (2)
C120.067 (3)0.077 (3)0.048 (2)0.015 (2)0.005 (2)0.028 (2)
C130.054 (3)0.085 (3)0.034 (2)0.011 (2)0.0031 (19)0.011 (2)
C140.058 (3)0.067 (3)0.041 (2)0.010 (2)0.001 (2)0.009 (2)
C150.054 (3)0.065 (3)0.038 (2)0.006 (2)0.0040 (19)0.0027 (19)
F30.135 (3)0.0683 (19)0.0704 (17)0.0089 (17)0.0385 (17)0.0170 (14)
F40.118 (2)0.0870 (19)0.0553 (15)0.0010 (16)0.0135 (15)0.0235 (14)
O40.091 (2)0.078 (2)0.0414 (16)0.0216 (18)0.0155 (16)0.0122 (15)
O50.094 (2)0.0533 (18)0.0471 (16)0.0092 (16)0.0153 (16)0.0126 (14)
O60.0694 (19)0.0613 (18)0.0321 (13)0.0113 (14)0.0052 (13)0.0041 (13)
C160.090 (4)0.081 (3)0.044 (2)0.025 (3)0.002 (2)0.010 (2)
C170.059 (3)0.068 (3)0.040 (2)0.023 (2)0.002 (2)0.005 (2)
C180.047 (2)0.050 (2)0.0326 (18)0.0149 (18)0.0043 (17)0.0038 (17)
C190.057 (3)0.052 (2)0.037 (2)0.018 (2)0.0007 (18)0.0101 (19)
C200.059 (3)0.050 (2)0.0332 (19)0.018 (2)0.0017 (18)0.0015 (17)
C210.048 (2)0.052 (2)0.0277 (18)0.0162 (19)0.0014 (16)0.0039 (17)
C220.057 (3)0.053 (3)0.041 (2)0.0044 (19)0.0054 (19)0.0074 (18)
C230.057 (3)0.049 (2)0.041 (2)0.0092 (19)0.0043 (19)0.0008 (18)
C240.057 (3)0.057 (3)0.035 (2)0.016 (2)0.0040 (18)0.0013 (18)
C250.040 (2)0.063 (3)0.0336 (19)0.0141 (19)0.0031 (16)0.0079 (18)
C260.064 (3)0.055 (3)0.038 (2)0.017 (2)0.002 (2)0.0002 (19)
C270.070 (3)0.051 (3)0.050 (2)0.011 (2)0.010 (2)0.010 (2)
C280.060 (3)0.076 (3)0.032 (2)0.015 (2)0.0041 (19)0.008 (2)
C290.065 (3)0.063 (3)0.038 (2)0.012 (2)0.005 (2)0.012 (2)
C300.060 (3)0.060 (3)0.042 (2)0.006 (2)0.004 (2)0.000 (2)
Geometric parameters (Å, º) top
F1—C121.349 (4)F3—C271.358 (5)
F2—C141.357 (4)F4—C291.358 (4)
O1—C21.234 (4)O4—C171.245 (5)
O2—C41.353 (4)O5—C191.352 (4)
O2—H20.8207O5—H50.8205
O3—C61.356 (4)O6—C211.354 (4)
O3—C91.421 (4)O6—C241.426 (4)
C1—C21.501 (5)C16—C171.491 (5)
C1—H1A0.9600C16—H16A0.9600
C1—H1B0.9600C16—H16B0.9600
C1—H1C0.9600C16—H16C0.9600
C2—C31.456 (5)C17—C181.456 (5)
C3—C81.391 (5)C18—C231.396 (5)
C3—C41.416 (5)C18—C191.410 (5)
C4—C51.380 (4)C19—C201.379 (5)
C5—C61.362 (5)C20—C211.383 (5)
C5—H5A0.9300C20—H200.9300
C6—C71.397 (5)C21—C221.383 (5)
C7—C81.366 (4)C22—C231.369 (5)
C7—H70.9300C22—H220.9300
C8—H80.9300C23—H230.9300
C9—C101.492 (5)C24—C251.490 (4)
C9—H9A0.9700C24—H24A0.9700
C9—H9B0.9700C24—H24B0.9700
C10—C151.371 (5)C25—C301.376 (5)
C10—C111.387 (5)C25—C261.384 (5)
C11—C121.364 (5)C26—C271.362 (5)
C11—H110.9300C26—H260.9300
C12—C131.364 (5)C27—C281.368 (5)
C13—C141.375 (5)C28—C291.367 (6)
C13—H130.9300C28—H280.9300
C14—C151.367 (5)C29—C301.362 (5)
C15—H150.9300C30—H300.9300
C4—O2—H2109.6C19—O5—H5109.6
C6—O3—C9117.5 (3)C21—O6—C24118.8 (3)
C2—C1—H1A109.5C17—C16—H16A109.5
C2—C1—H1B109.5C17—C16—H16B109.5
H1A—C1—H1B109.5H16A—C16—H16B109.5
C2—C1—H1C109.5C17—C16—H16C109.5
H1A—C1—H1C109.5H16A—C16—H16C109.5
H1B—C1—H1C109.5H16B—C16—H16C109.5
O1—C2—C3120.9 (4)O4—C17—C18120.3 (4)
O1—C2—C1119.1 (3)O4—C17—C16118.8 (3)
C3—C2—C1120.0 (4)C18—C17—C16120.9 (4)
C8—C3—C4116.5 (3)C23—C18—C19116.9 (3)
C8—C3—C2123.5 (3)C23—C18—C17122.7 (4)
C4—C3—C2119.9 (3)C19—C18—C17120.3 (4)
O2—C4—C5117.6 (3)O5—C19—C20117.6 (4)
O2—C4—C3121.1 (3)O5—C19—C18120.9 (3)
C5—C4—C3121.3 (3)C20—C19—C18121.5 (4)
C6—C5—C4120.2 (3)C19—C20—C21119.5 (4)
C6—C5—H5A119.9C19—C20—H20120.2
C4—C5—H5A119.9C21—C20—H20120.2
O3—C6—C5124.9 (3)O6—C21—C20124.0 (3)
O3—C6—C7115.0 (3)O6—C21—C22115.8 (3)
C5—C6—C7120.1 (3)C20—C21—C22120.2 (3)
C8—C7—C6119.6 (3)C23—C22—C21120.0 (4)
C8—C7—H7120.2C23—C22—H22120.0
C6—C7—H7120.2C21—C22—H22120.0
C7—C8—C3122.4 (3)C22—C23—C18121.8 (4)
C7—C8—H8118.8C22—C23—H23119.1
C3—C8—H8118.8C18—C23—H23119.1
O3—C9—C10109.5 (3)O6—C24—C25109.5 (3)
O3—C9—H9A109.8O6—C24—H24A109.8
C10—C9—H9A109.8C25—C24—H24A109.8
O3—C9—H9B109.8O6—C24—H24B109.8
C10—C9—H9B109.8C25—C24—H24B109.8
H9A—C9—H9B108.2H24A—C24—H24B108.2
C15—C10—C11119.1 (3)C30—C25—C26118.7 (3)
C15—C10—C9122.8 (3)C30—C25—C24118.8 (4)
C11—C10—C9118.1 (3)C26—C25—C24122.5 (3)
C12—C11—C10119.2 (4)C27—C26—C25119.3 (4)
C12—C11—H11120.4C27—C26—H26120.4
C10—C11—H11120.4C25—C26—H26120.4
F1—C12—C11119.1 (4)F3—C27—C26118.6 (4)
F1—C12—C13117.5 (4)F3—C27—C28117.7 (3)
C11—C12—C13123.4 (4)C26—C27—C28123.7 (4)
C12—C13—C14115.6 (3)C29—C28—C27115.1 (3)
C12—C13—H13122.2C29—C28—H28122.4
C14—C13—H13122.2C27—C28—H28122.4
F2—C14—C15118.8 (4)F4—C29—C30118.7 (4)
F2—C14—C13117.7 (3)F4—C29—C28117.4 (3)
C15—C14—C13123.5 (4)C30—C29—C28124.0 (4)
C14—C15—C10119.1 (4)C29—C30—C25119.2 (4)
C14—C15—H15120.5C29—C30—H30120.4
C10—C15—H15120.5C25—C30—H30120.4
O1—C2—C3—C8179.7 (4)O4—C17—C18—C23178.5 (4)
C1—C2—C3—C81.2 (6)C16—C17—C18—C230.8 (6)
O1—C2—C3—C42.9 (6)O4—C17—C18—C192.0 (6)
C1—C2—C3—C4178.6 (4)C16—C17—C18—C19178.6 (4)
C8—C3—C4—O2180.0 (3)C23—C18—C19—O5179.4 (3)
C2—C3—C4—O22.4 (5)C17—C18—C19—O51.2 (6)
C8—C3—C4—C50.7 (5)C23—C18—C19—C201.5 (5)
C2—C3—C4—C5178.2 (3)C17—C18—C19—C20178.0 (3)
O2—C4—C5—C6179.9 (3)O5—C19—C20—C21179.9 (3)
C3—C4—C5—C60.7 (6)C18—C19—C20—C210.7 (6)
C9—O3—C6—C50.7 (5)C24—O6—C21—C200.5 (5)
C9—O3—C6—C7179.6 (3)C24—O6—C21—C22179.9 (3)
C4—C5—C6—O3178.9 (3)C19—C20—C21—O6178.9 (3)
C4—C5—C6—C70.8 (5)C19—C20—C21—C220.6 (6)
O3—C6—C7—C8178.9 (3)O6—C21—C22—C23178.5 (3)
C5—C6—C7—C80.8 (6)C20—C21—C22—C231.0 (6)
C6—C7—C8—C30.8 (6)C21—C22—C23—C180.1 (6)
C4—C3—C8—C70.7 (5)C19—C18—C23—C221.1 (5)
C2—C3—C8—C7178.2 (4)C17—C18—C23—C22178.4 (4)
C6—O3—C9—C10178.5 (3)C21—O6—C24—C25178.4 (3)
O3—C9—C10—C152.3 (5)O6—C24—C25—C30179.6 (3)
O3—C9—C10—C11178.3 (3)O6—C24—C25—C260.1 (5)
C15—C10—C11—C120.5 (6)C30—C25—C26—C270.9 (6)
C9—C10—C11—C12180.0 (4)C24—C25—C26—C27179.5 (4)
C10—C11—C12—F1179.8 (4)C25—C26—C27—F3179.6 (4)
C10—C11—C12—C131.2 (7)C25—C26—C27—C280.5 (7)
F1—C12—C13—C14179.8 (4)F3—C27—C28—C29180.0 (4)
C11—C12—C13—C141.6 (6)C26—C27—C28—C290.1 (7)
C12—C13—C14—F2179.9 (4)C27—C28—C29—F4179.9 (4)
C12—C13—C14—C151.5 (6)C27—C28—C29—C300.0 (6)
F2—C14—C15—C10179.4 (4)F4—C29—C30—C25179.7 (4)
C13—C14—C15—C101.0 (6)C28—C29—C30—C250.3 (7)
C11—C10—C15—C140.5 (6)C26—C25—C30—C290.8 (6)
C9—C10—C15—C14179.9 (4)C24—C25—C30—C29179.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.812.533 (4)147
O5—H5···O40.821.802.525 (4)147
C8—H8···O50.932.493.382 (5)161
C13—H13···O1i0.932.443.342 (5)165
C28—H28···O4ii0.932.403.315 (5)168
Symmetry codes: (i) x+1, y, z1; (ii) x1, y, z+1.

Experimental details

Crystal data
Chemical formulaC15H12F2O3
Mr278.25
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4220 (8), 13.0329 (14), 14.1171 (16)
α, β, γ (°)83.921 (2), 77.913 (1), 76.501 (1)
V3)1296.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.40 × 0.32 × 0.28
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
6817, 4491, 2244
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.231, 0.96
No. of reflections4491
No. of parameters363
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.812.533 (4)146.9
O5—H5···O40.821.802.525 (4)147.3
C8—H8···O50.932.493.382 (5)161.3
C13—H13···O1i0.932.443.342 (5)164.6
C28—H28···O4ii0.932.403.315 (5)168.2
Symmetry codes: (i) x+1, y, z1; (ii) x1, y, z+1.
 

Acknowledgements

We would like to acknowledge funding support from the National Natural Science Foundation of China (grant No. 30971882) and the Program of Natural Science Basic Research in Shaanxi (No. 2009JM3010).

References

First citationDermer, O. C. (1934). Chem. Rev. 14, 385–430.  CrossRef CAS Google Scholar
First citationMa, Y.-T., Wang, J.-J., Liu, X.-W., Yang, S.-X. & Gao, J.-M. (2010). Acta Cryst. E66, o52.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds