organic compounds
Methyl (Z)-3-({5-[(E)-(tert-butylamino)methylidene]-4-oxo-4,5-dihydro-1,3-thiazol-2-yl}sulfanyl)prop-2-enoate
aDepartment of Chemistry, University of Mazandaran, 47415 Babolsar, Iran
*Correspondence e-mail: baharfar@umz.ac.ir
In the title compound, C12H16N2O3S2, the S-vinyl, and tert-butylenamine fragments make dihedral angles of 14.19 (2) and 0.85 (2)°, respectively, with the thiazole ring. In the crystal, molecules are linked into chains with graph-set motifs C(5) along [100] by C—H⋯O interactions. The molecular conformation is stabilized by an intramolecular N—H⋯O hydrogen bond.
Related literature
The thiazole ring system can be found in natural compounds such as thiamine (Baia, et al., 2008) and scleritodermin A (Wu & Yang, 2007). Thiazole derivatives exhibit varied pharmaceutical properties including anticancer (Lesyk et al., 2006, 2007), anticonvulsant (Siddiqui & Ahsan, 2010), antipsychotic (Satoh et al., 2009), antibacterial and antifungal (Abdel-Wahab et al., 2009; Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004). For synthetic methods for thiazoles, see: Andrushko et al. (2001); Bourahla et al. (2007); Fakhari et al. (2008); Potikha et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810030849/bx2284sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030849/bx2284Isup2.hkl
To a magnetically stirred solution of rhodanine (0.27 g, 2 mmol) and methyl acetylenecarboxylate (0.17 g, 2 mmol) in 10 ml CH~2~Cl~2~, was added dropwise over 10 min, tert-butyl isocyanide (0.45 g, 2 mmol) in 2 ml CH2Cl2 . The mixture was then refluxed for 24 h. The solvent was removed under pressure and the residue was purified by silica gel (Merck 230-400 mesh) δ = 1.39 (9H, s, CMe3), 3.78 (3H, s, OMe), 6.12 (1H, d, 3JHH= 10.0 Hz, S—CH=CH), 7.52 (1H, d, 3JHH = 13.4 Hz, NH—CH=C), 8.41 (1H, d, 3JHH = 10.0 Hz, S—CH=CH), 10.12 (1H, d, 3JHH = 13.4 Hz, NH—CH=C). 13CNMR (75.5 MHz, CDCl3): δ= 29.94 (CMe3), 51.91 (OCH3), 53.98 (CMe3), 96.52 (NH— CH=C), 115.38 (CH=CH—C=O), 139.29 (CH=CH—C=O), 145.10 (NH—CH=C), 166.86 (C=N), 177.42 and 179.48 (2 C=O). IR (KBr) (ν/cm-1): 3313-3562 (NH), 1699 and 1643 (2 C=O), 1578 (C=N).
using n-hexane-diethyl ether (2:3) as Three products were isolated. The single crystals of the title compound were obtained from the n-hexane-ethyl acetate solution. Orange powder, yield 20%. 1H NMR (300 MHz, CDCl3):The hydrogen atom of NH group was found in difference Fourier synthesis. The H(C) atom positions were calculated. All hydrogen atoms were refined in isotropic approximation in riding model with with the Uiso(H) parameters equal to 1.2 Ueq(Ci), for methyl groups equal to 1.5 Ueq(Cii), where U(Ci) and U(Cii) are respectively the equivalent thermal parameters of the carbon atoms to which corresponding H atoms are bonded.
The thiazole ring system can be fined in natural compounds like thiamine (vitamin B1) (Baia, et al., 2008), bistratamide H, archazolid A & B, siomycin A, didmolamide A, scleritodermin A, etc. (Wu & Yang, 2007). Thiazole derivatives exhibit different pharmaceutical properties, among them are: anticancer (Lesyk et al., 2007; & Lesyk et al., 2006), anticonvulsant (Siddiqui & Ahsan, 2010), antipsychotic-like (Satoh et al., 2009), antibacterial, antifungal (Abdel-Wahab et al., 2009; & Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004) activities. These compounds have been synthesized using different methods (Andrushko et al., 2001; & Bourahla et al., 2007; & Fakhari et al., 2008; & Potikha et al., 2008). We have succeeded in synthesizing a thiazole derivative using a three step reaction. methods for theirWe report here the synthesis and
of the title compound (I). The molecular structure of (I) is illustrated in Fig 1. The fragments S-vinyl, and tert-butyl enamine makes angles of 14.19 (2) and 0.85 (2)° with the thiazole ring. In the crystal the molecules are linked into chains along [100] direction with graph-set notation C(5) motifs by a C—H···O interaction, (Bernstein, et al., 1995) Fig. 2. The is stabilized by two intramolecular N—H···O and C—H···O hydrogen bonds. Z-configuration was assigned to the geometry of S-vinyl system on the basis of torsion angle of -1.86 (4)° between atom S2 and methoxy carbonyl group.The thiazole ring system can be found in natural compounds such as thiamine (Baia, et al., 2008) and scleritodermin A (Wu & Yang, 2007). Thiazole derivatives exhibit varied pharmaceutical properties including anticancer (Lesyk et al., 2006, 2007), anticonvulsant (Siddiqui & Ahsan, 2010); antipsychotic (Satoh et al., 2009), antibacterial and antifungal (Abdel-Wahab et al., 2009; Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004). For methods for their synthesis, see: Andrushko et al. (2001); Bourahla et al. (2007); Fakhari et al. (2008); Potikha et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Data collection: SMART (Bruker, 1998); cell
SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C12H16N2O3S2 | F(000) = 632 |
Mr = 300.39 | Dx = 1.343 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1769 reflections |
a = 6.011 (2) Å | θ = 2–25° |
b = 19.333 (7) Å | µ = 0.36 mm−1 |
c = 12.870 (5) Å | T = 120 K |
β = 96.502 (8)° | Prism, orange |
V = 1485.9 (10) Å3 | 0.20 × 0.10 × 0.10 mm |
Z = 4 |
Bruker SMART 1000 CCD area-detector diffractometer | 3939 independent reflections |
Radiation source: fine-focus sealed tube | 3125 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
phi and ω scans | θmax = 29.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | h = −8→8 |
Tmin = 0.951, Tmax = 0.965 | k = −26→26 |
15867 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.010P)2 + 1.980P] where P = (Fo2 + 2Fc2)/3 |
3939 reflections | (Δ/σ)max = 0.001 |
177 parameters | Δρmax = 0.66 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C12H16N2O3S2 | V = 1485.9 (10) Å3 |
Mr = 300.39 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 6.011 (2) Å | µ = 0.36 mm−1 |
b = 19.333 (7) Å | T = 120 K |
c = 12.870 (5) Å | 0.20 × 0.10 × 0.10 mm |
β = 96.502 (8)° |
Bruker SMART 1000 CCD area-detector diffractometer | 3939 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1998) | 3125 reflections with I > 2σ(I) |
Tmin = 0.951, Tmax = 0.965 | Rint = 0.052 |
15867 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.108 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.66 e Å−3 |
3939 reflections | Δρmin = −0.28 e Å−3 |
177 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.50629 (8) | 0.53451 (3) | 0.63467 (4) | 0.03196 (13) | |
S2 | 0.20485 (8) | 0.62005 (3) | 0.49185 (4) | 0.03050 (13) | |
O1 | 0.0477 (2) | 0.46226 (9) | 0.78666 (12) | 0.0376 (4) | |
O2 | 0.1152 (3) | 0.72490 (9) | 0.34743 (13) | 0.0459 (4) | |
O3 | −0.2299 (3) | 0.75225 (9) | 0.27204 (13) | 0.0438 (4) | |
N1 | 0.0743 (3) | 0.53679 (9) | 0.64593 (13) | 0.0282 (3) | |
N2 | 0.4543 (3) | 0.40971 (9) | 0.87697 (14) | 0.0318 (4) | |
H2N | 0.3101 | 0.4070 | 0.8892 | 0.038* | |
C1 | 0.2330 (3) | 0.56032 (10) | 0.59558 (15) | 0.0258 (4) | |
C2 | 0.4049 (3) | 0.48646 (10) | 0.73331 (15) | 0.0269 (4) | |
C3 | 0.1648 (3) | 0.49260 (10) | 0.72696 (15) | 0.0272 (4) | |
C4 | −0.0858 (3) | 0.62176 (10) | 0.46463 (15) | 0.0276 (4) | |
H4A | −0.1700 | 0.5904 | 0.5014 | 0.033* | |
C5 | −0.1981 (4) | 0.66419 (10) | 0.39564 (16) | 0.0305 (4) | |
H5A | −0.3567 | 0.6608 | 0.3840 | 0.037* | |
C6 | −0.0849 (4) | 0.71564 (11) | 0.33756 (16) | 0.0324 (4) | |
C7 | −0.1334 (6) | 0.80731 (14) | 0.2156 (2) | 0.0577 (7) | |
H7A | −0.2472 | 0.8259 | 0.1624 | 0.087* | |
H7B | −0.0076 | 0.7891 | 0.1817 | 0.087* | |
H7C | −0.0800 | 0.8442 | 0.2645 | 0.087* | |
C8 | 0.5374 (3) | 0.44672 (10) | 0.80461 (16) | 0.0294 (4) | |
H8A | 0.6945 | 0.4460 | 0.8014 | 0.035* | |
C9 | 0.5922 (4) | 0.36708 (12) | 0.95625 (17) | 0.0361 (5) | |
C10 | 0.4347 (5) | 0.3335 (2) | 1.0225 (3) | 0.0814 (12) | |
H10A | 0.3303 | 0.3038 | 0.9788 | 0.122* | |
H10B | 0.3505 | 0.3692 | 1.0555 | 0.122* | |
H10C | 0.5197 | 0.3055 | 1.0767 | 0.122* | |
C11 | 0.7586 (5) | 0.41439 (16) | 1.0220 (2) | 0.0563 (7) | |
H11A | 0.6761 | 0.4501 | 1.0558 | 0.084* | |
H11B | 0.8583 | 0.4364 | 0.9766 | 0.084* | |
H11C | 0.8475 | 0.3869 | 1.0756 | 0.084* | |
C12 | 0.7262 (5) | 0.31403 (14) | 0.9007 (2) | 0.0548 (7) | |
H12A | 0.6231 | 0.2844 | 0.8562 | 0.082* | |
H12B | 0.8157 | 0.2856 | 0.9529 | 0.082* | |
H12C | 0.8258 | 0.3382 | 0.8575 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0213 (2) | 0.0381 (3) | 0.0374 (3) | 0.00031 (19) | 0.00743 (19) | 0.0062 (2) |
S2 | 0.0267 (2) | 0.0302 (2) | 0.0356 (3) | −0.00246 (19) | 0.00762 (19) | 0.0066 (2) |
O1 | 0.0256 (7) | 0.0497 (9) | 0.0387 (8) | −0.0037 (6) | 0.0087 (6) | 0.0120 (7) |
O2 | 0.0472 (10) | 0.0462 (10) | 0.0439 (9) | −0.0114 (8) | 0.0037 (7) | 0.0139 (8) |
O3 | 0.0543 (10) | 0.0398 (9) | 0.0380 (9) | 0.0094 (8) | 0.0081 (7) | 0.0129 (7) |
N1 | 0.0239 (8) | 0.0303 (8) | 0.0313 (8) | −0.0003 (6) | 0.0068 (6) | 0.0025 (7) |
N2 | 0.0248 (8) | 0.0362 (9) | 0.0348 (9) | 0.0008 (7) | 0.0058 (7) | 0.0050 (7) |
C1 | 0.0234 (9) | 0.0245 (9) | 0.0296 (9) | −0.0002 (7) | 0.0044 (7) | −0.0018 (7) |
C2 | 0.0253 (9) | 0.0271 (9) | 0.0289 (10) | −0.0021 (7) | 0.0061 (7) | 0.0007 (7) |
C3 | 0.0249 (9) | 0.0284 (9) | 0.0285 (9) | −0.0022 (7) | 0.0043 (7) | −0.0007 (8) |
C4 | 0.0274 (9) | 0.0264 (9) | 0.0300 (10) | −0.0016 (7) | 0.0081 (7) | −0.0017 (7) |
C5 | 0.0324 (10) | 0.0292 (10) | 0.0302 (10) | 0.0011 (8) | 0.0049 (8) | −0.0019 (8) |
C6 | 0.0431 (12) | 0.0279 (10) | 0.0264 (10) | 0.0009 (9) | 0.0043 (8) | −0.0012 (8) |
C7 | 0.080 (2) | 0.0452 (14) | 0.0496 (15) | 0.0083 (14) | 0.0150 (14) | 0.0224 (12) |
C8 | 0.0236 (9) | 0.0312 (10) | 0.0339 (10) | −0.0012 (7) | 0.0049 (7) | −0.0029 (8) |
C9 | 0.0378 (11) | 0.0367 (11) | 0.0332 (11) | 0.0052 (9) | 0.0018 (9) | 0.0067 (9) |
C10 | 0.0503 (17) | 0.109 (3) | 0.087 (2) | 0.0109 (18) | 0.0177 (16) | 0.059 (2) |
C11 | 0.0666 (18) | 0.0566 (17) | 0.0426 (14) | 0.0052 (14) | −0.0073 (13) | −0.0017 (12) |
C12 | 0.0664 (18) | 0.0447 (14) | 0.0521 (16) | 0.0155 (13) | 0.0012 (13) | 0.0014 (12) |
S1—C1 | 1.736 (2) | C5—H5A | 0.9500 |
S1—C2 | 1.738 (2) | C7—H7A | 0.9800 |
S2—C4 | 1.743 (2) | C7—H7B | 0.9800 |
S2—C1 | 1.759 (2) | C7—H7C | 0.9800 |
O1—C3 | 1.246 (2) | C8—H8A | 0.9500 |
O2—C6 | 1.209 (3) | C9—C10 | 1.493 (4) |
O3—C6 | 1.343 (3) | C9—C12 | 1.530 (3) |
O3—C7 | 1.447 (3) | C9—C11 | 1.537 (4) |
N1—C1 | 1.295 (2) | C10—H10A | 0.9800 |
N1—C3 | 1.409 (3) | C10—H10B | 0.9800 |
N2—C8 | 1.317 (3) | C10—H10C | 0.9800 |
N2—C9 | 1.488 (3) | C11—H11A | 0.9800 |
N2—H2N | 0.9000 | C11—H11B | 0.9800 |
C2—C8 | 1.379 (3) | C11—H11C | 0.9800 |
C2—C3 | 1.441 (3) | C12—H12A | 0.9800 |
C4—C5 | 1.335 (3) | C12—H12B | 0.9800 |
C4—H4A | 0.9500 | C12—H12C | 0.9800 |
C5—C6 | 1.458 (3) | ||
C1—S1—C2 | 88.09 (10) | H7A—C7—H7C | 109.5 |
C4—S2—C1 | 99.97 (9) | H7B—C7—H7C | 109.5 |
C6—O3—C7 | 115.7 (2) | N2—C8—C2 | 122.48 (19) |
C1—N1—C3 | 109.79 (16) | N2—C8—H8A | 118.8 |
C8—N2—C9 | 124.02 (18) | C2—C8—H8A | 118.8 |
C8—N2—H2N | 127.3 | N2—C9—C10 | 107.0 (2) |
C9—N2—H2N | 108.6 | N2—C9—C12 | 109.43 (19) |
N1—C1—S1 | 118.72 (15) | C10—C9—C12 | 112.1 (3) |
N1—C1—S2 | 126.69 (15) | N2—C9—C11 | 108.98 (19) |
S1—C1—S2 | 114.53 (11) | C10—C9—C11 | 111.1 (2) |
C8—C2—C3 | 125.64 (18) | C12—C9—C11 | 108.2 (2) |
C8—C2—S1 | 124.06 (15) | C9—C10—H10A | 109.5 |
C3—C2—S1 | 110.26 (14) | C9—C10—H10B | 109.5 |
O1—C3—N1 | 122.95 (18) | H10A—C10—H10B | 109.5 |
O1—C3—C2 | 123.95 (18) | C9—C10—H10C | 109.5 |
N1—C3—C2 | 113.10 (16) | H10A—C10—H10C | 109.5 |
C5—C4—S2 | 124.43 (16) | H10B—C10—H10C | 109.5 |
C5—C4—H4A | 117.8 | C9—C11—H11A | 109.5 |
S2—C4—H4A | 117.8 | C9—C11—H11B | 109.5 |
C4—C5—C6 | 122.0 (2) | H11A—C11—H11B | 109.5 |
C4—C5—H5A | 119.0 | C9—C11—H11C | 109.5 |
C6—C5—H5A | 119.0 | H11A—C11—H11C | 109.5 |
O2—C6—O3 | 123.7 (2) | H11B—C11—H11C | 109.5 |
O2—C6—C5 | 124.3 (2) | C9—C12—H12A | 109.5 |
O3—C6—C5 | 111.96 (19) | C9—C12—H12B | 109.5 |
O3—C7—H7A | 109.5 | H12A—C12—H12B | 109.5 |
O3—C7—H7B | 109.5 | C9—C12—H12C | 109.5 |
H7A—C7—H7B | 109.5 | H12A—C12—H12C | 109.5 |
O3—C7—H7C | 109.5 | H12B—C12—H12C | 109.5 |
C3—N1—C1—S1 | 0.2 (2) | S1—C2—C3—N1 | −1.8 (2) |
C3—N1—C1—S2 | −177.08 (15) | C1—S2—C4—C5 | 174.49 (18) |
C2—S1—C1—N1 | −1.00 (17) | S2—C4—C5—C6 | −1.9 (3) |
C2—S1—C1—S2 | 176.56 (12) | C7—O3—C6—O2 | −2.9 (3) |
C4—S2—C1—N1 | −11.2 (2) | C7—O3—C6—C5 | 176.5 (2) |
C4—S2—C1—S1 | 171.44 (11) | C4—C5—C6—O2 | −1.0 (3) |
C1—S1—C2—C8 | 179.57 (19) | C4—C5—C6—O3 | 179.54 (19) |
C1—S1—C2—C3 | 1.47 (15) | C9—N2—C8—C2 | −179.01 (19) |
C1—N1—C3—O1 | −179.05 (19) | C3—C2—C8—N2 | −0.7 (3) |
C1—N1—C3—C2 | 1.0 (2) | S1—C2—C8—N2 | −178.46 (16) |
C8—C2—C3—O1 | 0.3 (3) | C8—N2—C9—C10 | −179.7 (3) |
S1—C2—C3—O1 | 178.34 (17) | C8—N2—C9—C12 | −58.0 (3) |
C8—C2—C3—N1 | −179.81 (19) | C8—N2—C9—C11 | 60.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1 | 0.90 | 2.21 | 2.777 (2) | 120 |
C4—H4A···N1 | 0.95 | 2.46 | 2.926 (3) | 110 |
C8—H8A···O1i | 0.95 | 2.18 | 3.117 (3) | 171 |
Symmetry code: (i) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C12H16N2O3S2 |
Mr | 300.39 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 6.011 (2), 19.333 (7), 12.870 (5) |
β (°) | 96.502 (8) |
V (Å3) | 1485.9 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.20 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART 1000 CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1998) |
Tmin, Tmax | 0.951, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15867, 3939, 3125 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.108, 1.00 |
No. of reflections | 3939 |
No. of parameters | 177 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.66, −0.28 |
Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···O1 | 0.90 | 2.21 | 2.777 (2) | 120 |
C4—H4A···N1 | 0.95 | 2.46 | 2.926 (3) | 110 |
C8—H8A···O1i | 0.95 | 2.18 | 3.117 (3) | 171 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
We thank Dr H. Golchoubian for his help with the data collection.
References
Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmad, E. M. (2009). Eur. J. Med. Chem. 44, 2632–2635. Web of Science CrossRef PubMed CAS Google Scholar
Andrushko, A. P., Demchenko, A. M., Krasovskii, A. N., Rusanov, E. B., Chemega, A. N. & Lozinskii, M. O. (2001). Russ. J. Gen. Chem. 71, 1754–1758. Web of Science CrossRef CAS Google Scholar
Baia, M., Astilean, S. & Iliescu, T. (2008). Raman and SERS Investigations of Pharmaceuticals, pp. 125–142. Berlin, Heidelberg: Springer Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573 CrossRef CAS Web of Science Google Scholar
Bourahla, K., Derdour, A., Rahmouni, M., Carreaux, F. & Bazureau, J. P. (2007). Tetrahedron Lett. 48, 5785–5789. Web of Science CrossRef CAS Google Scholar
Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fakhari, A. R., Hosseiny Davarani, S. S., Ahmar, H. & Makarem, S. (2008). J. Appl. Electrochem. 38, 1743–1747. Web of Science CrossRef CAS Google Scholar
Koz'minykh, V. O., Milyutin, A. V., Makhmudov, R. R., Belyaev, A. O. & Koz'minykh, E. N. (2004). Pharmaceutical Chem. J. 38, 665–669. CAS Google Scholar
Lesyk, R., Vladzimirska, O., Holota, S., Zaprutko, L. & Gzella, A. (2007). Eur. J. Med. Chem. 42, 641–648. Web of Science CSD CrossRef PubMed CAS Google Scholar
Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kiec-Kononowicz, K. & Gzella, A. (2006). Bioorg. Med. Chem. 14, 5230–5240. Web of Science CSD CrossRef PubMed CAS Google Scholar
Potikha, L. M., Turov, A. V. & Kovtunenko, V. A. (2008). Chem. Heterocycl. Comp. 44, 86–91. Web of Science CrossRef CAS Google Scholar
Satoh, A., Nagatomi, Y., Hirata, Y., Ito, S., Suzuki, G., Kimura, T., Maehara, S., Hikichi, H., Satow, A., Hata, M., Ohta, H. & Kawamoto, H. (2009). Bioorg. Med. Chem. Lett. 19, 5464–5468. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shiradkar, M., Kumar, G. V. S., Dasari, V., Tatikonda, S., Akula, K. C. & Shah, R. (2007). Eur. J. Med. Chem. 42, 807–816. Web of Science CrossRef PubMed CAS Google Scholar
Shiradkar, M. R., Murahari, K. K., Gangadasu, H. R., Suresh, T., Kalyan, C. A., Kaur, D. P. R., Burange, P., Ghogare, J., Mokale, V. & Raut, M. (2007). Bioorg. Med. Chem. 15, 3997–4008. Web of Science CrossRef PubMed CAS Google Scholar
Siddiqui, N. & Ahsan, W. (2010). Eur. J. Med. Chem. 45, 1536–1543. Web of Science CrossRef CAS PubMed Google Scholar
Vijaya Raj, K. K., Narayana, B., Ashalatha, B. V., Suchetha Kumari, N. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429. Web of Science CrossRef PubMed CAS Google Scholar
Wu, Y. J. & Yang, B. V. (2007). Prog. Heterocycl. Chem. 18, 247–275. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The thiazole ring system can be fined in natural compounds like thiamine (vitamin B1) (Baia, et al., 2008), bistratamide H, archazolid A & B, siomycin A, didmolamide A, scleritodermin A, etc. (Wu & Yang, 2007). Thiazole derivatives exhibit different pharmaceutical properties, among them are: anticancer (Lesyk et al., 2007; & Lesyk et al., 2006), anticonvulsant (Siddiqui & Ahsan, 2010), antipsychotic-like (Satoh et al., 2009), antibacterial, antifungal (Abdel-Wahab et al., 2009; & Vijaya Raj et al., 2007), antitubercular (Shiradkar, Murahari et al., 2007), antimicrobial (Shiradkar, Kumar et al., 2007), analgesic and anti-inflammatory (Koz'minykh et al., 2004) activities. These compounds have been synthesized using different methods (Andrushko et al., 2001; & Bourahla et al., 2007; & Fakhari et al., 2008; & Potikha et al., 2008). We have succeeded in synthesizing a thiazole derivative using a three step reaction. methods for theirWe report here the synthesis and crystal structure of the title compound (I). The molecular structure of (I) is illustrated in Fig 1. The fragments S-vinyl, and tert-butyl enamine makes angles of 14.19 (2) and 0.85 (2)° with the thiazole ring. In the crystal the molecules are linked into chains along [100] direction with graph-set notation C(5) motifs by a C—H···O interaction, (Bernstein, et al., 1995) Fig. 2. The molecular conformation is stabilized by two intramolecular N—H···O and C—H···O hydrogen bonds. Z-configuration was assigned to the geometry of S-vinyl system on the basis of torsion angle of -1.86 (4)° between atom S2 and methoxy carbonyl group.