organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1,2,3,4-Tetra­hydro-1-naphth­yl)imidazolium chloride monohydrate

aDipartimento di Scienze Farmaceutiche, Universitá di Firenze, Via U. Schiff 6, I-50019 Sesto Fiorentino, Firenze, Italy, and bCentro di Cristallografia, Universitá di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
*Correspondence e-mail: samuele.ciattini@unifi.it

(Received 2 July 2010; accepted 30 July 2010; online 18 August 2010)

In the title compound, C13H15N2+·Cl·H2O, the ions and water mol­ecules are ­connected by N—H⋯Cl, O—H⋯Cl, NH⋯Cl⋯HO, NH⋯Cl⋯HN and OH⋯Cl⋯HO inter­actions, forming discrete D(2) and D21(3) chains, C21(6) chains and R42(8) rings, leading to a neutral two-dimensional network. The crystal structure is further stabilized by ππ stacking inter­actions [centroid–centroid distance = 3.652 (11) Å].

Related literature

The title compound is a by-product obtained in the preparation of the popular decongestant tetra­hydro­zoline hydro­chloride and differs from the main product in the presence of an aromatic imidazole instead of a dihydro­imidazole group. For the structure of the tetra­hydro­zoline main product, see: Ghose & Dattagupta (1989[Ghose, S. & Dattagupta, J. K. (1989). Acta Cryst. C45, 1522-1524.]); Ciattini et al. (2010[Ciattini, S., Bruni, B., Bartolucci, G. & Coran, S. A. (2010). Private communication (number 1078) to the Cambridge Structural Database. Cambridge Crystallographic Data Centre, Cambridge, England.]). For the identification of the nature of the title compound, see: Bartolucci (2010[Bartolucci, G. (2010). Private communication.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15N2+·Cl·H2O

  • Mr = 252.74

  • Monoclinic, P 21 /n

  • a = 9.8299 (1) Å

  • b = 12.6671 (2) Å

  • c = 10.5375 (2) Å

  • β = 92.666 (1)°

  • V = 1310.67 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.46 mm−1

  • T = 173 K

  • 0.40 × 0.25 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur PX Ultra CCD diffractometer

  • Absorption correction: multi-scan (ABSPACK; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD, CrysAlis PRO RED and ABSPACK in CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.594, Tmax = 1.000

  • 3831 measured reflections

  • 1981 independent reflections

  • 1883 reflections with I > 2σ(I)

  • Rint = 0.011

  • θmax = 61.6°

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.091

  • S = 1.09

  • 1981 reflections

  • 161 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H14⋯Cli 0.88 2.21 3.0897 (16) 176
N2—H15⋯Clii 0.88 2.25 3.1164 (15) 169
O—H17⋯Cl 0.86 (1) 2.41 (1) 3.2612 (18) 173 (3)
O—H16⋯Cliii 0.86 (1) 2.37 (1) 3.2252 (17) 175 (3)
Symmetry codes: (i) x, y, z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD, CrysAlis PRO RED and ABSPACK in CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO CCD, CrysAlis PRO RED and ABSPACK in CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); program(s) used to solve structure: SIR2004 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

The industrial preparation of the widely used drug tetrahydrozolyne hydrochloride, 2-(1,2,3,4-tetrahydro-naphthalen-1-yl)-4,5- dihydro-1 H-imidazole hydrochloride, whose structure was reported several years ago (Ghose & Dattagupta, 1989), is generally accompanied by tiny amounts of an impurity (the title compound), whose nature has been identified (Bartolucci, 2010), but whose structure awaited investigation.

The trace byproduct, strictly related to the tetrahydrozolyne molecule, features an imidazole, rather than a dihydroimidazole ring. The structure of the present hydrochloride consists of cations, generated by N-protonation of the above imidazole derivative, chloride anions and solvate water molecules in 1:1:1 ratios. The content of the asymmetric unit is shown in Fig. 1. In the course of our investigations on these species, the structure of the main product of the preparation, already known (Ghose & Dattagupta, 1989), has been refined against low–temperature data and deposited at the Cambridge Structural database (deposition number CCDC 782942 [Ciattini et al., (2010)]. In spite of the above difference between molecules of the main product and of the impurity and irrespective of different packing modes in the two structures, the overall molecular geometries are closely similar: e.g., the dihedral angle formed by the best planes through the benzene and imidazole rings is 88.62 (5)° in the cation of the present structure and 88.00 (6)° in that of the tetrahydrozoline hydrochloride drug (170 K data).The structure of (I), C13H15N2+.Cl .H2O, comprises discrete ions and water molecules which are interconnected by N—H···Cl, O—H···Cl, NH···Cl···HO, NH···Cl···HN and OH···Cl···HO interactions to form discrete chains D(2), D21(3); chains , C12(6) and rings R42(8) motifs (Bernstein et al., 1995), leading to a neutral bidimensional- network. The crystal structure is further stabilized by π-π stacking interactions, (Cg1-Cg2= 3.652 (11) Å, α = 6.59 (10)° (Cg1 = N1/C1-C2/N2/C3 and Cg2 = C8-C13) and this interaction is not observed in the crystal structure of the tetrahydrozoline main product (Ghose & Dattagupta, 1989; Ciattini et al., 2010).

Related literature top

The title compound is a by-product obtained in the preparation of the popular decongestant tetrahydrozoline hydrochloride and differs from the main product in the presence of an aromatic imidazole instead of a dihydroimidazole group. For the structure of the tetrahydrozoline main product, see: Ghose & Dattagupta (1989); Ciattini et al. (2010). For the identification of the nature of the title compound, see: Bartolucci (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Samples of the compound, made available from concomitant studies (Bartolucci, 2010), were obtained in suitable form for X-ray diffraction analysis by slow evaporation from methanolic solutions.

Refinement top

In the final refinement cycles non-hydrogen atoms were assigned anisotropic thermal parameters and H atoms had Uiso(H) = 1.2 Ueq(C, N), or Uiso(H) = 1.5 Ueq(O) for the water H atoms. Hydrogen atoms were placed in geometrically generated positions, riding, except for those of the water molecule, whose positions were refined with a restraint on O—H distances (0.86 (1) Å final value). Assigned C—H: tertiary CH 1.00 Å, secondary CH2 0.99 Å, aromatic CH 0.95 Å. Aromatic N—H: 0.88 Å.

Structure description top

The industrial preparation of the widely used drug tetrahydrozolyne hydrochloride, 2-(1,2,3,4-tetrahydro-naphthalen-1-yl)-4,5- dihydro-1 H-imidazole hydrochloride, whose structure was reported several years ago (Ghose & Dattagupta, 1989), is generally accompanied by tiny amounts of an impurity (the title compound), whose nature has been identified (Bartolucci, 2010), but whose structure awaited investigation.

The trace byproduct, strictly related to the tetrahydrozolyne molecule, features an imidazole, rather than a dihydroimidazole ring. The structure of the present hydrochloride consists of cations, generated by N-protonation of the above imidazole derivative, chloride anions and solvate water molecules in 1:1:1 ratios. The content of the asymmetric unit is shown in Fig. 1. In the course of our investigations on these species, the structure of the main product of the preparation, already known (Ghose & Dattagupta, 1989), has been refined against low–temperature data and deposited at the Cambridge Structural database (deposition number CCDC 782942 [Ciattini et al., (2010)]. In spite of the above difference between molecules of the main product and of the impurity and irrespective of different packing modes in the two structures, the overall molecular geometries are closely similar: e.g., the dihedral angle formed by the best planes through the benzene and imidazole rings is 88.62 (5)° in the cation of the present structure and 88.00 (6)° in that of the tetrahydrozoline hydrochloride drug (170 K data).The structure of (I), C13H15N2+.Cl .H2O, comprises discrete ions and water molecules which are interconnected by N—H···Cl, O—H···Cl, NH···Cl···HO, NH···Cl···HN and OH···Cl···HO interactions to form discrete chains D(2), D21(3); chains , C12(6) and rings R42(8) motifs (Bernstein et al., 1995), leading to a neutral bidimensional- network. The crystal structure is further stabilized by π-π stacking interactions, (Cg1-Cg2= 3.652 (11) Å, α = 6.59 (10)° (Cg1 = N1/C1-C2/N2/C3 and Cg2 = C8-C13) and this interaction is not observed in the crystal structure of the tetrahydrozoline main product (Ghose & Dattagupta, 1989; Ciattini et al., 2010).

The title compound is a by-product obtained in the preparation of the popular decongestant tetrahydrozoline hydrochloride and differs from the main product in the presence of an aromatic imidazole instead of a dihydroimidazole group. For the structure of the tetrahydrozoline main product, see: Ghose & Dattagupta (1989); Ciattini et al. (2010). For the identification of the nature of the title compound, see: Bartolucci (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO CCD (Oxford Diffraction, 2006); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR2004 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. A hydrogen bond is denoted by a dashed line.The labelling criterion used for the structure of the related tetrahydrozoline hydrochloride has been preserved.
[Figure 2] Fig. 2. A view of the arrangement of hydrogen bonds in the structure of the title compound. Only hydrogen atoms involved in the formation of hydrogen bonds are shown for clarity. Hydrogen bonds are denoted by dashed lines.
2-(1,2,3,4-Tetrahydro-1-naphthyl)imidazolium chloride monohydrate top
Crystal data top
C13H15N2+·Cl·H2OF(000) = 536
Mr = 252.74Dx = 1.281 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 3348 reflections
a = 9.8299 (1) Åθ = 4.2–61.4°
b = 12.6671 (2) ŵ = 2.46 mm1
c = 10.5375 (2) ÅT = 173 K
β = 92.666 (1)°Irregularly shaped prism, colourless
V = 1310.67 (3) Å30.40 × 0.25 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur PX Ultra CCD
diffractometer
1981 independent reflections
Radiation source: fine-focus sealed tube1883 reflections with I > 2σ(I)
Oxford Diffraction, Enhance ULTRA assembly monochromatorRint = 0.011
Detector resolution: 8.1241 pixels mm-1θmax = 61.6°, θmin = 5.5°
ω scansh = 116
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
k = 1412
Tmin = 0.594, Tmax = 1.000l = 911
3831 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.6835P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1981 reflectionsΔρmax = 0.21 e Å3
161 parametersΔρmin = 0.33 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (10)
Crystal data top
C13H15N2+·Cl·H2OV = 1310.67 (3) Å3
Mr = 252.74Z = 4
Monoclinic, P21/nCu Kα radiation
a = 9.8299 (1) ŵ = 2.46 mm1
b = 12.6671 (2) ÅT = 173 K
c = 10.5375 (2) Å0.40 × 0.25 × 0.10 mm
β = 92.666 (1)°
Data collection top
Oxford Diffraction Xcalibur PX Ultra CCD
diffractometer
1981 independent reflections
Absorption correction: multi-scan
(ABSPACK; Oxford Diffraction, 2006)
1883 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 1.000Rint = 0.011
3831 measured reflectionsθmax = 61.6°
Refinement top
R[F2 > 2σ(F2)] = 0.0332 restraints
wR(F2) = 0.091H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.21 e Å3
1981 reflectionsΔρmin = 0.33 e Å3
161 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.72704 (5)0.40149 (4)0.00302 (4)0.0364 (2)
N10.62280 (14)0.24302 (12)0.79789 (14)0.0306 (4)
H140.65640.28710.85580.037*
N20.48201 (14)0.15944 (11)0.67424 (13)0.0284 (4)
H150.40560.13830.63540.034*
C10.69789 (19)0.17205 (15)0.73092 (18)0.0345 (4)
H10.79370.16220.73830.041*
C20.60936 (18)0.11937 (15)0.65322 (17)0.0325 (4)
H20.63050.06510.59510.039*
C30.49175 (17)0.23477 (13)0.76179 (15)0.0263 (4)
C40.37597 (17)0.29425 (14)0.81497 (16)0.0274 (4)
H40.41590.35020.87230.033*
C50.29045 (19)0.34994 (15)0.70929 (18)0.0330 (4)
H510.34180.41080.67710.040*
H520.27200.30040.63780.040*
C60.15650 (19)0.38812 (15)0.75959 (19)0.0357 (5)
H610.10510.42820.69250.043*
H620.17490.43590.83280.043*
C70.07197 (19)0.29466 (16)0.80081 (19)0.0377 (5)
H710.00860.32110.84400.045*
H720.03890.25490.72460.045*
C80.15091 (18)0.22119 (14)0.88886 (17)0.0300 (4)
C90.29331 (18)0.22005 (13)0.89655 (16)0.0275 (4)
C100.3616 (2)0.15248 (16)0.98209 (17)0.0359 (5)
H100.45830.15240.98750.043*
C110.2911 (2)0.08543 (17)1.05936 (19)0.0424 (5)
H110.33890.03981.11740.051*
C120.1495 (2)0.08569 (16)1.05108 (19)0.0417 (5)
H120.09980.03991.10330.050*
C130.0822 (2)0.15226 (16)0.96731 (18)0.0380 (5)
H130.01460.15160.96230.046*
O0.46819 (17)0.45111 (15)0.17630 (17)0.0595 (5)
H160.415 (3)0.487 (2)0.125 (2)0.089*
H170.539 (2)0.435 (3)0.136 (3)0.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0348 (3)0.0341 (3)0.0390 (3)0.00069 (18)0.00995 (19)0.00005 (18)
N10.0251 (8)0.0341 (8)0.0325 (8)0.0043 (6)0.0007 (6)0.0007 (7)
N20.0249 (8)0.0308 (8)0.0293 (8)0.0026 (6)0.0009 (6)0.0017 (6)
C10.0259 (9)0.0394 (10)0.0384 (10)0.0039 (8)0.0045 (8)0.0050 (9)
C20.0321 (10)0.0330 (10)0.0331 (10)0.0061 (8)0.0075 (8)0.0021 (8)
C30.0262 (9)0.0269 (9)0.0259 (9)0.0048 (7)0.0021 (7)0.0025 (7)
C40.0253 (9)0.0277 (9)0.0294 (9)0.0031 (7)0.0033 (7)0.0049 (7)
C50.0328 (10)0.0299 (10)0.0362 (10)0.0012 (8)0.0028 (8)0.0013 (8)
C60.0330 (10)0.0319 (10)0.0419 (11)0.0049 (8)0.0007 (8)0.0060 (8)
C70.0268 (9)0.0419 (11)0.0444 (11)0.0005 (8)0.0021 (8)0.0083 (9)
C80.0289 (9)0.0311 (9)0.0306 (9)0.0048 (8)0.0060 (7)0.0111 (8)
C90.0295 (9)0.0283 (9)0.0251 (9)0.0033 (7)0.0046 (7)0.0065 (7)
C100.0324 (10)0.0438 (11)0.0318 (10)0.0018 (8)0.0042 (8)0.0012 (9)
C110.0528 (13)0.0426 (12)0.0323 (10)0.0025 (10)0.0054 (9)0.0043 (9)
C120.0505 (13)0.0408 (11)0.0351 (11)0.0170 (10)0.0143 (9)0.0056 (9)
C130.0331 (10)0.0427 (11)0.0388 (11)0.0110 (9)0.0098 (8)0.0126 (9)
O0.0457 (10)0.0654 (11)0.0674 (11)0.0046 (8)0.0037 (8)0.0186 (9)
Geometric parameters (Å, º) top
N1—C31.330 (2)C6—H610.9900
N1—C11.378 (2)C6—H620.9900
N1—H140.8800C7—C81.504 (3)
N2—C31.328 (2)C7—H710.9900
N2—C21.378 (2)C7—H720.9900
N2—H150.8800C8—C131.398 (3)
C1—C21.344 (3)C8—C91.398 (3)
C1—H10.9500C9—C101.392 (3)
C2—H20.9500C10—C111.384 (3)
C3—C41.495 (2)C10—H100.9500
C4—C91.532 (2)C11—C121.390 (3)
C4—C51.535 (3)C11—H110.9500
C4—H41.0000C12—C131.369 (3)
C5—C61.521 (3)C12—H120.9500
C5—H510.9900C13—H130.9500
C5—H520.9900O—H160.862 (10)
C6—C71.521 (3)O—H170.861 (10)
C3—N1—C1109.69 (15)C7—C6—H61109.6
C3—N1—H14125.2C5—C6—H62109.6
C1—N1—H14125.2C7—C6—H62109.6
C3—N2—C2109.86 (15)H61—C6—H62108.1
C3—N2—H15125.1C8—C7—C6112.62 (15)
C2—N2—H15125.1C8—C7—H71109.1
C2—C1—N1106.78 (16)C6—C7—H71109.1
C2—C1—H1126.6C8—C7—H72109.1
N1—C1—H1126.6C6—C7—H72109.1
C1—C2—N2106.64 (16)H71—C7—H72107.8
C1—C2—H2126.7C13—C8—C9117.99 (18)
N2—C2—H2126.7C13—C8—C7120.10 (17)
N2—C3—N1107.02 (15)C9—C8—C7121.90 (16)
N2—C3—C4126.23 (15)C10—C9—C8119.65 (16)
N1—C3—C4126.66 (15)C10—C9—C4119.22 (15)
C3—C4—C9109.51 (14)C8—C9—C4121.11 (16)
C3—C4—C5111.11 (14)C11—C10—C9121.25 (18)
C9—C4—C5113.71 (14)C11—C10—H10119.4
C3—C4—H4107.4C9—C10—H10119.4
C9—C4—H4107.4C10—C11—C12119.2 (2)
C5—C4—H4107.4C10—C11—H11120.4
C6—C5—C4110.30 (15)C12—C11—H11120.4
C6—C5—H51109.6C13—C12—C11119.65 (18)
C4—C5—H51109.6C13—C12—H12120.2
C6—C5—H52109.6C11—C12—H12120.2
C4—C5—H52109.6C12—C13—C8122.23 (18)
H51—C5—H52108.1C12—C13—H13118.9
C5—C6—C7110.20 (15)C8—C13—H13118.9
C5—C6—H61109.6H16—O—H17107 (3)
C3—N1—C1—C20.4 (2)C6—C7—C8—C919.8 (2)
N1—C1—C2—N20.1 (2)C13—C8—C9—C100.9 (2)
C3—N2—C2—C10.2 (2)C7—C8—C9—C10178.28 (16)
C2—N2—C3—N10.50 (19)C13—C8—C9—C4179.19 (15)
C2—N2—C3—C4177.17 (16)C7—C8—C9—C40.0 (2)
C1—N1—C3—N20.56 (19)C3—C4—C9—C1044.9 (2)
C1—N1—C3—C4177.21 (16)C5—C4—C9—C10169.90 (16)
N2—C3—C4—C969.1 (2)C3—C4—C9—C8136.78 (16)
N1—C3—C4—C9106.93 (19)C5—C4—C9—C811.8 (2)
N2—C3—C4—C557.3 (2)C8—C9—C10—C110.5 (3)
N1—C3—C4—C5126.63 (18)C4—C9—C10—C11178.83 (17)
C3—C4—C5—C6166.88 (15)C9—C10—C11—C120.1 (3)
C9—C4—C5—C642.8 (2)C10—C11—C12—C130.2 (3)
C4—C5—C6—C763.2 (2)C11—C12—C13—C80.2 (3)
C5—C6—C7—C851.0 (2)C9—C8—C13—C120.8 (3)
C6—C7—C8—C13159.38 (16)C7—C8—C13—C12178.46 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H14···Cli0.882.213.0897 (16)176
N2—H15···Clii0.882.253.1164 (15)169
O—H17···Cl0.86 (1)2.41 (1)3.2612 (18)173 (3)
O—H16···Cliii0.86 (1)2.37 (1)3.2252 (17)175 (3)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H15N2+·Cl·H2O
Mr252.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.8299 (1), 12.6671 (2), 10.5375 (2)
β (°) 92.666 (1)
V3)1310.67 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.46
Crystal size (mm)0.40 × 0.25 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur PX Ultra CCD
diffractometer
Absorption correctionMulti-scan
(ABSPACK; Oxford Diffraction, 2006)
Tmin, Tmax0.594, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3831, 1981, 1883
Rint0.011
θmax (°)61.6
(sin θ/λ)max1)0.570
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.091, 1.09
No. of reflections1981
No. of parameters161
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.33

Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2006), CrysAlis PRO RED (Oxford Diffraction, 2006), SIR2004 (Altomare et al., 1999), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H14···Cli0.882.213.0897 (16)176.2
N2—H15···Clii0.882.253.1164 (15)168.9
O—H17···Cl0.861 (10)2.405 (11)3.2612 (18)173 (3)
O—H16···Cliii0.862 (10)2.366 (11)3.2252 (17)175 (3)
Symmetry codes: (i) x, y, z+1; (ii) x1/2, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the Italian Ministero dell'Istruzione, dell'Universitá e della Ricerca. Availability of instrumentation at the CRIST Centre of the University of Florence is acknowledged.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBartolucci, G. (2010). Private communication.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCiattini, S., Bruni, B., Bartolucci, G. & Coran, S. A. (2010). Private communication (number 1078) to the Cambridge Structural Database. Cambridge Crystallographic Data Centre, Cambridge, England.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGhose, S. & Dattagupta, J. K. (1989). Acta Cryst. C45, 1522–1524.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO CCD, CrysAlis PRO RED and ABSPACK in CrysAlis PRO RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds