organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4,6-Tri­methyl­pyridinium nitrate

aMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan, and bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr, iukhan.gcu@gmail.com

(Received 2 August 2010; accepted 13 August 2010; online 21 August 2010)

In the title compound, C8H12N+·NO3, the cation lies on a mirror plane and the N and one C atom lie on a twofold axis. In the crystal, the anions and cations are linked by N—H⋯O inter­actions along the b axis and a short N—O⋯π contact [3.2899 (5) Å] also occurs.

Related literature

For the use of sym-collidine and its derivatives, see: Brunel & Rousseau (1995[Brunel, Y. & Rousseau, G. (1995). Tetrahedron Lett. 36, 8217-8220.]); Homsi & Rousseau (1998[Homsi, F. & Rousseau, G. (1998). J. Org. Chem. 63, 5255-5258.]); Rousseau & Robin (1997[Rousseau, G. & Robin, S. (1997). Tetrahedron Lett. 38, 2467-2470.]); Simonot & Rousseau (1994[Simonot, B. & Rousseau, G. (1994). J. Org. Chem. 59, 5912-5919.]); Syper et al. (1980[Syper, L., Kloc, K. & Młochowski, J. (1980). Tetrahedron, 36, 123-129.]); Yamamoto et al. (1992[Yamamoto, K., Shimizu, M., Yamada, S., Iwata, S. & Hoshino, O. (1992). J. Org. Chem. 57, 33-39.]). For structural properties of the related compound, 2,4,6-collidine, see: Bond & Davies (2001[Bond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1141-o1142.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·NO3

  • Mr = 184.20

  • Orthorhombic, C m c m

  • a = 9.328 (1) Å

  • b = 15.1327 (13) Å

  • c = 6.4967 (7) Å

  • V = 917.06 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.28 × 0.16 × 0.07 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 1839 measured reflections

  • 648 independent reflections

  • 410 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.149

  • S = 1.00

  • 648 reflections

  • 58 parameters

  • 8 restraints

  • All H-atom parameters refined

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.875 (18) 2.331 (16) 3.139 (3) 153.7 (2)
N1—H1⋯O2ii 0.875 (18) 2.331 (16) 3.139 (3) 153.7 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sym-collidine and its derivatives are extensively used in organic synthesis (Syper et al., 1980; Rousseau et al., 1997). Bis(2,4,6-trimethylpyridine)iodine(I) and -bromine(I) hexafluorophosphate have been used for specific electrophilic halogenations (Homsi et al., 1998; Simonot et al., 1994; Brunel et al., 1995). It is also used in the synthesis of vitamin D (Yamamoto et al., 1992). Here in we reported the crystal structure of collidinium nitrate.

In the title compound (I), (Fig. 1),the cation lies on a mirror plane and the N and one C atoms lies on two-fold axis. The anions and cations are linked by N—H···O interactions along the b axis. The bond distances and angles in (I) agree with those reported in a similar compound 2,4,6-collidine (Bond & Davies, 2001).

The anions and cations of (I) are linked by N—H···O interactions along the b axis (Table 1, Fig. 2). In the crystal structure, the O1 atom in the nitrate anion generates the N—O···π interactions [N2—O1···Cg1iii = 3.2899 (5) Å and N2—O1···Cg1iv = 3.2899 (5) Å; symmetry codes: (iii) -1/2 + x, 1/2 - y, -z; (iv) -1/2 + x, 1/2 - y, 1-z. Cg1 is a centroid of the aromatic pyridine ring] between two pyridine rings as a sandwich to establish the packing.

Related literature top

For the use of sym-collidine and its derivatives, see: Brunel & Rousseau (1995); Homsi & Rousseau (1998); Rousseau & Robin (1997); Simonot & Rousseau (1994); Syper et al. (1980); Yamamoto et al. (1992). For structural properties of the related compound, 2,4,6-collidine, see: Bond & Davies (2001).

Experimental top

To 2 ml of trimethyl pyridine, concentrated nitric acid (2 ml) was added drop wise. The mixture was refluxed for an hour, filtered. Within half an hour needle like crystals of titled compound appeared, suitable for x-ray crystallography.

Refinement top

All H atoms were found on the difference map and refined with the distance restraints of N—H = 0.875 (18) Å and C—H = 0.93 (2) - 0.96 (4) Å. Their displacement parameters were constrained to ride on their parent atoms [Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for other atoms].

Structure description top

Sym-collidine and its derivatives are extensively used in organic synthesis (Syper et al., 1980; Rousseau et al., 1997). Bis(2,4,6-trimethylpyridine)iodine(I) and -bromine(I) hexafluorophosphate have been used for specific electrophilic halogenations (Homsi et al., 1998; Simonot et al., 1994; Brunel et al., 1995). It is also used in the synthesis of vitamin D (Yamamoto et al., 1992). Here in we reported the crystal structure of collidinium nitrate.

In the title compound (I), (Fig. 1),the cation lies on a mirror plane and the N and one C atoms lies on two-fold axis. The anions and cations are linked by N—H···O interactions along the b axis. The bond distances and angles in (I) agree with those reported in a similar compound 2,4,6-collidine (Bond & Davies, 2001).

The anions and cations of (I) are linked by N—H···O interactions along the b axis (Table 1, Fig. 2). In the crystal structure, the O1 atom in the nitrate anion generates the N—O···π interactions [N2—O1···Cg1iii = 3.2899 (5) Å and N2—O1···Cg1iv = 3.2899 (5) Å; symmetry codes: (iii) -1/2 + x, 1/2 - y, -z; (iv) -1/2 + x, 1/2 - y, 1-z. Cg1 is a centroid of the aromatic pyridine ring] between two pyridine rings as a sandwich to establish the packing.

For the use of sym-collidine and its derivatives, see: Brunel & Rousseau (1995); Homsi & Rousseau (1998); Rousseau & Robin (1997); Simonot & Rousseau (1994); Syper et al. (1980); Yamamoto et al. (1992). For structural properties of the related compound, 2,4,6-collidine, see: Bond & Davies (2001).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the title molecule. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) 1-x, y, 1/2-z; (d) 2-x, y, 1/2-z.]
[Figure 2] Fig. 2. A packing diagram of the title molecule showing the N—H···O interactions, down the c axis. All hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
2,4,6-Trimethylpyridinium nitrate top
Crystal data top
C8H12N+·NO3F(000) = 392
Mr = 184.20Dx = 1.334 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 494 reflections
a = 9.328 (1) Åθ = 4.1–23.2°
b = 15.1327 (13) ŵ = 0.10 mm1
c = 6.4967 (7) ÅT = 296 K
V = 917.06 (16) Å3Needle, colourless
Z = 40.28 × 0.16 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
410 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.3°, θmin = 4.1°
φ and ω scansh = 1112
1839 measured reflectionsk = 1920
648 independent reflectionsl = 84
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0764P)2 + 0.2375P]
where P = (Fo2 + 2Fc2)/3
648 reflections(Δ/σ)max < 0.001
58 parametersΔρmax = 0.16 e Å3
8 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H12N+·NO3V = 917.06 (16) Å3
Mr = 184.20Z = 4
Orthorhombic, CmcmMo Kα radiation
a = 9.328 (1) ŵ = 0.10 mm1
b = 15.1327 (13) ÅT = 296 K
c = 6.4967 (7) Å0.28 × 0.16 × 0.07 mm
Data collection top
Bruker APEXII CCD
diffractometer
410 reflections with I > 2σ(I)
1839 measured reflectionsRint = 0.030
648 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0478 restraints
wR(F2) = 0.149All H-atom parameters refined
S = 1.00Δρmax = 0.16 e Å3
648 reflectionsΔρmin = 0.19 e Å3
58 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.000000.13163 (15)0.250000.0411 (8)
C11.000000.4105 (2)0.250000.0604 (13)
C21.000000.31135 (19)0.250000.0444 (10)
C30.8725 (2)0.26452 (14)0.250000.0454 (7)
C40.8728 (2)0.17377 (14)0.250000.0422 (7)
C50.7402 (3)0.11973 (17)0.250000.0577 (9)
O10.500000.31452 (15)0.250000.0754 (10)
O20.6109 (2)0.43578 (17)0.250000.1128 (13)
N20.500000.39433 (16)0.250000.0469 (9)
H11.000000.0738 (12)0.250000.0560*
H1A1.095 (3)0.435 (4)0.250000.0700*0.500
H1B0.949 (3)0.432 (2)0.369 (4)0.0700*0.500
H30.7858 (19)0.2953 (14)0.250000.0560*
H5A0.661 (2)0.1569 (14)0.250000.0700*
H5B0.7366 (19)0.0801 (10)0.135 (3)0.0700*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0464 (14)0.0334 (12)0.0436 (16)0.00000.00000.0000
C10.065 (2)0.0383 (16)0.078 (3)0.00000.00000.0000
C20.0526 (17)0.0367 (14)0.044 (2)0.00000.00000.0000
C30.0451 (11)0.0428 (12)0.0483 (15)0.0043 (9)0.00000.0000
C40.0428 (11)0.0432 (11)0.0407 (14)0.0009 (9)0.00000.0000
C50.0470 (13)0.0491 (13)0.077 (2)0.0054 (10)0.00000.0000
O10.098 (2)0.0401 (12)0.088 (2)0.00000.00000.0000
O20.0894 (16)0.1011 (18)0.148 (3)0.0507 (13)0.00000.0000
N20.0526 (15)0.0461 (15)0.0420 (17)0.00000.00000.0000
Geometric parameters (Å, º) top
O1—N21.208 (3)C1—H1Ai0.96 (4)
O2—N21.210 (2)C1—H1A0.96 (4)
N1—C41.347 (2)C1—H1B0.96 (3)
N1—C4i1.347 (2)C1—H1Bii0.96 (3)
N1—H10.875 (18)C1—H1Bi0.96 (3)
C1—C21.500 (4)C1—H1Biii0.96 (3)
C2—C3i1.384 (2)C3—H30.933 (19)
C2—C31.384 (2)C5—H5Biii0.959 (18)
C3—C41.373 (3)C5—H5A0.93 (2)
C4—C51.483 (3)C5—H5B0.959 (18)
O2···N1iv3.139 (3)H1···H5Bi2.570 (18)
O2···C5v3.111 (4)H1···H5Biii2.570 (18)
O2···N1v3.139 (3)H1···H5B2.570 (18)
O1···H32.682 (18)H1···O2ix2.331 (16)
O1···H5Avi2.82 (2)H1···N2ix2.716 (18)
O1···H32.682 (18)H1···H5Bii2.570 (18)
O1···H5A2.82 (2)H1···O2xii2.331 (16)
O1···H3vi2.682 (18)H1···O2xvi2.331 (16)
O1···H3vii2.682 (18)H1···N2xvi2.716 (18)
O1···H5Avii2.82 (2)H1···N2xiii2.716 (18)
O1···H5A2.82 (2)H1···N2xii2.716 (18)
O2···H1iv2.331 (16)H1···O2xiii2.331 (16)
O2···H5Bviii2.888 (19)H1A···H3i2.39 (6)
O2···H32.68 (2)H1A···O2i2.74 (3)
O2···H1Ai2.74 (3)H1A···O2ii2.74 (3)
O2···H32.68 (2)H1A···H3i2.39 (6)
O2···H1Ai2.74 (3)H1B···H5Bviii2.45 (3)
O2···H1v2.331 (16)H3···O12.682 (18)
O2···H5Bv2.711 (16)H3···O22.68 (2)
N1···N2viii3.2720 (5)H3···H5A2.40 (3)
N1···O2ix3.139 (3)H3···O12.682 (18)
N1···N2x3.2720 (5)H3···O22.68 (2)
N1···N2xi3.2720 (5)H3···H1Ai2.39 (6)
N1···O2xii3.139 (3)H3···O12.682 (18)
N1···O2xiii3.139 (3)H3···O12.682 (18)
N1···N2xiv3.2720 (5)H3···H1Ai2.39 (6)
N1···N2xv3.2720 (5)H5A···O12.82 (2)
N1···O2xvi3.139 (3)H5A···O12.82 (2)
N1···N2xvii3.2720 (5)H5A···H32.40 (3)
N1···N2xviii3.2720 (5)H5A···O12.82 (2)
N1···N2xix3.2720 (5)H5A···O12.82 (2)
N2···N1viii3.2720 (5)H5B···O2x2.888 (19)
N2···N1x3.2720 (5)H5B···H1Bx2.45 (3)
N2···H1iv2.716 (18)H5B···H12.570 (18)
N2···H1v2.716 (18)H5B···O2xix2.888 (19)
C5···O2xiii3.111 (4)H5B···O2xiii2.711 (16)
C5···O2xvi3.111 (4)H5B···O2xvi2.711 (16)
C4—N1—C4i123.5 (2)H1Ai—C1—H1B54.2 (17)
C4—N1—H1118.26 (12)H1B—C1—H1Bi141 (3)
C4i—N1—H1118.26 (12)H1B—C1—H1Biii107 (2)
O2—N2—O2vi117.5 (3)H1A—C1—H1Ai135 (5)
O1—N2—O2vi121.23 (15)H1A—C1—H1Bi54.2 (17)
O1—N2—O2121.23 (15)H1Ai—C1—H1Biii54.2 (17)
C1—C2—C3120.79 (13)H1Ai—C1—H1Bii109 (2)
C1—C2—C3i120.79 (13)H1Bi—C1—H1Biii59 (2)
C3—C2—C3i118.4 (2)H1Bi—C1—H1Bii107 (2)
C2—C3—C4120.67 (19)H1Biii—C1—H1Bii141 (3)
N1—C4—C5118.3 (2)C2—C1—H1A113 (3)
C3—C4—C5123.35 (19)H1B—C1—H1Bii59 (2)
N1—C4—C3118.37 (18)H1Ai—C1—H1Bi109 (2)
C2—C1—H1Ai113 (3)C2—C3—H3119.3 (13)
C2—C1—H1Bi109.7 (18)C4—C3—H3120.1 (13)
C2—C1—H1Bii109.7 (18)C4—C5—H5Biii112.0 (11)
H1A—C1—H1B109 (2)H5A—C5—H5Biii110.6 (13)
C2—C1—H1Biii109.7 (18)H5B—C5—H5Biii102.4 (15)
C2—C1—H1B109.7 (18)H5A—C5—H5B110.6 (13)
H1A—C1—H1Biii109 (2)C4—C5—H5A109.2 (13)
H1A—C1—H1Bii54.2 (17)C4—C5—H5B112.0 (11)
C1—C2—C3—C4180.00C2—C3—C4—C5180.00
C2—C3—C4—N10.00
Symmetry codes: (i) x+2, y, z+1/2; (ii) x+2, y, z; (iii) x, y, z+1/2; (iv) x1/2, y+1/2, z; (v) x+3/2, y+1/2, z+1/2; (vi) x+1, y, z+1/2; (vii) x+1, y, z; (viii) x+3/2, y+1/2, z+1/2; (ix) x+1/2, y1/2, z; (x) x+3/2, y+1/2, z1/2; (xi) x+3/2, y+1/2, z+1; (xii) x+1/2, y1/2, z+1/2; (xiii) x+3/2, y1/2, z; (xiv) x+1/2, y+1/2, z1/2; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+3/2, y1/2, z+1/2; (xvii) x+1/2, y+1/2, z; (xviii) x+1/2, y+1/2, z+1; (xix) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ix0.875 (18)2.331 (16)3.139 (3)153.7 (2)
N1—H1···O2xvi0.875 (18)2.331 (16)3.139 (3)153.7 (2)
Symmetry codes: (ix) x+1/2, y1/2, z; (xvi) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H12N+·NO3
Mr184.20
Crystal system, space groupOrthorhombic, Cmcm
Temperature (K)296
a, b, c (Å)9.328 (1), 15.1327 (13), 6.4967 (7)
V3)917.06 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.28 × 0.16 × 0.07
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1839, 648, 410
Rint0.030
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.149, 1.00
No. of reflections648
No. of parameters58
No. of restraints8
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.16, 0.19

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.875 (18)2.331 (16)3.139 (3)153.7 (2)
N1—H1···O2ii0.875 (18)2.331 (16)3.139 (3)153.7 (2)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBond, A. D. & Davies, J. E. (2001). Acta Cryst. E57, o1141–o1142.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrunel, Y. & Rousseau, G. (1995). Tetrahedron Lett. 36, 8217–8220.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHomsi, F. & Rousseau, G. (1998). J. Org. Chem. 63, 5255–5258.  Web of Science CrossRef CAS Google Scholar
First citationRousseau, G. & Robin, S. (1997). Tetrahedron Lett. 38, 2467–2470.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSimonot, B. & Rousseau, G. (1994). J. Org. Chem. 59, 5912–5919.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyper, L., Kloc, K. & Młochowski, J. (1980). Tetrahedron, 36, 123–129.  CrossRef CAS Web of Science Google Scholar
First citationYamamoto, K., Shimizu, M., Yamada, S., Iwata, S. & Hoshino, O. (1992). J. Org. Chem. 57, 33–39.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds