organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Nicotinaldehyde [2,8-bis­­(tri­fluoro­meth­yl)quinolin-4-yl]hydrazone monohydrate

aDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India, bDepartment of Pharmaceutical Chemistry, GITAM Institute of Pharmacy, GITAM University, Visakhapatnam 530045, Andhrapradesh, India, cDepartment of Physics, Sri D Devaraja Urs Govt. First Grade College, Hunsur 571 105, Mysore District, Karnataka, India, and dDepartment of Physics, Govt. Science College, Hassan 573 201, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com

(Received 29 June 2010; accepted 2 August 2010; online 11 August 2010)

In the title compound, C17H10F6N4·H2O, the pyridine ring is not coplanar with the quinoline ring system; the dihedral angle between the two planes is 21.3 (1)°. One of the trifluoro­methyl group is disordered over two orientations with occupancies of 0.70 (1) and 0.30 (1). The water mol­ecule is disordered over two positions with occupancies of 0.76 (1) and 0.24 (1). In the crystal, the water mol­ecule is linked to the main mol­ecule via N—H⋯O and C—H⋯O hydrogen bonds, and inversion-related pairs are linked via O—H⋯N hydrogen bonds. In addition, a weak ππ inter­action is observed between the pyridine ring and the pyridine ring of the quinoline unit, with a centroid–centroid distance of 3.650 (2) Å.

Related literature

For general background to quinolines, see: Mao et al. (2009[Mao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966-6978.]); Bermudez et al. (2004[Bermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556-3558.]); Jayaprakash et al. (2006[Jayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem. 1, 593-597.]); Andries et al. (2005[Andries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223-227.]). For related structures, see: Al-eryani et al. (2010[Al-eryani, W. F. A., Kumari, J. S., Arunkashi, H. K., Vepuri, S. B. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o1742.]); Skörska et al. (2005[Skörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850-853.]).

[Scheme 1]

Experimental

Crystal data
  • C17H10F6N4·H2O

  • Mr = 402.31

  • Monoclinic, C 2/c

  • a = 21.103 (4) Å

  • b = 15.120 (3) Å

  • c = 12.537 (3) Å

  • β = 118.633 (3)°

  • V = 3511.1 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 295 K

  • 0.22 × 0.15 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: ψ scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.983

  • 13267 measured reflections

  • 3416 independent reflections

  • 2309 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.169

  • S = 1.04

  • 3416 reflections

  • 301 parameters

  • 54 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1W 0.88 (3) 2.04 (3) 2.914 (5) 169 (3)
O1W—H1W⋯N4i 0.83 (5) 2.06 (6) 2.855 (5) 163 (7)
C9—H9⋯O1W 0.93 2.42 3.331 (5) 167
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is a popular antimalarial drug. It also possesses important structural features required for antimicrobial activity (Mao et al. 2009; Bermudez et al. 2004; Jayaprakash et al. 2006). Quinoline is an essential structural unit found in mefloquin and recently developed antimycobacterial drugs (Andries et al. 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations we have synthesized few quinoline derivatives, in which a hydrazone group has been attached at the 4th position of the mefloquin ring system, expecting that these newly designed molecules would exhibit some antibacterial activity. The crystal structures of the mefloquine base and its salt complexes have been reported (Skörska et al. 2005). Earlier, we reported the crystal structure of 3,4-dimethoxybenzaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone (Al-eryani et al., 2010). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone molecule and one water molecule (Fig. 1). The dihedral angle [21.3 (1)°] between the quinoline ring system and the pyridine ring indicates that these two systems are non coplanar.

In the crystal structure, intermolecular O—H···N, N—H···O and C—H···O hydrogen bonds (Table 1) are observed. In addition, a weak ππ interaction is observed between N4/C13–C17 pyridine ring at (-x, y, 1/2-z) and N1/C1–C5 pyridine ring of quinoline at (x,y,z), with a centroid-centroid distance of 3.650 (3) Å.

Related literature top

For general background to quinolines, see: Mao et al. (2009); Bermudez et al. (2004); Jayaprakash et al. (2006); Andries et al. (2005). For related structures, see: Al-eryani et al. (2010); Skörska et al. (2005).

Experimental top

A mixture of [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazine (10 mmol) and nicotinaldehyde (10 mmol) in glacial acetic acid (50 ml) was heated at reflux for 3 h. The reaction mixture was concentrated under reduced pressure, cooled, and the obtained solid hydrazone was filtered, washed with water and cold ethanol. The crude product was purified by column chromatography. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an methanol-water solution at room temperature.

Refinement top

One of the trifluoromethyl group is disordered over two orientations with occupancies of 0.702 (8) and 0.298 (8). The C—F distances involving disordered F atoms were restrained to be equal and Uij parameters of these atoms were restrained to an approximate isotropic behaviour. The water molecule is disordered over two positions with occupancies of 0.758 (13) and 0.242 (13); the H atoms of the major disorder component were located in a difference map and refined with O–H and H···H distances of 0.84 (2) and 1.35 (2) Å, respectively. Due to disorder of the oxygen atom in water molecule, all H atoms could not be located. The N-bound H atom was located in a difference map and refined freely. The remaining H atoms were positioned at calculated positions [C–H = 0.93 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

2,8-Bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol (mefloquin) is a popular antimalarial drug. It also possesses important structural features required for antimicrobial activity (Mao et al. 2009; Bermudez et al. 2004; Jayaprakash et al. 2006). Quinoline is an essential structural unit found in mefloquin and recently developed antimycobacterial drugs (Andries et al. 2005). Thus, quinoline derivatives are good lead molecules to further develop drug candidates against mycobacterium tuberculosis and as antibacterial agents. On the basis of these observations we have synthesized few quinoline derivatives, in which a hydrazone group has been attached at the 4th position of the mefloquin ring system, expecting that these newly designed molecules would exhibit some antibacterial activity. The crystal structures of the mefloquine base and its salt complexes have been reported (Skörska et al. 2005). Earlier, we reported the crystal structure of 3,4-dimethoxybenzaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone (Al-eryani et al., 2010). We report here the crystal structure of the title compound.

The asymmetric unit of the title compound contains one nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone molecule and one water molecule (Fig. 1). The dihedral angle [21.3 (1)°] between the quinoline ring system and the pyridine ring indicates that these two systems are non coplanar.

In the crystal structure, intermolecular O—H···N, N—H···O and C—H···O hydrogen bonds (Table 1) are observed. In addition, a weak ππ interaction is observed between N4/C13–C17 pyridine ring at (-x, y, 1/2-z) and N1/C1–C5 pyridine ring of quinoline at (x,y,z), with a centroid-centroid distance of 3.650 (3) Å.

For general background to quinolines, see: Mao et al. (2009); Bermudez et al. (2004); Jayaprakash et al. (2006); Andries et al. (2005). For related structures, see: Al-eryani et al. (2010); Skörska et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Only the major disorder components are shown. Dashed lines indicate hydrogen bonds.
Nicotinaldehyde [2,8-bis(trifluoromethyl)quinolin-4-yl]hydrazone monohydrate top
Crystal data top
C17H10F6N4·H2OF(000) = 1632
Mr = 402.31Dx = 1.522 Mg m3
Monoclinic, C2/cMelting point: 486 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 21.103 (4) ÅCell parameters from 3416 reflections
b = 15.120 (3) Åθ = 1.7–26.0°
c = 12.537 (3) ŵ = 0.14 mm1
β = 118.633 (3)°T = 295 K
V = 3511.1 (13) Å3Plate, colourless
Z = 80.22 × 0.15 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3416 independent reflections
Radiation source: fine-focus sealed tube2309 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and φ scansθmax = 26.0°, θmin = 1.7°
Absorption correction: ψ scan
(SADABS; Bruker, 2001)
h = 2624
Tmin = 0.975, Tmax = 0.983k = 1818
13267 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0764P)2 + 2.423P]
where P = (Fo2 + 2Fc2)/3
3416 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.26 e Å3
54 restraintsΔρmin = 0.25 e Å3
Crystal data top
C17H10F6N4·H2OV = 3511.1 (13) Å3
Mr = 402.31Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.103 (4) ŵ = 0.14 mm1
b = 15.120 (3) ÅT = 295 K
c = 12.537 (3) Å0.22 × 0.15 × 0.12 mm
β = 118.633 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3416 independent reflections
Absorption correction: ψ scan
(SADABS; Bruker, 2001)
2309 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.983Rint = 0.035
13267 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06454 restraints
wR(F2) = 0.169H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
3416 reflectionsΔρmin = 0.25 e Å3
301 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A0.5904 (2)0.0211 (2)0.5513 (4)0.0998 (17)0.702 (8)
F2A0.6589 (4)0.0445 (5)0.4831 (7)0.136 (3)0.702 (8)
F3A0.5538 (5)0.0032 (4)0.3634 (5)0.175 (4)0.702 (8)
F1B0.6012 (6)0.0127 (6)0.3579 (8)0.091 (3)0.298 (8)
F2B0.5395 (6)0.0067 (8)0.4374 (17)0.130 (5)0.298 (8)
F3B0.6570 (7)0.0477 (7)0.5238 (10)0.110 (6)0.298 (8)
F40.80847 (12)0.08843 (14)0.83893 (19)0.0933 (7)
F50.71855 (14)0.12394 (18)0.8610 (2)0.1087 (8)
F60.81994 (15)0.18889 (16)0.96395 (17)0.1198 (10)
N10.68113 (12)0.11985 (15)0.6073 (2)0.0554 (6)
N20.61107 (14)0.31173 (19)0.3332 (2)0.0623 (7)
N30.56960 (13)0.28345 (17)0.2162 (2)0.0607 (7)
N40.42311 (17)0.3601 (2)0.1996 (3)0.0905 (10)
C10.63497 (15)0.10370 (18)0.4929 (2)0.0558 (7)
C20.60955 (15)0.16393 (18)0.3984 (2)0.0550 (7)
H20.57660.14680.31980.066*
C30.63410 (14)0.24976 (18)0.4233 (2)0.0509 (7)
C40.68355 (14)0.27268 (18)0.5461 (2)0.0505 (7)
C50.70505 (14)0.20455 (17)0.6345 (2)0.0499 (7)
C60.75344 (16)0.22617 (19)0.7576 (2)0.0581 (8)
C70.77952 (18)0.3094 (2)0.7890 (3)0.0692 (9)
H70.81180.32220.86980.083*
C80.75865 (18)0.3761 (2)0.7019 (3)0.0729 (9)
H80.77690.43300.72480.087*
C90.71174 (17)0.35831 (19)0.5837 (3)0.0641 (8)
H90.69800.40350.52650.077*
C100.6071 (2)0.0102 (2)0.4681 (3)0.0809 (11)
C110.7746 (2)0.1574 (2)0.8540 (3)0.0750 (10)
C120.54235 (17)0.3419 (2)0.1340 (3)0.0699 (9)
H120.54890.40150.15460.084*
C130.50072 (17)0.3156 (2)0.0070 (3)0.0639 (8)
C140.49612 (17)0.2291 (2)0.0322 (3)0.0662 (9)
H140.52090.18430.02320.079*
C150.45503 (19)0.2098 (2)0.1525 (3)0.0755 (10)
H150.45080.15190.17980.091*
C160.4200 (2)0.2770 (3)0.2323 (3)0.0813 (11)
H160.39260.26310.31420.098*
C170.4624 (2)0.3780 (2)0.0816 (3)0.0893 (12)
H170.46420.43640.05700.107*
O1W0.6581 (3)0.4946 (2)0.3473 (4)0.088 (2)0.758 (13)
H1W0.631 (3)0.537 (3)0.315 (6)0.132*0.758 (13)
H2W0.695 (2)0.498 (4)0.341 (7)0.132*0.758 (13)
O2W0.6032 (15)0.5042 (8)0.3654 (12)0.119 (10)0.242 (13)
H2N0.6237 (16)0.368 (2)0.345 (3)0.065 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.121 (3)0.070 (2)0.112 (3)0.0409 (19)0.059 (3)0.0055 (18)
F2A0.200 (6)0.079 (4)0.169 (7)0.015 (3)0.120 (5)0.009 (4)
F3A0.186 (6)0.087 (3)0.093 (3)0.068 (4)0.062 (3)0.022 (3)
F1B0.098 (6)0.065 (4)0.089 (6)0.019 (5)0.027 (5)0.040 (4)
F2B0.117 (8)0.105 (7)0.198 (12)0.053 (5)0.099 (8)0.042 (7)
F3B0.150 (9)0.039 (4)0.060 (5)0.002 (5)0.014 (5)0.019 (4)
F40.0962 (15)0.0700 (13)0.0804 (14)0.0121 (11)0.0155 (12)0.0131 (10)
F50.1159 (19)0.126 (2)0.0824 (15)0.0115 (15)0.0462 (14)0.0322 (13)
F60.156 (2)0.0963 (16)0.0446 (11)0.0156 (14)0.0024 (12)0.0008 (10)
N10.0587 (14)0.0482 (13)0.0457 (13)0.0017 (11)0.0141 (11)0.0017 (10)
N20.0664 (17)0.0551 (16)0.0467 (13)0.0082 (12)0.0122 (12)0.0045 (11)
N30.0571 (15)0.0648 (15)0.0470 (13)0.0053 (12)0.0144 (12)0.0066 (11)
N40.098 (2)0.087 (2)0.0532 (16)0.0108 (17)0.0094 (16)0.0226 (16)
C10.0562 (17)0.0488 (16)0.0488 (15)0.0003 (13)0.0142 (13)0.0010 (12)
C20.0518 (16)0.0546 (17)0.0428 (14)0.0016 (13)0.0099 (12)0.0031 (12)
C30.0465 (15)0.0529 (16)0.0458 (15)0.0019 (12)0.0162 (12)0.0028 (12)
C40.0456 (15)0.0509 (16)0.0490 (15)0.0003 (12)0.0178 (13)0.0010 (12)
C50.0463 (15)0.0503 (16)0.0455 (14)0.0014 (12)0.0158 (12)0.0003 (12)
C60.0588 (18)0.0577 (17)0.0464 (15)0.0016 (14)0.0160 (13)0.0028 (13)
C70.071 (2)0.065 (2)0.0496 (16)0.0067 (16)0.0111 (15)0.0099 (15)
C80.076 (2)0.0534 (18)0.064 (2)0.0126 (16)0.0141 (17)0.0098 (15)
C90.0663 (19)0.0486 (17)0.0614 (18)0.0040 (14)0.0177 (15)0.0032 (13)
C100.093 (3)0.053 (2)0.063 (2)0.0027 (19)0.010 (2)0.0039 (17)
C110.086 (3)0.068 (2)0.0471 (18)0.0073 (19)0.0134 (17)0.0009 (15)
C120.071 (2)0.0597 (19)0.0548 (18)0.0084 (15)0.0108 (16)0.0102 (14)
C130.0595 (18)0.066 (2)0.0538 (17)0.0075 (14)0.0174 (15)0.0150 (14)
C140.065 (2)0.069 (2)0.0581 (18)0.0049 (16)0.0240 (16)0.0125 (15)
C150.082 (2)0.080 (2)0.059 (2)0.0000 (19)0.0292 (18)0.0011 (17)
C160.080 (2)0.100 (3)0.0503 (18)0.007 (2)0.0203 (17)0.0073 (19)
C170.098 (3)0.070 (2)0.062 (2)0.014 (2)0.0081 (19)0.0199 (17)
O1W0.102 (4)0.064 (2)0.081 (2)0.010 (2)0.029 (2)0.0169 (17)
O2W0.18 (2)0.062 (7)0.093 (9)0.001 (8)0.047 (10)0.014 (6)
Geometric parameters (Å, º) top
F1A—C101.337 (5)C4—C91.408 (4)
F2A—C101.312 (6)C4—C51.419 (4)
F3A—C101.269 (5)C5—C61.422 (4)
F1B—C101.370 (7)C6—C71.354 (4)
F2B—C101.288 (8)C6—C111.491 (4)
F3B—C101.288 (8)C7—C81.394 (5)
F4—C111.328 (4)C7—H70.93
F5—C111.328 (4)C8—C91.357 (4)
F6—C111.334 (4)C8—H80.93
N1—C11.314 (3)C9—H90.93
N1—C51.359 (3)C12—C131.457 (4)
N2—C31.365 (4)C12—H120.93
N2—N31.367 (3)C13—C141.384 (5)
N2—H2N0.88 (3)C13—C171.385 (4)
N3—C121.268 (4)C14—C151.363 (4)
N4—C161.314 (5)C14—H140.93
N4—C171.332 (4)C15—C161.368 (5)
C1—C21.383 (4)C15—H150.93
C1—C101.505 (4)C16—H160.93
C2—C31.377 (4)C17—H170.93
C2—H20.93O1W—H1W0.83 (2)
C3—C41.429 (4)O1W—H2W0.81 (2)
C1—N1—C5116.2 (2)F2B—C10—F1A63.3 (8)
C3—N2—N3117.6 (3)F3B—C10—F1A77.7 (8)
C3—N2—H2N124 (2)F2A—C10—F1A100.2 (4)
N3—N2—H2N118 (2)F3A—C10—F1B46.4 (5)
C12—N3—N2117.5 (3)F2B—C10—F1B97.8 (8)
C16—N4—C17116.9 (3)F3B—C10—F1B91.8 (8)
N1—C1—C2126.4 (3)F2A—C10—F1B69.6 (6)
N1—C1—C10114.4 (2)F1A—C10—F1B140.0 (5)
C2—C1—C10119.2 (3)F3A—C10—C1115.4 (3)
C3—C2—C1118.5 (2)F2B—C10—C1111.6 (6)
C3—C2—H2120.7F3B—C10—C1112.9 (7)
C1—C2—H2120.7F2A—C10—C1110.3 (5)
N2—C3—C2120.9 (3)F1A—C10—C1113.2 (3)
N2—C3—C4120.8 (3)F1B—C10—C1106.5 (5)
C2—C3—C4118.3 (2)F4—C11—F5105.5 (3)
C9—C4—C5118.7 (2)F4—C11—F6105.0 (3)
C9—C4—C3123.8 (3)F5—C11—F6106.7 (3)
C5—C4—C3117.5 (2)F4—C11—C6113.9 (3)
N1—C5—C4123.2 (2)F5—C11—C6112.9 (3)
N1—C5—C6118.5 (2)F6—C11—C6112.1 (3)
C4—C5—C6118.4 (3)N3—C12—C13120.0 (3)
C7—C6—C5120.7 (3)N3—C12—H12120.0
C7—C6—C11119.3 (3)C13—C12—H12120.0
C5—C6—C11120.0 (3)C14—C13—C17116.4 (3)
C6—C7—C8120.8 (3)C14—C13—C12123.3 (3)
C6—C7—H7119.6C17—C13—C12120.3 (3)
C8—C7—H7119.6C15—C14—C13119.6 (3)
C9—C8—C7120.2 (3)C15—C14—H14120.2
C9—C8—H8119.9C13—C14—H14120.2
C7—C8—H8119.9C14—C15—C16119.1 (4)
C8—C9—C4121.2 (3)C14—C15—H15120.5
C8—C9—H9119.4C16—C15—H15120.5
C4—C9—H9119.4N4—C16—C15123.6 (3)
F3A—C10—F2B51.7 (6)N4—C16—H16118.2
F3A—C10—F3B122.8 (7)C15—C16—H16118.2
F2B—C10—F3B129.4 (10)N4—C17—C13124.5 (4)
F3A—C10—F2A108.2 (6)N4—C17—H17117.8
F2B—C10—F2A138.2 (7)C13—C17—H17117.8
F3B—C10—F2A23.7 (8)H1W—O1W—H2W112 (4)
F3A—C10—F1A108.5 (6)
C3—N2—N3—C12173.2 (3)N1—C1—C10—F3A168.6 (8)
C5—N1—C1—C21.0 (5)C2—C1—C10—F3A9.6 (9)
C5—N1—C1—C10177.1 (3)N1—C1—C10—F2B112.0 (9)
N1—C1—C2—C30.3 (5)C2—C1—C10—F2B66.2 (10)
C10—C1—C2—C3178.2 (3)N1—C1—C10—F3B43.1 (9)
N3—N2—C3—C27.4 (4)C2—C1—C10—F3B138.7 (8)
N3—N2—C3—C4173.6 (3)N1—C1—C10—F2A68.5 (5)
C1—C2—C3—N2179.6 (3)C2—C1—C10—F2A113.3 (5)
C1—C2—C3—C41.3 (4)N1—C1—C10—F1A42.9 (4)
N2—C3—C4—C90.1 (5)C2—C1—C10—F1A135.3 (4)
C2—C3—C4—C9179.0 (3)N1—C1—C10—F1B142.3 (6)
N2—C3—C4—C5179.9 (3)C2—C1—C10—F1B39.5 (7)
C2—C3—C4—C51.0 (4)C7—C6—C11—F4120.2 (3)
C1—N1—C5—C41.3 (4)C5—C6—C11—F461.1 (4)
C1—N1—C5—C6178.2 (3)C7—C6—C11—F5119.5 (4)
C9—C4—C5—N1179.7 (3)C5—C6—C11—F559.1 (4)
C3—C4—C5—N10.3 (4)C7—C6—C11—F61.1 (5)
C9—C4—C5—C60.8 (4)C5—C6—C11—F6179.7 (3)
C3—C4—C5—C6179.1 (3)N2—N3—C12—C13176.9 (3)
N1—C5—C6—C7179.1 (3)N3—C12—C13—C148.3 (5)
C4—C5—C6—C71.4 (5)N3—C12—C13—C17170.9 (4)
N1—C5—C6—C112.3 (4)C17—C13—C14—C150.3 (5)
C4—C5—C6—C11177.2 (3)C12—C13—C14—C15179.0 (3)
C5—C6—C7—C81.1 (5)C13—C14—C15—C161.0 (5)
C11—C6—C7—C8177.5 (3)C17—N4—C16—C150.5 (6)
C6—C7—C8—C90.1 (6)C14—C15—C16—N40.6 (6)
C7—C8—C9—C40.5 (5)C16—N4—C17—C131.3 (6)
C5—C4—C9—C80.1 (5)C14—C13—C17—N40.9 (6)
C3—C4—C9—C8180.0 (3)C12—C13—C17—N4179.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.88 (3)2.04 (3)2.914 (5)169 (3)
O1W—H1W···N4i0.83 (5)2.06 (6)2.855 (5)163 (7)
C9—H9···O1W0.932.423.331 (5)167
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H10F6N4·H2O
Mr402.31
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)21.103 (4), 15.120 (3), 12.537 (3)
β (°) 118.633 (3)
V3)3511.1 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.22 × 0.15 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionψ scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.975, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
13267, 3416, 2309
Rint0.035
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.169, 1.04
No. of reflections3416
No. of parameters301
No. of restraints54
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1W0.88 (3)2.04 (3)2.914 (5)169 (3)
O1W—H1W···N4i0.83 (5)2.06 (6)2.855 (5)163 (7)
C9—H9···O1W0.932.423.331 (5)167
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the DST, India, for the funding under DST–FIST (Level II) for the X-ray diffraction facility at SSCU, IISc, Bangalore.

References

First citationAl-eryani, W. F. A., Kumari, J. S., Arunkashi, H. K., Vepuri, S. B. & Devarajegowda, H. C. (2010). Acta Cryst. E66, o1742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAndries, K., Verhasselt, P., Guillemont, J., Gohlmann, H. W., Neefs, J. M., Winkler, H., Van Gestel, J., Timmerman, P., Zhu, M., Lee, E., Williams, P., de Chaffoy, D., Huitric, E., Hoffner, S., Cambau, E., Truffot-Pernot, C., Lounis, N. & Jarlier, V. (2005). Science, 307, 223–227.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBermudez, L. E., Kolonoski, P., Seitz, L. E., Petrofsky, M., Reynolds, R., Wu, M. & Young, L. S. (2004). Antimicrob. Agents Chemother. 48, 3556–3558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJayaprakash, S., Iso, Y., Wan, B., Franzblau, S. G. & Kozikowski, A. P. (2006). ChemMedChem. 1, 593–597.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMao, J., Yuan, H., Wang, Y., Wan, B., Pieroni, M., Huang, Q., Breemen, R. B., Kozikowski, A. P. & Franzblau, S. G. (2009). J. Med. Chem. 52, 6966–6978.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkörska, A., Sliwinski, J. & Oleksyn, B. J. (2005). Bioorg. Med. Chem. Lett. 16, 850–853.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds