organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(11-Methyl­pyrido[2,3-b][1,4]benzo­diazepin-6-yl)(phen­yl)methanone

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 21 July 2010; accepted 30 July 2010; online 11 August 2010)

In the title compound, C20H15N3O, the diazepine ring adopts a boat conformation. The dihedral angle between pyridine and benzene rings is 55.2 (1)°. The benzoyl phenyl ring forms dihedral angles of 49.4 (1) and 75.9 (1)°, respectively, with the pyridine and benzene rings. In the crystal, mol­ecules are linked into centrosymmetric dimers by pairs of C—H⋯N hydrogen bonds.

Related literature

For general background to pyridobenzodiazepine derivatives, see: Eberlein et al. (1987[Eberlein, W. G., Trummlitz, G., Engel, W. W., Schmidt, G., Pelzer, H. & Mayer, N. (1987). J. Med. Chem. 30, 1378-1382.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Shi et al. (2008[Shi, F., Xu, X., Zheng, L., Dang, Q. & Bai, X. (2008). J. Comb. Chem. 10, 158-161.], 2010[Shi, F., Bai, X., Dang, Q. & Zhang, L. (2010). Res. Chem. Intermed. 36, 253-258.]); Tahtaoui et al. (2004[Tahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J. L., Hibert, M. & Ilien, B. (2004). J. Med. Chem. 47, 4300-4315.]). For a related structure, see: Spirlet et al. (2003[Spirlet, M.-R., Graulich, A. & Liégeois, J.-F. (2003). Acta Cryst. E59, o1990-o1991.]).

[Scheme 1]

Experimental

Crystal data
  • C20H15N3O

  • Mr = 313.35

  • Monoclinic, P 21 /c

  • a = 8.4442 (17) Å

  • b = 16.503 (3) Å

  • c = 11.682 (2) Å

  • β = 98.14 (3)°

  • V = 1611.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.37 × 0.30 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.389, Tmax = 0.431

  • 14767 measured reflections

  • 3587 independent reflections

  • 2492 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.131

  • S = 1.05

  • 3587 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯N1i 0.93 2.56 3.463 (2) 163
Symmetry code: (i) -x+1, -y, -z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyridobenzodiazepine derivatives possess biological and pharmacological activities (Horton et al., 2003). In most of the reported pyridobenzodiazepines amino or aryl or alkyl group is attached at the C6-position of the heterocyclic nucleus (Eberlein et al., 1987; Tahtaoui et al., 2004; Shi et al., 2008, 2010) while the attachment of a ketone group has not been reported. We report here the crysatal structure of the title compound which contains a benzoyl group at the C6-position.

Bond lengths and angles in the title molecule (Fig.1) are comparable with those observed in a related structure (Spirlet et al., 2003). The diazepine ring displays a boat conformation. The dihedral angle between pyridine and C15-C20 benzene rings is 55.2 (1)°. The benzoyl phenyl ring forms dihedral angles of 49.4 (1)° and 75.9 (1)°, respectively, with the pyridine and benzene ring of the benzodiazepine ring system.

In the crystal structure, the molecules are linked into dimers by C15—H15···N1 hydrogen bonds (Table 1).

Related literature top

For general background to pyridobenzodiazepine derivatives, see: Eberlein et al. (1987); Horton et al. (2003); Shi et al. (2008, 2010); Tahtaoui et al. (2004). For a related structure, see: Spirlet et al. (2003).

Experimental top

Polyphosphoric acid (254 mg, 0.75 mmol), N-2-methyl-N-2-phenylpyridine-2,3-diamine (100 mg, 0.5 mmol) and 2-phenylacetic acid (102 mg, 0.75 mmol) were dissolved in POCl3 (5 ml). The solution was heated at 368 K in an oil bath for 7 h and the solution was poured into ice-water (20 ml), treated with 5 N NaOH to pH 9-10, and then extracted with EtOAc (3 × 20 ml). The combined organic phase was washed with saturated NaHCO3 and brine, dried with anhydrous Na2SO4, concentrated in vacuo, and purified by flash chromatography with petroleum ether/EtOAc (10:1, v/v) as eluent to afford a mixture of 6-benzyl-11-methylpyrido[2,3-b][1,4]benzodiazepine and 6-benzoyl-11-methylpyrido[2,3-b][1,4]benzodiazepine. The mixture was dissolved in dichloromethane (5 ml), stirred for 24 h under oxygen at room temperature and 6-benzyl-11-methylpyrido[2,3-b][1,4]benzodiazepine disappeared. The reagent was concentrated in vacuo, purified by flash chromatography (yield: 140 mg, 95%) and then crystallized from dichloromethane to obtain colourless crystals of the title compound suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically [C–H = 0.93–0.96 Å] and treated as riding with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C).

Structure description top

Pyridobenzodiazepine derivatives possess biological and pharmacological activities (Horton et al., 2003). In most of the reported pyridobenzodiazepines amino or aryl or alkyl group is attached at the C6-position of the heterocyclic nucleus (Eberlein et al., 1987; Tahtaoui et al., 2004; Shi et al., 2008, 2010) while the attachment of a ketone group has not been reported. We report here the crysatal structure of the title compound which contains a benzoyl group at the C6-position.

Bond lengths and angles in the title molecule (Fig.1) are comparable with those observed in a related structure (Spirlet et al., 2003). The diazepine ring displays a boat conformation. The dihedral angle between pyridine and C15-C20 benzene rings is 55.2 (1)°. The benzoyl phenyl ring forms dihedral angles of 49.4 (1)° and 75.9 (1)°, respectively, with the pyridine and benzene ring of the benzodiazepine ring system.

In the crystal structure, the molecules are linked into dimers by C15—H15···N1 hydrogen bonds (Table 1).

For general background to pyridobenzodiazepine derivatives, see: Eberlein et al. (1987); Horton et al. (2003); Shi et al. (2008, 2010); Tahtaoui et al. (2004). For a related structure, see: Spirlet et al. (2003).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level.
(11-Methylpyrido[2,3-b][1,4]benzodiazepin-6-yl)(phenyl)methanone top
Crystal data top
C20H15N3OF(000) = 656
Mr = 313.35Dx = 1.291 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2000 reflections
a = 8.4442 (17) Åθ = 3.0–27.5°
b = 16.503 (3) ŵ = 0.08 mm1
c = 11.682 (2) ÅT = 293 K
β = 98.14 (3)°Block, yellow
V = 1611.6 (6) Å30.37 × 0.30 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3587 independent reflections
Radiation source: fine-focus sealed tube2492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 109
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 2121
Tmin = 0.389, Tmax = 0.431l = 1415
14767 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.2193P]
where P = (Fo2 + 2Fc2)/3
3587 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C20H15N3OV = 1611.6 (6) Å3
Mr = 313.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4442 (17) ŵ = 0.08 mm1
b = 16.503 (3) ÅT = 293 K
c = 11.682 (2) Å0.37 × 0.30 × 0.19 mm
β = 98.14 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3587 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2492 reflections with I > 2σ(I)
Tmin = 0.389, Tmax = 0.431Rint = 0.048
14767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.05Δρmax = 0.22 e Å3
3587 reflectionsΔρmin = 0.16 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.84497 (15)0.36871 (8)0.05524 (17)0.0774 (5)
N20.66756 (14)0.13174 (8)0.03808 (12)0.0394 (3)
N30.99137 (15)0.19569 (8)0.04732 (13)0.0432 (3)
C11.3716 (2)0.31549 (11)0.12859 (17)0.0529 (5)
H11.44110.27990.15800.063*
C21.4173 (2)0.39435 (11)0.10549 (16)0.0497 (4)
H21.51760.41190.11920.060*
C31.3153 (2)0.44719 (11)0.06219 (16)0.0500 (5)
H31.34680.50040.04570.060*
C41.16610 (19)0.42134 (10)0.04322 (16)0.0464 (4)
H41.09700.45750.01460.056*
C51.11770 (18)0.34200 (9)0.06626 (14)0.0387 (4)
C61.2226 (2)0.28871 (10)0.10835 (16)0.0472 (4)
H61.19300.23500.12300.057*
C70.9509 (2)0.31859 (10)0.05454 (17)0.0468 (4)
C80.90799 (18)0.23004 (9)0.03891 (15)0.0402 (4)
C90.5167 (2)0.11410 (12)0.08085 (17)0.0526 (5)
H9A0.43390.14830.04210.079*
H9B0.52840.12410.16260.079*
H9C0.48870.05830.06600.079*
C100.9020 (2)0.02679 (11)0.18587 (17)0.0571 (5)
H100.88330.07550.22170.069*
C111.0573 (2)0.00296 (11)0.18578 (16)0.0536 (5)
H111.14180.03570.21770.064*
C121.0848 (2)0.07088 (11)0.13706 (15)0.0478 (4)
H121.18900.08970.13900.057*
C130.95740 (19)0.11717 (9)0.08517 (14)0.0391 (4)
C140.80223 (18)0.08588 (9)0.08663 (13)0.0376 (4)
N10.77531 (18)0.01626 (8)0.13702 (13)0.0494 (4)
C150.53710 (19)0.11522 (10)0.16328 (16)0.0447 (4)
H150.45940.08200.13900.054*
C160.77505 (18)0.19642 (9)0.12099 (14)0.0383 (4)
C170.65890 (17)0.14649 (9)0.08261 (14)0.0358 (3)
C180.6450 (2)0.18248 (12)0.31775 (16)0.0563 (5)
H180.64060.19410.39600.068*
C190.5310 (2)0.13338 (11)0.27957 (16)0.0530 (5)
H190.44890.11220.33260.064*
C200.7655 (2)0.21400 (11)0.23854 (16)0.0497 (4)
H200.84190.24760.26390.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0463 (7)0.0440 (8)0.1469 (16)0.0030 (6)0.0313 (8)0.0024 (8)
N20.0350 (7)0.0437 (8)0.0418 (7)0.0032 (5)0.0136 (6)0.0033 (6)
N30.0388 (7)0.0397 (8)0.0519 (9)0.0071 (6)0.0095 (6)0.0011 (6)
C10.0422 (9)0.0514 (11)0.0686 (12)0.0050 (8)0.0196 (9)0.0014 (9)
C20.0360 (9)0.0570 (11)0.0557 (11)0.0089 (7)0.0053 (8)0.0049 (8)
C30.0440 (9)0.0414 (9)0.0628 (12)0.0123 (7)0.0009 (8)0.0029 (8)
C40.0409 (9)0.0368 (9)0.0616 (11)0.0001 (7)0.0076 (8)0.0049 (8)
C50.0356 (8)0.0331 (8)0.0482 (9)0.0025 (6)0.0086 (7)0.0025 (7)
C60.0478 (9)0.0337 (9)0.0626 (11)0.0027 (7)0.0171 (8)0.0018 (8)
C70.0408 (9)0.0385 (9)0.0631 (11)0.0020 (7)0.0143 (8)0.0009 (8)
C80.0360 (8)0.0366 (8)0.0513 (10)0.0042 (6)0.0175 (7)0.0004 (7)
C90.0435 (9)0.0603 (12)0.0586 (11)0.0028 (8)0.0231 (9)0.0047 (9)
C100.0689 (13)0.0437 (10)0.0566 (11)0.0028 (9)0.0016 (10)0.0092 (8)
C110.0584 (11)0.0482 (10)0.0516 (11)0.0088 (8)0.0018 (9)0.0011 (8)
C120.0415 (9)0.0511 (10)0.0498 (10)0.0009 (7)0.0027 (8)0.0041 (8)
C130.0405 (8)0.0392 (9)0.0384 (8)0.0045 (6)0.0088 (7)0.0039 (7)
C140.0424 (9)0.0367 (8)0.0346 (8)0.0035 (6)0.0088 (7)0.0019 (6)
N10.0536 (9)0.0425 (8)0.0520 (9)0.0076 (6)0.0064 (7)0.0090 (7)
C150.0399 (9)0.0382 (9)0.0556 (11)0.0039 (7)0.0056 (8)0.0008 (7)
C160.0383 (8)0.0357 (8)0.0432 (9)0.0006 (6)0.0132 (7)0.0016 (7)
C170.0361 (8)0.0312 (8)0.0414 (9)0.0015 (6)0.0099 (7)0.0003 (6)
C180.0690 (12)0.0573 (12)0.0423 (10)0.0052 (9)0.0075 (9)0.0054 (8)
C190.0570 (11)0.0507 (11)0.0477 (10)0.0012 (8)0.0047 (9)0.0041 (8)
C200.0555 (10)0.0461 (10)0.0498 (11)0.0017 (8)0.0156 (9)0.0083 (8)
Geometric parameters (Å, º) top
O1—C71.218 (2)C9—H9B0.96
N2—C141.416 (2)C9—H9C0.96
N2—C171.422 (2)C10—N11.342 (2)
N2—C91.462 (2)C10—C111.369 (3)
N3—C81.277 (2)C10—H100.93
N3—C131.412 (2)C11—C121.379 (3)
C1—C21.373 (2)C11—H110.93
C1—C61.385 (2)C12—C131.387 (2)
C1—H10.93C12—H120.93
C2—C31.372 (3)C13—C141.411 (2)
C2—H20.93C14—N11.325 (2)
C3—C41.377 (2)C15—C191.385 (3)
C3—H30.93C15—C171.392 (2)
C4—C51.387 (2)C15—H150.93
C4—H40.93C16—C201.395 (2)
C5—C61.387 (2)C16—C171.402 (2)
C5—C71.485 (2)C18—C201.377 (3)
C6—H60.93C18—C191.380 (3)
C7—C81.523 (2)C18—H180.93
C8—C161.477 (2)C19—H190.93
C9—H9A0.96C20—H200.93
C14—N2—C17114.46 (13)N1—C10—C11123.60 (17)
C14—N2—C9116.49 (13)N1—C10—H10118.2
C17—N2—C9116.60 (13)C11—C10—H10118.2
C8—N3—C13122.74 (13)C10—C11—C12118.14 (16)
C2—C1—C6120.38 (17)C10—C11—H11120.9
C2—C1—H1119.8C12—C11—H11120.9
C6—C1—H1119.8C11—C12—C13120.11 (16)
C3—C2—C1120.07 (16)C11—C12—H12119.9
C3—C2—H2120.0C13—C12—H12119.9
C1—C2—H2120.0C12—C13—C14117.22 (15)
C2—C3—C4119.92 (16)C12—C13—N3117.58 (14)
C2—C3—H3120.0C14—C13—N3124.75 (14)
C4—C3—H3120.0N1—C14—C13122.73 (15)
C3—C4—C5120.82 (16)N1—C14—N2117.57 (14)
C3—C4—H4119.6C13—C14—N2119.61 (14)
C5—C4—H4119.6C14—N1—C10118.11 (15)
C4—C5—C6118.82 (15)C19—C15—C17120.35 (16)
C4—C5—C7119.02 (15)C19—C15—H15119.8
C6—C5—C7121.96 (15)C17—C15—H15119.8
C1—C6—C5119.96 (16)C20—C16—C17119.45 (15)
C1—C6—H6120.0C20—C16—C8119.57 (15)
C5—C6—H6120.0C17—C16—C8120.98 (14)
O1—C7—C5121.87 (15)C15—C17—C16118.99 (15)
O1—C7—C8117.75 (15)C15—C17—N2122.48 (14)
C5—C7—C8120.38 (14)C16—C17—N2118.51 (14)
N3—C8—C16128.95 (14)C20—C18—C19119.19 (17)
N3—C8—C7113.99 (14)C20—C18—H18120.4
C16—C8—C7117.03 (14)C19—C18—H18120.4
N2—C9—H9A109.5C18—C19—C15120.88 (17)
N2—C9—H9B109.5C18—C19—H19119.6
H9A—C9—H9B109.5C15—C19—H19119.6
N2—C9—H9C109.5C18—C20—C16121.15 (17)
H9A—C9—H9C109.5C18—C20—H20119.4
H9B—C9—H9C109.5C16—C20—H20119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.932.563.463 (2)163
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H15N3O
Mr313.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.4442 (17), 16.503 (3), 11.682 (2)
β (°) 98.14 (3)
V3)1611.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.37 × 0.30 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.389, 0.431
No. of measured, independent and
observed [I > 2σ(I)] reflections
14767, 3587, 2492
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.05
No. of reflections3587
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···N1i0.932.563.463 (2)163
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (grant No. 20071108) and the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEberlein, W. G., Trummlitz, G., Engel, W. W., Schmidt, G., Pelzer, H. & Mayer, N. (1987). J. Med. Chem. 30, 1378–1382.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, F., Bai, X., Dang, Q. & Zhang, L. (2010). Res. Chem. Intermed. 36, 253–258.  Web of Science CrossRef CAS Google Scholar
First citationShi, F., Xu, X., Zheng, L., Dang, Q. & Bai, X. (2008). J. Comb. Chem. 10, 158–161.  Web of Science CrossRef PubMed Google Scholar
First citationSpirlet, M.-R., Graulich, A. & Liégeois, J.-F. (2003). Acta Cryst. E59, o1990–o1991.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTahtaoui, C., Parrot, I., Klotz, P., Guillier, F., Galzi, J. L., Hibert, M. & Ilien, B. (2004). J. Med. Chem. 47, 4300–4315.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds