organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-sec-Butyl-3-[hy­dr­oxy(1-methyl-1H-indol-3-yl)methyl­­idene]pyrrolidine-2,4-dione

aCollege of Chemistry, Tianjin Normal University, 393 Binshuixi Road, Xiqing District, Tianjin 300387, People's Republic of China, and bState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
*Correspondence e-mail: hxxyxhz@126.com

(Received 24 July 2010; accepted 1 August 2010; online 11 August 2010)

In the title compound, C18H20N2O3, the dihedral angle between the indole ring system (r.m.s. deviation = 0.018 Å) and the hy­droxy­methyl­enepyrrolidine-2,4-dione plane (r.m.s. deviation = 0.036 Å) is 9.87 (7)°. The keto and enol groups are involved in an intra­molecular O—H⋯O hydrogen bond. An intra­molecular C—H⋯O inter­action also occurs. The sec-butyl group is disordered over two orientations corresponding to an approximate 180° rotation about the N—C bond, with occupancies of 0.670 (6) and 0.330 (6). In the crystal, mol­ecules are linked into chains along the c axis by C—H⋯O hydrogen bonds.

Related literature

For the anti­biotic activity of 3-acyl­pyrrolidine-2,4-dione compounds, see: Baan et al. (1978[Baan, J. L. van der, Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223-231.]); Holzapfel et al. (1970[Holzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239-5246.]); Mackellar et al. (1971[Mackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J., Branfman, A. R. & Rinehart, K. L. Jr (1971). J. Am. Chem. Soc. 93, 4943-4945.]); Matsuo et al. (1980[Matsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494-2502.]); Rinehart et al. (1963[Rinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038-4039.]); Sticking (1959[Sticking, C. E. (1959). Biochem. J. 72, 332-334.]); Wu et al. (2002[Wu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222-2228.]). For a related structure, see: Ellis & Spek (2001[Ellis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433-434.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N2O3

  • Mr = 312.36

  • Monoclinic, P 21 /c

  • a = 11.781 (2) Å

  • b = 10.529 (2) Å

  • c = 12.644 (3) Å

  • β = 97.18 (3)°

  • V = 1556.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 113 K

  • 0.18 × 0.16 × 0.10 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.991

  • 12618 measured reflections

  • 3698 independent reflections

  • 2687 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.168

  • S = 1.13

  • 3698 reflections

  • 218 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.84 1.72 2.5003 (19) 154
C8—H8⋯O2 0.95 2.12 2.916 (2) 140
C9—H9C⋯O2i 0.98 2.51 3.441 (3) 159
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity. Some of them are tenuazonic (Sticking, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Mackellar et al., 1971), malonomycin (Baan et al., 1978), alpha-cyclopiazonic acid (Sticking, 1959) and bata-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and their hydrogen chemical shift of the enol hydroxy is about 11 p.p.m. (Wu et al., 2002). On the other hand, most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their bioactivity. Up to now, we have synthesized a series of 3-(un)substituted aroyl-1-benzylpyrrolidine-2,4- dione compounds and some of them have high herbicidal activity. The structure of the title compound, (I), helps us to investigate the relationship between structure and herbicidal activity.

The molecular structure of (I) is shown in Fig. 1. Atom H1, involved in intramolecular hydrogen bonding between O1 and O3, was assigned to O1 rather than to O3, based on bond lengths. The C14—O3 distance is 1.254 (2) Å, which is longer than the C12—O2 distance of 1.231 (2) Å. In contrast, the C10—O1 distance [1.322 (2) Å] is intermediate between the normal carbonyl bond and the C—O single bond length (Allen et al. 1987). A similar situation has been found in 3-(1-hydroxyethylidene)-1- phenylpyrrolidine-2,4-dione, which contains the same pyrrolidine skeleton (Ellis & Spek, 2001). The dihedral angle formed by the indole ring system (r.m.s. deviation 0.018 Å) and the hydroxymethylene-pyrrolidine-2,4-dione plane (r.m.s. deviation 0.036 Å) is 9.87 (7)°.

Related literature top

For the antibiotic activity of 3-acylpyrrolidine-2,4-dione compounds, see: Baan et al. (1978); Holzapfel et al. (1970); Mackellar et al. (1971); Matsuo et al. (1980); Rinehart et al. (1963); Sticking (1959); Wu et al. (2002). For a related structure, see: Ellis & Spek (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was obtained according to the reported procedure of Matsuo et al. (1980). Colourless single crystals were obtained by recrystallization of the title compound from petroleum ether and ethyl acetate.

Refinement top

The sec-butyl group is disordered over two orientations corresponding to an approximately 180° rotation about the N2—C15 bond, with refined occupancies of 0.670 (6) and 0.330 (6). All C—C distances in this group were restrained to 1.540 (5) Å. H atoms were placed in calculated positions, with C–H = 0.95–0.98 Å and O–H = 0.84 A°, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Structure description top

Many compounds containing the 3-acylpyrrolidine-2,4-dione moiety are novel heterocyclic compounds with antibiotic activity. Some of them are tenuazonic (Sticking, 1959), streptolydigin (Rinehart et al., 1963), tirandamycin (Mackellar et al., 1971), malonomycin (Baan et al., 1978), alpha-cyclopiazonic acid (Sticking, 1959) and bata-cyclopiazonic acid (Holzapfel et al., 1970). All these compounds possess a 3-acyltetramic acid moiety as a tricarbonylmethane structure and their hydrogen chemical shift of the enol hydroxy is about 11 p.p.m. (Wu et al., 2002). On the other hand, most of the excellent inhibitors of p-hydroxyphenylpyruvate dioxygenase also possess similar characteristics, which are crucial for their bioactivity. Up to now, we have synthesized a series of 3-(un)substituted aroyl-1-benzylpyrrolidine-2,4- dione compounds and some of them have high herbicidal activity. The structure of the title compound, (I), helps us to investigate the relationship between structure and herbicidal activity.

The molecular structure of (I) is shown in Fig. 1. Atom H1, involved in intramolecular hydrogen bonding between O1 and O3, was assigned to O1 rather than to O3, based on bond lengths. The C14—O3 distance is 1.254 (2) Å, which is longer than the C12—O2 distance of 1.231 (2) Å. In contrast, the C10—O1 distance [1.322 (2) Å] is intermediate between the normal carbonyl bond and the C—O single bond length (Allen et al. 1987). A similar situation has been found in 3-(1-hydroxyethylidene)-1- phenylpyrrolidine-2,4-dione, which contains the same pyrrolidine skeleton (Ellis & Spek, 2001). The dihedral angle formed by the indole ring system (r.m.s. deviation 0.018 Å) and the hydroxymethylene-pyrrolidine-2,4-dione plane (r.m.s. deviation 0.036 Å) is 9.87 (7)°.

For the antibiotic activity of 3-acylpyrrolidine-2,4-dione compounds, see: Baan et al. (1978); Holzapfel et al. (1970); Mackellar et al. (1971); Matsuo et al. (1980); Rinehart et al. (1963); Sticking (1959); Wu et al. (2002). For a related structure, see: Ellis & Spek (2001). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Both disorder components are shown.
1-sec-Butyl-3-[hydroxy(1-methyl-1H-indol-3- yl)methylidene]pyrrolidine-2,4-dione top
Crystal data top
C18H20N2O3F(000) = 664
Mr = 312.36Dx = 1.333 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4289 reflections
a = 11.781 (2) Åθ = 2.5–27.9°
b = 10.529 (2) ŵ = 0.09 mm1
c = 12.644 (3) ÅT = 113 K
β = 97.18 (3)°Prism, yellow
V = 1556.1 (5) Å30.18 × 0.16 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
3698 independent reflections
Radiation source: fine-focus sealed tube2687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 915
Tmin = 0.984, Tmax = 0.991k = 1313
12618 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0947P)2 + 0.1812P]
where P = (Fo2 + 2Fc2)/3
3698 reflections(Δ/σ)max = 0.001
218 parametersΔρmax = 0.66 e Å3
10 restraintsΔρmin = 0.57 e Å3
Crystal data top
C18H20N2O3V = 1556.1 (5) Å3
Mr = 312.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.781 (2) ŵ = 0.09 mm1
b = 10.529 (2) ÅT = 113 K
c = 12.644 (3) Å0.18 × 0.16 × 0.10 mm
β = 97.18 (3)°
Data collection top
Rigaku Saturn
diffractometer
3698 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2687 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.991Rint = 0.034
12618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05510 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.13Δρmax = 0.66 e Å3
3698 reflectionsΔρmin = 0.57 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.66886 (10)1.07272 (11)0.42060 (10)0.0232 (3)
H10.62681.06430.46910.035*
O20.93397 (11)0.78344 (12)0.54741 (11)0.0297 (3)
O30.59380 (11)1.00771 (11)0.58894 (10)0.0258 (3)
N10.98265 (12)0.96858 (14)0.26733 (12)0.0224 (3)
N20.69798 (14)0.85187 (15)0.68474 (13)0.0282 (4)
C10.83455 (14)1.00283 (15)0.35989 (13)0.0194 (4)
C20.81236 (14)1.06960 (15)0.25917 (13)0.0202 (4)
C30.72166 (16)1.14252 (16)0.20819 (15)0.0253 (4)
H30.65601.15950.24250.030*
C40.72960 (18)1.18928 (18)0.10697 (15)0.0306 (4)
H40.66771.23680.07140.037*
C50.82620 (19)1.16822 (18)0.05608 (16)0.0319 (5)
H50.82991.20410.01230.038*
C60.91688 (17)1.09601 (17)0.10329 (15)0.0278 (4)
H60.98271.08100.06870.033*
C70.90694 (15)1.04631 (16)0.20424 (14)0.0216 (4)
C80.93954 (14)0.94263 (16)0.35943 (14)0.0211 (4)
H80.97570.89100.41540.025*
C91.08481 (15)0.91093 (18)0.23351 (16)0.0285 (4)
H9A1.12850.86810.29430.043*
H9B1.13220.97700.20650.043*
H9C1.06230.84890.17700.043*
C100.75981 (14)0.99897 (15)0.44100 (13)0.0186 (4)
C110.76929 (14)0.92599 (15)0.53493 (14)0.0201 (4)
C120.84678 (15)0.82736 (17)0.57785 (14)0.0236 (4)
C130.80043 (16)0.77699 (18)0.67725 (16)0.0298 (4)
H13A0.78160.68550.66960.036*
H13B0.85690.78900.74130.036*
C140.67860 (15)0.93502 (16)0.60328 (14)0.0220 (4)
C150.61807 (18)0.8307 (2)0.76310 (17)0.0412 (6)
H150.55200.88980.74550.049*
C160.6765 (2)0.8655 (4)0.87609 (19)0.0717 (10)
H16A0.70460.95110.87620.108*0.670 (6)
H16B0.62180.85820.92600.108*0.670 (6)
H16C0.73910.80850.89620.108*0.670 (6)
H16D0.70430.95110.87560.086*0.330 (6)
H16E0.74110.81060.89450.086*0.330 (6)
C170.5719 (2)0.6974 (2)0.7563 (2)0.0582 (8)
H17A0.51870.68740.80730.070*0.670 (6)
H17B0.63360.63880.77490.070*0.670 (6)
H17C0.53730.68200.68460.087*0.330 (6)
H17D0.63280.63780.77450.087*0.330 (6)
H17E0.51550.68750.80430.087*0.330 (6)
C180.5146 (3)0.6638 (3)0.6507 (3)0.0524 (13)0.670 (6)
H18A0.44530.71530.63460.079*0.670 (6)
H18B0.49390.57360.64950.079*0.670 (6)
H18C0.56620.68000.59710.079*0.670 (6)
C18'0.5954 (8)0.8519 (12)0.9604 (7)0.087 (4)0.330 (6)
H18D0.52550.90070.93870.130*0.330 (6)
H18E0.63260.88401.02870.130*0.330 (6)
H18F0.57580.76210.96780.130*0.330 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0214 (6)0.0279 (7)0.0218 (7)0.0049 (5)0.0084 (5)0.0028 (5)
O20.0252 (7)0.0340 (7)0.0313 (8)0.0094 (6)0.0096 (6)0.0056 (6)
O30.0230 (6)0.0314 (7)0.0240 (7)0.0073 (5)0.0073 (5)0.0040 (5)
N10.0202 (7)0.0254 (7)0.0229 (8)0.0016 (6)0.0077 (6)0.0021 (6)
N20.0258 (8)0.0336 (8)0.0275 (8)0.0063 (7)0.0119 (7)0.0098 (6)
C10.0201 (8)0.0194 (8)0.0193 (8)0.0042 (6)0.0051 (7)0.0015 (6)
C20.0228 (8)0.0190 (8)0.0198 (8)0.0036 (6)0.0063 (7)0.0012 (6)
C30.0251 (9)0.0254 (9)0.0268 (10)0.0003 (7)0.0085 (8)0.0016 (7)
C40.0356 (10)0.0301 (9)0.0265 (10)0.0024 (8)0.0062 (8)0.0053 (8)
C50.0441 (12)0.0315 (10)0.0222 (9)0.0004 (9)0.0123 (9)0.0059 (8)
C60.0333 (10)0.0275 (9)0.0248 (9)0.0033 (8)0.0124 (8)0.0010 (7)
C70.0235 (8)0.0198 (8)0.0227 (9)0.0035 (7)0.0072 (7)0.0025 (6)
C80.0203 (8)0.0242 (8)0.0194 (9)0.0030 (7)0.0049 (7)0.0021 (6)
C90.0219 (9)0.0339 (10)0.0318 (10)0.0016 (8)0.0120 (8)0.0040 (8)
C100.0181 (8)0.0182 (8)0.0200 (9)0.0017 (6)0.0039 (6)0.0027 (6)
C110.0196 (8)0.0207 (8)0.0205 (9)0.0002 (6)0.0051 (7)0.0003 (6)
C120.0233 (9)0.0260 (9)0.0222 (9)0.0014 (7)0.0058 (7)0.0010 (7)
C130.0282 (9)0.0324 (10)0.0304 (10)0.0071 (8)0.0103 (8)0.0106 (8)
C140.0219 (8)0.0247 (8)0.0198 (9)0.0015 (7)0.0046 (7)0.0006 (7)
C150.0355 (11)0.0539 (13)0.0387 (12)0.0133 (10)0.0218 (10)0.0209 (10)
C160.0500 (16)0.129 (3)0.0391 (15)0.0170 (17)0.0182 (13)0.0283 (16)
C170.0434 (13)0.0516 (14)0.086 (2)0.0139 (11)0.0349 (15)0.0354 (14)
C180.042 (2)0.0387 (19)0.080 (3)0.0026 (16)0.020 (2)0.0083 (18)
C18'0.079 (6)0.126 (8)0.058 (6)0.012 (6)0.021 (5)0.010 (5)
Geometric parameters (Å, º) top
O1—C101.322 (2)C10—C111.407 (2)
O1—H10.84C11—C121.443 (2)
O2—C121.231 (2)C11—C141.459 (2)
O3—C141.254 (2)C12—C131.527 (2)
N1—C81.355 (2)C13—H13A0.99
N1—C71.387 (2)C13—H13B0.99
N1—C91.459 (2)C15—C171.504 (3)
N2—C141.349 (2)C15—C161.550 (3)
N2—C131.455 (2)C15—H151.00
N2—C151.467 (2)C16—C18'1.525 (5)
C1—C81.390 (2)C16—H16A0.96
C1—C101.433 (2)C16—H16B0.96
C1—C21.450 (2)C16—H16C0.96
C2—C31.405 (2)C16—H16D0.96
C2—C71.406 (2)C16—H16E0.96
C3—C41.385 (3)C17—C181.462 (4)
C3—H30.95C17—H17A0.96
C4—C51.393 (3)C17—H17B0.96
C4—H40.95C17—H17C0.96
C5—C61.384 (3)C17—H17D0.96
C5—H50.95C17—H17E0.96
C6—C71.398 (3)C18—H18A0.98
C6—H60.95C18—H18B0.98
C8—H80.95C18—H18C0.98
C9—H9A0.98C18'—H18D0.98
C9—H9B0.98C18'—H18E0.98
C9—H9C0.98C18'—H18F0.98
C10—O1—H1109.5N2—C15—H15107.6
C8—N1—C7109.27 (14)C17—C15—H15107.6
C8—N1—C9125.41 (16)C16—C15—H15107.6
C7—N1—C9124.87 (15)C18'—C16—C15112.1 (5)
C14—N2—C13111.38 (14)C18'—C16—H16A109.5
C14—N2—C15123.56 (16)C15—C16—H16A109.6
C13—N2—C15124.71 (15)C15—C16—H16B109.2
C8—C1—C10128.05 (16)H16A—C16—H16B109.5
C8—C1—C2106.28 (14)C18'—C16—H16C106.5
C10—C1—C2125.66 (15)C15—C16—H16C109.6
C3—C2—C7118.22 (15)H16A—C16—H16C109.5
C3—C2—C1135.34 (15)H16B—C16—H16C109.5
C7—C2—C1106.40 (15)C18'—C16—H16D109.7
C4—C3—C2118.86 (17)C15—C16—H16D109.2
C4—C3—H3120.6H16B—C16—H16D109.7
C2—C3—H3120.6H16C—C16—H16D109.7
C3—C4—C5121.56 (19)C18'—C16—H16E108.7
C3—C4—H4119.2C15—C16—H16E109.2
C5—C4—H4119.2H16A—C16—H16E107.6
C6—C5—C4121.27 (17)H16B—C16—H16E111.7
C6—C5—H5119.4H16D—C16—H16E107.8
C4—C5—H5119.4C18—C17—C15113.6 (2)
C5—C6—C7116.82 (17)C18—C17—H17A108.8
C5—C6—H6121.6C15—C17—H17A109.0
C7—C6—H6121.6C18—C17—H17B108.5
N1—C7—C6128.67 (16)C15—C17—H17B109.1
N1—C7—C2108.13 (14)H17A—C17—H17B107.6
C6—C7—C2123.20 (17)C15—C17—H17C108.7
N1—C8—C1109.93 (16)H17A—C17—H17C112.4
N1—C8—H8125.0H17B—C17—H17C110.0
C1—C8—H8125.0C18—C17—H17D107.9
N1—C9—H9A109.5C15—C17—H17D110.0
N1—C9—H9B109.5H17A—C17—H17D107.3
H9A—C9—H9B109.5H17C—C17—H17D109.5
N1—C9—H9C109.5C18—C17—H17E105.9
H9A—C9—H9C109.5C15—C17—H17E109.8
H9B—C9—H9C109.5H17B—C17—H17E109.7
O1—C10—C11117.53 (14)H17C—C17—H17E109.5
O1—C10—C1113.52 (15)H17D—C17—H17E109.5
C11—C10—C1128.93 (15)C17—C18—H18A109.5
C10—C11—C12133.64 (15)H17C—C18—H18A107.5
C10—C11—C14118.53 (15)C17—C18—H18B109.5
C12—C11—C14107.45 (14)H17C—C18—H18B118.4
O2—C12—C11131.76 (16)H18A—C18—H18B109.5
O2—C12—C13121.67 (16)C17—C18—H18C109.5
C11—C12—C13106.56 (14)H17C—C18—H18C102.1
N2—C13—C12104.50 (14)H18A—C18—H18C109.5
N2—C13—H13A110.9H18B—C18—H18C109.5
C12—C13—H13A110.9C16—C18'—H18D109.5
N2—C13—H13B110.9H16B—C18'—H18D104.2
C12—C13—H13B110.9C16—C18'—H18E109.5
H13A—C13—H13B108.9H16B—C18'—H18E113.9
O3—C14—N2124.21 (16)H18D—C18'—H18E109.5
O3—C14—C11125.70 (16)C16—C18'—H18F109.5
N2—C14—C11110.08 (15)H16B—C18'—H18F110.2
N2—C15—C17111.19 (18)H18D—C18'—H18F109.5
N2—C15—C16109.75 (18)H18E—C18'—H18F109.5
C17—C15—C16112.9 (2)
C8—C1—C2—C3176.72 (18)C1—C10—C11—C125.6 (3)
C10—C1—C2—C31.9 (3)O1—C10—C11—C140.5 (2)
C8—C1—C2—C70.62 (18)C1—C10—C11—C14177.42 (16)
C10—C1—C2—C7179.19 (15)C10—C11—C12—O25.9 (3)
C7—C2—C3—C40.7 (3)C14—C11—C12—O2178.41 (19)
C1—C2—C3—C4177.76 (18)C10—C11—C12—C13173.30 (18)
C2—C3—C4—C51.6 (3)C14—C11—C12—C130.80 (19)
C3—C4—C5—C62.1 (3)C14—N2—C13—C121.2 (2)
C4—C5—C6—C70.4 (3)C15—N2—C13—C12174.59 (18)
C8—N1—C7—C6180.00 (18)O2—C12—C13—N2179.49 (17)
C9—N1—C7—C67.3 (3)C11—C12—C13—N20.2 (2)
C8—N1—C7—C20.17 (19)C13—N2—C14—O3177.45 (17)
C9—N1—C7—C2172.49 (15)C15—N2—C14—O34.0 (3)
C5—C6—C7—N1177.90 (17)C13—N2—C14—C111.8 (2)
C5—C6—C7—C21.9 (3)C15—N2—C14—C11175.24 (17)
C3—C2—C7—N1177.39 (15)C10—C11—C14—O33.8 (3)
C1—C2—C7—N10.49 (18)C12—C11—C14—O3177.61 (17)
C3—C2—C7—C62.5 (3)C10—C11—C14—N2175.43 (15)
C1—C2—C7—C6179.67 (16)C12—C11—C14—N21.6 (2)
C7—N1—C8—C10.24 (19)C14—N2—C15—C17115.6 (2)
C9—N1—C8—C1172.85 (15)C13—N2—C15—C1757.0 (3)
C10—C1—C8—N1179.06 (16)C14—N2—C15—C16118.7 (2)
C2—C1—C8—N10.53 (18)C13—N2—C15—C1668.7 (3)
C8—C1—C10—O1176.19 (15)N2—C15—C16—C18'177.0 (5)
C2—C1—C10—O15.5 (2)C17—C15—C16—C18'58.3 (6)
C8—C1—C10—C115.8 (3)N2—C15—C17—C1857.2 (3)
C2—C1—C10—C11172.44 (16)C16—C15—C17—C18178.9 (2)
O1—C10—C11—C12172.36 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.841.722.5003 (19)154
C8—H8···O20.952.122.916 (2)140
C9—H9C···O2i0.982.513.441 (3)159
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC18H20N2O3
Mr312.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)11.781 (2), 10.529 (2), 12.644 (3)
β (°) 97.18 (3)
V3)1556.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.16 × 0.10
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.984, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
12618, 3698, 2687
Rint0.034
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.168, 1.13
No. of reflections3698
No. of parameters218
No. of restraints10
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.57

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.841.722.5003 (19)154
C8—H8···O20.952.122.916 (2)140
C9—H9C···O2i0.982.513.441 (3)159
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant No. 20772066).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaan, J. L. van der, Barnick, J. W. F. K. & Bickelhaupt, F. (1978). Tetrahedron, 34, 223–231.  CrossRef Web of Science Google Scholar
First citationEllis, D. D. & Spek, A. L. (2001). Acta Cryst. C57, 433–434.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationHolzapfel, C. W., Hutchison, R. D. & Wilkins, D. C. (1970). Tetrahedron, 26, 5239–5246.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMackellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J., Branfman, A. R. & Rinehart, K. L. Jr (1971). J. Am. Chem. Soc. 93, 4943–4945.  CAS PubMed Web of Science Google Scholar
First citationMatsuo, K., Kitaguchi, I., Takata, Y. & Tanaka, K. (1980). Chem. Pharm. Bull. 28, 2494–2502.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRinehart, K. L., Beck, J. R., Borders, D. B., Kinstle, T. H. & Krauss, D. (1963). J. Am. Chem. Soc. 85, 4038–4039.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSticking, C. E. (1959). Biochem. J. 72, 332–334.  PubMed CAS Web of Science Google Scholar
First citationWu, C.-S., Huang, J.-L., Sun, Y.-S. & Yang, D.-Y. (2002). J. Med. Chem. 45, 2222–2228.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds