organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridinium 3-carb­­oxy­prop-2-enoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 27 July 2010; accepted 28 July 2010; online 4 August 2010)

In the title salt, C5H6BrN2+·C4H3O4, the 2-amino-5-bromo­pyridinium cation and hydrogen maleate anion are planar, with maximum deviations from their mean planes of 0.016 (1) and 0.039 (1) Å, respectively. An intra­molecular O—H⋯O hydrogen bond generates an S(7) ring motif in the anion. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen-bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The motifs are linked into a two-dimensional network parallel to (011) by N—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of maleic acid, see; Bowes et al. (2003[Bowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100-117.]); Jin et al. (2003[Jin, Z. M., Hu, M. L., Wang, K. W., Shen, L. & Li, M. C. (2003). Acta Cryst. E59, o1-o3.]); Lah & Leban (2003[Lah, N. & Leban, I. (2003). Acta Cryst. C59, o537-o538.]); Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6BrN2+·C4H3O4

  • Mr = 289.09

  • Triclinic, [P \overline 1]

  • a = 5.7434 (1) Å

  • b = 9.5871 (1) Å

  • c = 10.3034 (2) Å

  • α = 80.455 (1)°

  • β = 74.175 (1)°

  • γ = 85.123 (1)°

  • V = 537.80 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.82 mm−1

  • T = 100 K

  • 0.55 × 0.26 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.226, Tmax = 0.554

  • 17591 measured reflections

  • 4705 independent reflections

  • 4235 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.064

  • S = 1.06

  • 4705 reflections

  • 157 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.11 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O3 0.88 1.57 2.4380 (13) 171
N1—H1N1⋯O4i 0.87 (2) 1.88 (2) 2.7426 (13) 169 (2)
N2—H1N2⋯O3i 0.84 (2) 2.01 (2) 2.8495 (14) 174 (2)
N2—H2N2⋯O2ii 0.82 (2) 2.14 (2) 2.9534 (13) 176 (2)
C3—H3A⋯O2 0.93 2.37 3.2937 (14) 171
C5—H5A⋯O4iii 0.93 2.39 3.3051 (14) 167
Symmetry codes: (i) x, y+1, z-1; (ii) -x+2, -y+1, -z; (iii) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Maleic acid, the Z isomer of butenedioic acid, has been used as a simple building block in supramolecular architectures in two and three dimensions (Bowes et al., 2003; Jin et al., 2003). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate with one of the carboxyl groups protonated (Lah & Leban, 2003). Several singly dissociated maleate salts are reported in the Cambridge Structural Database (Version 5.29; Allen, 2002). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-bromopyridinium cation and one hydrogen maleate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle (C5—N1—C1 = 123.02 (9)°) is subtented at the protonated N1 atom. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.016 (1) Å for atom Br1. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of intermolecular N1—H1N1···O4 and N2—H1N2···O3 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). There is an intramolecular O1—H1O1···O3 hydrogen bond in the hydrogen maleate anion, which generates an S(7) ring motif. Furthermore these two motifs are connected via N2—H2N2···O2, C3—H3A···O2 and C5—H5A···O4 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the (011) plane.

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of maleic acid, see; Bowes et al. (2003); Jin et al. (2003); Lah & Leban (2003); Allen (2002). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (43 mg, Aldrich) and maleic acid (29 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

Atoms H1N1, H1N2 and H2N2 were located in a difference Fourier map and were refined freely [N–H= 0.82 (2)–0.870 (19) Å ]. The remaining H atoms were positioned geometrically [O–H = 0.88 Å and C–H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). Maleic acid, the Z isomer of butenedioic acid, has been used as a simple building block in supramolecular architectures in two and three dimensions (Bowes et al., 2003; Jin et al., 2003). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate with one of the carboxyl groups protonated (Lah & Leban, 2003). Several singly dissociated maleate salts are reported in the Cambridge Structural Database (Version 5.29; Allen, 2002). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-bromopyridinium cation and one hydrogen maleate anion, indicating that proton transfer has occurred during the co-crystallisation experiment. In the 2-amino-5-bromopyridinium cation, a wider than normal angle (C5—N1—C1 = 123.02 (9)°) is subtented at the protonated N1 atom. The 2-amino-5-bromopyridinium cation is essentially planar, with a maximum deviation of 0.016 (1) Å for atom Br1. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O3 and O4) via a pair of intermolecular N1—H1N1···O4 and N2—H1N2···O3 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). There is an intramolecular O1—H1O1···O3 hydrogen bond in the hydrogen maleate anion, which generates an S(7) ring motif. Furthermore these two motifs are connected via N2—H2N2···O2, C3—H3A···O2 and C5—H5A···O4 (Table 1) hydrogen bonds, forming a two-dimensional network parallel to the (011) plane.

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of maleic acid, see; Bowes et al. (2003); Jin et al. (2003); Lah & Leban (2003); Allen (2002). For bond-length data, see: Allen et al. (1987). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates a intramolecular hydrogen bond.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing S(7) and R22(8) ring motifs.
2-Amino-5-bromopyridinium 3-carboxyprop-2-enoate top
Crystal data top
C5H6BrN2+·C4H3O4Z = 2
Mr = 289.09F(000) = 288
Triclinic, P1Dx = 1.785 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.7434 (1) ÅCell parameters from 9953 reflections
b = 9.5871 (1) Åθ = 2.8–35.2°
c = 10.3034 (2) ŵ = 3.82 mm1
α = 80.455 (1)°T = 100 K
β = 74.175 (1)°Plate, colourless
γ = 85.123 (1)°0.55 × 0.26 × 0.17 mm
V = 537.80 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4705 independent reflections
Radiation source: fine-focus sealed tube4235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 98
Tmin = 0.226, Tmax = 0.554k = 1515
17591 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.177P]
where P = (Fo2 + 2Fc2)/3
4705 reflections(Δ/σ)max = 0.001
157 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.70 e Å3
Crystal data top
C5H6BrN2+·C4H3O4γ = 85.123 (1)°
Mr = 289.09V = 537.80 (2) Å3
Triclinic, P1Z = 2
a = 5.7434 (1) ÅMo Kα radiation
b = 9.5871 (1) ŵ = 3.82 mm1
c = 10.3034 (2) ÅT = 100 K
α = 80.455 (1)°0.55 × 0.26 × 0.17 mm
β = 74.175 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4235 reflections with I > 2σ(I)
Tmin = 0.226, Tmax = 0.554Rint = 0.020
17591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.11 e Å3
4705 reflectionsΔρmin = 0.70 e Å3
157 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.08004 (2)0.537686 (13)0.294128 (12)0.02696 (4)
N10.42643 (16)0.83409 (10)0.01859 (9)0.01624 (14)
N20.81699 (17)0.85829 (11)0.15773 (10)0.02185 (17)
C10.65936 (17)0.78492 (11)0.05651 (10)0.01673 (16)
C20.72501 (19)0.65511 (12)0.01629 (11)0.01905 (18)
H2A0.88420.61940.00620.023*
C30.55552 (19)0.58268 (11)0.11897 (11)0.01939 (18)
H3A0.59790.49710.16590.023*
C40.31486 (19)0.63883 (11)0.15333 (11)0.01821 (17)
C50.25417 (18)0.76411 (11)0.08418 (10)0.01714 (16)
H5A0.09620.80170.10690.021*
O10.81743 (14)0.18263 (11)0.44160 (9)0.02726 (19)
H1O10.74890.15840.52880.041*
O20.68803 (15)0.26191 (9)0.25903 (8)0.02102 (15)
O30.63826 (14)0.09096 (10)0.68047 (9)0.02256 (16)
O40.27013 (14)0.06052 (9)0.82150 (8)0.01999 (14)
C60.64341 (18)0.21863 (11)0.38215 (10)0.01679 (16)
C70.38534 (18)0.20548 (12)0.46279 (11)0.01807 (17)
H7A0.27290.23530.41280.022*
C80.28808 (18)0.15795 (12)0.59511 (11)0.01824 (17)
H8A0.11970.16160.62200.022*
C90.40698 (18)0.09990 (11)0.70659 (10)0.01663 (16)
H1N10.381 (3)0.913 (2)0.0621 (19)0.026 (4)*
H1N20.769 (3)0.931 (2)0.2027 (19)0.028 (4)*
H2N20.956 (4)0.827 (2)0.183 (2)0.038 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02461 (6)0.02342 (6)0.02515 (6)0.00137 (4)0.00082 (4)0.00590 (4)
N10.0158 (3)0.0172 (4)0.0146 (3)0.0015 (3)0.0040 (3)0.0003 (3)
N20.0163 (3)0.0246 (4)0.0203 (4)0.0009 (3)0.0015 (3)0.0024 (3)
C10.0153 (4)0.0190 (4)0.0154 (4)0.0006 (3)0.0039 (3)0.0021 (3)
C20.0171 (4)0.0184 (4)0.0213 (4)0.0028 (3)0.0059 (3)0.0023 (3)
C30.0209 (4)0.0162 (4)0.0206 (4)0.0022 (3)0.0067 (3)0.0009 (3)
C40.0191 (4)0.0175 (4)0.0163 (4)0.0004 (3)0.0031 (3)0.0005 (3)
C50.0164 (4)0.0179 (4)0.0158 (4)0.0006 (3)0.0031 (3)0.0015 (3)
O10.0143 (3)0.0452 (5)0.0193 (4)0.0035 (3)0.0053 (3)0.0062 (3)
O20.0205 (3)0.0239 (4)0.0163 (3)0.0014 (3)0.0039 (3)0.0010 (3)
O30.0157 (3)0.0322 (4)0.0184 (3)0.0007 (3)0.0058 (3)0.0021 (3)
O40.0193 (3)0.0209 (4)0.0162 (3)0.0023 (3)0.0016 (3)0.0008 (3)
C60.0158 (4)0.0164 (4)0.0172 (4)0.0001 (3)0.0041 (3)0.0006 (3)
C70.0146 (4)0.0213 (4)0.0178 (4)0.0011 (3)0.0053 (3)0.0006 (3)
C80.0146 (4)0.0211 (4)0.0177 (4)0.0009 (3)0.0042 (3)0.0002 (3)
C90.0171 (4)0.0164 (4)0.0161 (4)0.0006 (3)0.0046 (3)0.0017 (3)
Geometric parameters (Å, º) top
Br1—C41.8848 (11)C4—C51.3609 (15)
N1—C11.3540 (13)C5—H5A0.93
N1—C51.3624 (13)O1—C61.3032 (12)
N1—H1N10.870 (19)O1—H1O10.88
N2—C11.3237 (14)O2—C61.2301 (13)
N2—H1N20.842 (19)O3—C91.2796 (12)
N2—H2N20.82 (2)O4—C91.2477 (12)
C1—C21.4207 (15)C6—C71.4929 (14)
C2—C31.3633 (16)C7—C81.3417 (15)
C2—H2A0.93C7—H7A0.93
C3—C41.4126 (15)C8—C91.4988 (14)
C3—H3A0.93C8—H8A0.93
C1—N1—C5123.02 (9)C3—C4—Br1119.31 (8)
C1—N1—H1N1119.6 (13)C4—C5—N1119.57 (9)
C5—N1—H1N1117.3 (13)C4—C5—H5A120.2
C1—N2—H1N2119.8 (13)N1—C5—H5A120.2
C1—N2—H2N2120.2 (15)C6—O1—H1O1106.9
H1N2—N2—H2N2120 (2)O2—C6—O1120.95 (9)
N2—C1—N1119.76 (10)O2—C6—C7118.87 (9)
N2—C1—C2122.44 (9)O1—C6—C7120.17 (9)
N1—C1—C2117.79 (9)C8—C7—C6130.95 (9)
C3—C2—C1120.27 (9)C8—C7—H7A114.5
C3—C2—H2A119.9C6—C7—H7A114.5
C1—C2—H2A119.9C7—C8—C9130.44 (9)
C2—C3—C4119.36 (10)C7—C8—H8A114.8
C2—C3—H3A120.3C9—C8—H8A114.8
C4—C3—H3A120.3O4—C9—O3123.48 (10)
C5—C4—C3119.99 (10)O4—C9—C8116.75 (9)
C5—C4—Br1120.70 (8)O3—C9—C8119.77 (9)
C5—N1—C1—N2179.73 (10)Br1—C4—C5—N1178.99 (8)
C5—N1—C1—C20.79 (15)C1—N1—C5—C40.00 (16)
N2—C1—C2—C3179.37 (11)O2—C6—C7—C8177.71 (12)
N1—C1—C2—C31.17 (16)O1—C6—C7—C81.27 (19)
C1—C2—C3—C40.77 (16)C6—C7—C8—C91.0 (2)
C2—C3—C4—C50.03 (17)C7—C8—C9—O4178.65 (11)
C2—C3—C4—Br1179.39 (8)C7—C8—C9—O30.33 (18)
C3—C4—C5—N10.43 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.881.572.4380 (13)171
N1—H1N1···O4i0.87 (2)1.88 (2)2.7426 (13)169 (2)
N2—H1N2···O3i0.84 (2)2.01 (2)2.8495 (14)174 (2)
N2—H2N2···O2ii0.82 (2)2.14 (2)2.9534 (13)176 (2)
C3—H3A···O20.932.373.2937 (14)171
C5—H5A···O4iii0.932.393.3051 (14)167
Symmetry codes: (i) x, y+1, z1; (ii) x+2, y+1, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·C4H3O4
Mr289.09
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.7434 (1), 9.5871 (1), 10.3034 (2)
α, β, γ (°)80.455 (1), 74.175 (1), 85.123 (1)
V3)537.80 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.82
Crystal size (mm)0.55 × 0.26 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.226, 0.554
No. of measured, independent and
observed [I > 2σ(I)] reflections
17591, 4705, 4235
Rint0.020
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.064, 1.06
No. of reflections4705
No. of parameters157
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 0.70

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O30.881.572.4380 (13)171
N1—H1N1···O4i0.87 (2)1.88 (2)2.7426 (13)169 (2)
N2—H1N2···O3i0.84 (2)2.01 (2)2.8495 (14)174 (2)
N2—H2N2···O2ii0.82 (2)2.14 (2)2.9534 (13)176 (2)
C3—H3A···O20.932.373.2937 (14)171
C5—H5A···O4iii0.932.393.3051 (14)167
Symmetry codes: (i) x, y+1, z1; (ii) x+2, y+1, z; (iii) x, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBowes, K. F., Ferguson, G., Lough, A. J. & Glidewell, C. (2003). Acta Cryst. B59, 100–117.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationJin, Z. M., Hu, M. L., Wang, K. W., Shen, L. & Li, M. C. (2003). Acta Cryst. E59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationLah, N. & Leban, I. (2003). Acta Cryst. C59, o537–o538.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds