organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5′-Amino-2-oxo-2′,3′-di­hydro­spiro­[indoline-3,7′-thieno[3,2-b]pyran]-6′-carbo­nitrile 1′,1′-dioxide

aXuzhou Institute of Architectural Technology, Xuzhou 221116, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and cKey Laboratory of Biotechnology for Medicinal Plants, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: csyao@xznu.edu.cn

(Received 30 July 2010; accepted 16 August 2010; online 28 August 2010)

In the title compound, C15H11N3O4S, the dihedral angle between the mean planes of the dihydro­indol-2-one (r.m.s. deviation = 0.015 Å) and dihydro­thieno[3,2-b]pyran (r.m.s. deviation = 0.011 Å) ring systems is 89.53 (3)°. The crytal packing is consolidated by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds, which link the mol­ecules into a two-dimensional network into sheets lying parallel to (100).

Related literature

For the anti­viral and α2-adrenoreceptor agonist activity of thieno[3,2-b]pyran derivatives, see: Chao et al. (2009[Chao, J. H., Zheng, J. Y. & Aslanian, R. G. (2009). WO Patent No. 2009020578.]); Friary et al. (1991[Friary, R. J., Schwerdt, J. H. & Ganguly, A. K. (1991). US Patent No. 5034531.]). For the biological and pharmacological properties of indole derivatives, see: Sundberg (1996[Sundberg, R. J. (1996). The Chemistry of Indoles. New York: Academic Press.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11N3O4S

  • Mr = 329.33

  • Monoclinic, C 2/c

  • a = 30.669 (4) Å

  • b = 8.1760 (14) Å

  • c = 12.229 (2) Å

  • β = 112.611 (8)°

  • V = 2830.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 113 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.939, Tmax = 0.951

  • 19659 measured reflections

  • 4149 independent reflections

  • 3670 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.099

  • S = 1.08

  • 4149 reflections

  • 220 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N3i 0.89 (2) 2.21 (2) 3.0878 (15) 170 (2)
N1—H2⋯O4ii 0.88 (2) 2.01 (2) 2.8790 (14) 172 (1)
N2—H3⋯O3iii 0.84 (2) 2.13 (2) 2.9255 (14) 159 (2)
Symmetry codes: (i) -x, -y+2, -z; (ii) -x, -y+1, -z; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009[Rigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The indole core represents an interesting pharmacophore with the feature of biological and pharmacological properties (Sundberg, 1996). Thienopyranyl compounds, such as thieno[3,2-b]pyran derivatives, can be uesed as antiviral agents (Friary et al.,1991) and α-2 C adrenoreceptor agonists (Chao et al., 2009). This led us to pay much attention to the synthesis and bioactivity of compounds containing these two significant fragments. During the synthesis of spiro[indoline-3,7'-thieno[3,2-b]pyran] derivatives, the title compound was isolated and its structure was determined by X-ray analysis. The results are presented here.

In the title molecule (Fig. 1), the dihydroindole-2-one ring system is planar (r.m.s. deviation 0.015 Å); the largest deviation from the mean plane is 0.023 (1) Å for atom C3. The dihydrothieno[3,2-b]pyran unit is also planar with an r.m.s. deviation of 0.011 Å (maximum deviation from the plane is 0.022 Å for atom C2). The dihedral angle between the two units is 89.53 (3)°.

The crystal packing is stabilized by intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) which link the molecules into a two-dimensional network parallel to the (100) [Fig.2].

Related literature top

For the antiviral and α2-adrenoreceptor agonist activity of thieno[3,2-b]pyran derivatives, see: Chao et al. (2009); Friary et al. (1991). For the biological and pharmacological properties of indole derivatives, see: Sundberg (1996).

Experimental top

The title compound was synthesized by the reaction of dihydrothiophen-3(2H)-one-1,1-dioxide (1 mmol) and 2-(2-oxoindolin-3-ylidene)malononitrile (1 mmol) catalyzed by piperidine (0.02 g) in 10 ml ethanol under reluxing until completion (monitored by TLC). Cooling the reaction mixture slowly gave single crystals suitable for X-ray diffraction.

Refinement top

The H atoms bound to N atoms were located in a difference map and were refined freely [refined N–H lengths, 0.89 (2), 0.88 (2) and 0.84 (2) Å]. All other H atoms were placed in calculated positions, with C–H = 0.95, or 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

The indole core represents an interesting pharmacophore with the feature of biological and pharmacological properties (Sundberg, 1996). Thienopyranyl compounds, such as thieno[3,2-b]pyran derivatives, can be uesed as antiviral agents (Friary et al.,1991) and α-2 C adrenoreceptor agonists (Chao et al., 2009). This led us to pay much attention to the synthesis and bioactivity of compounds containing these two significant fragments. During the synthesis of spiro[indoline-3,7'-thieno[3,2-b]pyran] derivatives, the title compound was isolated and its structure was determined by X-ray analysis. The results are presented here.

In the title molecule (Fig. 1), the dihydroindole-2-one ring system is planar (r.m.s. deviation 0.015 Å); the largest deviation from the mean plane is 0.023 (1) Å for atom C3. The dihydrothieno[3,2-b]pyran unit is also planar with an r.m.s. deviation of 0.011 Å (maximum deviation from the plane is 0.022 Å for atom C2). The dihedral angle between the two units is 89.53 (3)°.

The crystal packing is stabilized by intermolecular N—H···O and N—H···N hydrogen bonds (Table 1) which link the molecules into a two-dimensional network parallel to the (100) [Fig.2].

For the antiviral and α2-adrenoreceptor agonist activity of thieno[3,2-b]pyran derivatives, see: Chao et al. (2009); Friary et al. (1991). For the biological and pharmacological properties of indole derivatives, see: Sundberg (1996).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku/MSC, 2009); cell refinement: CrystalClear-SM Expert (Rigaku/MSC, 2009); data reduction: CrystalClear-SM Expert (Rigaku/MSC, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing diagram of the title compound. Intermolecular hydrogen bonds are shown as dashed lines.
5'-Amino-2-oxo-2',3'-dihydrospiro[indoline-3,7'-thieno[3,2-b]pyran]-6'- carbonitrile 1',1'-dioxide top
Crystal data top
C15H11N3O4SF(000) = 1360
Mr = 329.33Dx = 1.546 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -C 2ycCell parameters from 6345 reflections
a = 30.669 (4) Åθ = 1.4–33.4°
b = 8.1760 (14) ŵ = 0.25 mm1
c = 12.229 (2) ÅT = 113 K
β = 112.611 (8)°Prism, colourless
V = 2830.7 (8) Å30.25 × 0.22 × 0.20 mm
Z = 8
Data collection top
Rigaku Saturn724 CCD
diffractometer
4149 independent reflections
Radiation source: rotating anode3670 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.037
Detector resolution: 14.222 pixels mm-1θmax = 30.1°, θmin = 1.4°
ω scansh = 4243
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
k = 1111
Tmin = 0.939, Tmax = 0.951l = 1717
19659 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.5864P]
where P = (Fo2 + 2Fc2)/3
4149 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H11N3O4SV = 2830.7 (8) Å3
Mr = 329.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.669 (4) ŵ = 0.25 mm1
b = 8.1760 (14) ÅT = 113 K
c = 12.229 (2) Å0.25 × 0.22 × 0.20 mm
β = 112.611 (8)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
4149 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
3670 reflections with I > 2σ(I)
Tmin = 0.939, Tmax = 0.951Rint = 0.037
19659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.44 e Å3
4149 reflectionsΔρmin = 0.27 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.147537 (9)0.29057 (3)0.24536 (2)0.01647 (9)
O10.02172 (3)0.46422 (10)0.16158 (7)0.01616 (16)
O20.16145 (3)0.24351 (12)0.15034 (8)0.0273 (2)
O30.18485 (3)0.33938 (10)0.35503 (7)0.01955 (17)
O40.10067 (3)0.52484 (10)0.05002 (7)0.02012 (18)
N10.02109 (3)0.68754 (13)0.09053 (9)0.0183 (2)
N20.16403 (3)0.67827 (13)0.06897 (9)0.0202 (2)
N30.05132 (3)0.96181 (13)0.00106 (9)0.0214 (2)
C10.02156 (4)0.62030 (13)0.12026 (9)0.0145 (2)
C20.06085 (4)0.68905 (13)0.11213 (9)0.0145 (2)
C30.10896 (3)0.60632 (13)0.15197 (9)0.0142 (2)
C40.10317 (4)0.43896 (13)0.19455 (9)0.0143 (2)
C50.06325 (4)0.37984 (13)0.19645 (9)0.0145 (2)
C60.06143 (4)0.21074 (13)0.23920 (10)0.0180 (2)
H6A0.03820.14420.17570.022*
H6B0.05200.21250.30810.022*
C70.11110 (4)0.13877 (14)0.27463 (11)0.0209 (2)
H7A0.11000.03860.22820.025*
H7B0.12410.10980.35980.025*
C80.05546 (4)0.84058 (13)0.05249 (9)0.0159 (2)
C90.12351 (4)0.59395 (14)0.04311 (9)0.0164 (2)
C100.18025 (4)0.74686 (15)0.18382 (10)0.0191 (2)
C110.14933 (4)0.70594 (13)0.23842 (10)0.0160 (2)
C120.15829 (4)0.75477 (14)0.35300 (10)0.0192 (2)
H120.13770.72530.39110.023*
C130.19871 (4)0.84902 (15)0.41138 (11)0.0246 (3)
H130.20570.88430.49030.029*
C140.22859 (4)0.89130 (17)0.35519 (12)0.0290 (3)
H140.25560.95640.39640.035*
C150.22021 (4)0.84121 (17)0.24027 (12)0.0278 (3)
H150.24090.87020.20220.033*
H10.0266 (6)0.792 (2)0.0714 (15)0.032 (4)*
H20.0445 (6)0.623 (2)0.0855 (14)0.030 (4)*
H30.1762 (6)0.6867 (19)0.0186 (15)0.030 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01688 (14)0.01640 (14)0.01632 (15)0.00426 (9)0.00659 (11)0.00220 (9)
O10.0148 (3)0.0163 (4)0.0191 (4)0.0019 (3)0.0083 (3)0.0031 (3)
O20.0321 (5)0.0310 (5)0.0228 (4)0.0128 (4)0.0148 (4)0.0019 (4)
O30.0151 (3)0.0225 (4)0.0195 (4)0.0017 (3)0.0049 (3)0.0025 (3)
O40.0215 (4)0.0236 (4)0.0169 (4)0.0021 (3)0.0092 (3)0.0017 (3)
N10.0147 (4)0.0185 (5)0.0227 (5)0.0022 (4)0.0083 (4)0.0021 (4)
N20.0168 (4)0.0264 (5)0.0208 (5)0.0008 (4)0.0110 (4)0.0044 (4)
N30.0212 (5)0.0191 (5)0.0243 (5)0.0030 (4)0.0092 (4)0.0034 (4)
C10.0163 (4)0.0159 (5)0.0120 (5)0.0013 (4)0.0061 (4)0.0001 (4)
C20.0143 (5)0.0152 (5)0.0143 (5)0.0024 (4)0.0058 (4)0.0012 (4)
C30.0128 (4)0.0152 (5)0.0151 (5)0.0018 (4)0.0057 (4)0.0019 (4)
C40.0155 (5)0.0148 (5)0.0128 (5)0.0022 (4)0.0055 (4)0.0021 (4)
C50.0163 (5)0.0150 (5)0.0125 (5)0.0019 (4)0.0057 (4)0.0005 (4)
C60.0206 (5)0.0158 (5)0.0185 (5)0.0005 (4)0.0085 (4)0.0019 (4)
C70.0206 (5)0.0150 (5)0.0228 (6)0.0002 (4)0.0036 (4)0.0034 (4)
C80.0137 (4)0.0177 (5)0.0165 (5)0.0019 (4)0.0060 (4)0.0012 (4)
C90.0167 (5)0.0173 (5)0.0171 (5)0.0049 (4)0.0088 (4)0.0054 (4)
C100.0152 (5)0.0200 (5)0.0215 (6)0.0022 (4)0.0064 (4)0.0050 (4)
C110.0131 (5)0.0144 (5)0.0186 (5)0.0014 (3)0.0040 (4)0.0033 (4)
C120.0192 (5)0.0163 (5)0.0195 (5)0.0017 (4)0.0047 (4)0.0023 (4)
C130.0216 (5)0.0206 (6)0.0231 (6)0.0000 (4)0.0008 (5)0.0007 (4)
C140.0179 (5)0.0263 (6)0.0339 (7)0.0048 (5)0.0001 (5)0.0032 (5)
C150.0157 (5)0.0304 (7)0.0344 (7)0.0034 (5)0.0065 (5)0.0075 (5)
Geometric parameters (Å, º) top
S1—O21.4359 (9)C3—C91.5617 (15)
S1—O31.4448 (9)C4—C51.3248 (14)
S1—C41.7491 (11)C5—C61.4867 (15)
S1—C71.7957 (12)C6—C71.5319 (16)
O1—C51.3648 (12)C6—H6A0.99
O1—C11.3719 (13)C6—H6B0.99
O4—C91.2221 (14)C7—H7A0.99
N1—C11.3340 (14)C7—H7B0.99
N1—H10.887 (17)C10—C151.3869 (16)
N1—H20.877 (17)C10—C111.3942 (16)
N2—C91.3480 (15)C11—C121.3792 (16)
N2—C101.4133 (16)C12—C131.3998 (16)
N2—H30.838 (18)C12—H120.95
N3—C81.1543 (15)C13—C141.3842 (19)
C1—C21.3673 (15)C13—H130.95
C2—C81.4148 (15)C14—C151.390 (2)
C2—C31.5228 (14)C14—H140.95
C3—C41.4987 (14)C15—H150.95
C3—C111.5190 (15)
O2—S1—O3116.71 (6)C7—C6—H6A110.4
O2—S1—C4109.33 (5)C5—C6—H6B110.4
O3—S1—C4111.62 (5)C7—C6—H6B110.4
O2—S1—C7112.17 (6)H6A—C6—H6B108.6
O3—S1—C7109.72 (5)C6—C7—S1107.79 (8)
C4—S1—C795.25 (5)C6—C7—H7A110.1
C5—O1—C1117.12 (8)S1—C7—H7A110.1
C1—N1—H1122.4 (11)C6—C7—H7B110.1
C1—N1—H2117.5 (11)S1—C7—H7B110.1
H1—N1—H2119.9 (15)H7A—C7—H7B108.5
C9—N2—C10112.12 (10)N3—C8—C2177.90 (12)
C9—N2—H3120.1 (11)O4—C9—N2126.97 (10)
C10—N2—H3127.8 (11)O4—C9—C3125.10 (10)
N1—C1—C2127.58 (10)N2—C9—C3107.86 (9)
N1—C1—O1110.36 (9)C15—C10—C11121.93 (12)
C2—C1—O1122.06 (9)C15—C10—N2128.42 (11)
C1—C2—C8117.77 (9)C11—C10—N2109.66 (10)
C1—C2—C3124.51 (10)C12—C11—C10120.70 (10)
C8—C2—C3117.44 (9)C12—C11—C3130.77 (10)
C4—C3—C11114.92 (9)C10—C11—C3108.54 (10)
C4—C3—C2106.69 (8)C11—C12—C13117.97 (11)
C11—C3—C2114.50 (9)C11—C12—H12121.0
C4—C3—C9110.35 (9)C13—C12—H12121.0
C11—C3—C9101.79 (8)C14—C13—C12120.66 (12)
C2—C3—C9108.38 (8)C14—C13—H13119.7
C5—C4—C3124.95 (9)C12—C13—H13119.7
C5—C4—S1109.79 (8)C13—C14—C15121.88 (12)
C3—C4—S1125.24 (8)C13—C14—H14119.1
C4—C5—O1124.61 (10)C15—C14—H14119.1
C4—C5—C6120.35 (10)C10—C15—C14116.85 (12)
O1—C5—C6115.04 (9)C10—C15—H15121.6
C5—C6—C7106.80 (9)C14—C15—H15121.6
C5—C6—H6A110.4
C5—O1—C1—N1179.52 (9)C5—C6—C7—S11.03 (11)
C5—O1—C1—C20.99 (15)O2—S1—C7—C6112.07 (8)
N1—C1—C2—C88.53 (18)O3—S1—C7—C6116.50 (8)
O1—C1—C2—C8170.86 (9)C4—S1—C7—C61.28 (9)
N1—C1—C2—C3177.78 (10)C10—N2—C9—O4178.17 (11)
O1—C1—C2—C32.82 (17)C10—N2—C9—C30.86 (12)
C1—C2—C3—C42.39 (14)C4—C3—C9—O458.53 (13)
C8—C2—C3—C4171.31 (9)C11—C3—C9—O4179.02 (10)
C1—C2—C3—C11125.94 (11)C2—C3—C9—O457.96 (14)
C8—C2—C3—C1160.36 (13)C4—C3—C9—N2124.10 (10)
C1—C2—C3—C9121.23 (11)C11—C3—C9—N21.65 (11)
C8—C2—C3—C952.48 (12)C2—C3—C9—N2119.41 (10)
C11—C3—C4—C5127.60 (11)C9—N2—C10—C15179.69 (12)
C2—C3—C4—C50.48 (15)C9—N2—C10—C110.40 (13)
C9—C3—C4—C5118.03 (11)C15—C10—C11—C121.83 (17)
C11—C3—C4—S154.22 (13)N2—C10—C11—C12178.09 (10)
C2—C3—C4—S1177.70 (7)C15—C10—C11—C3178.57 (11)
C9—C3—C4—S160.16 (12)N2—C10—C11—C31.51 (12)
O2—S1—C4—C5114.52 (9)C4—C3—C11—C1258.40 (15)
O3—S1—C4—C5114.83 (8)C2—C3—C11—C1265.64 (15)
C7—S1—C4—C51.19 (9)C9—C3—C11—C12177.67 (11)
O2—S1—C4—C363.89 (11)C4—C3—C11—C10121.14 (10)
O3—S1—C4—C366.76 (10)C2—C3—C11—C10114.81 (10)
C7—S1—C4—C3179.61 (10)C9—C3—C11—C101.88 (11)
C3—C4—C5—O11.14 (18)C10—C11—C12—C131.27 (16)
S1—C4—C5—O1179.56 (8)C3—C11—C12—C13179.23 (11)
C3—C4—C5—C6179.18 (10)C11—C12—C13—C140.03 (17)
S1—C4—C5—C60.76 (13)C12—C13—C14—C150.73 (19)
C1—O1—C5—C40.96 (15)C11—C10—C15—C141.04 (18)
C1—O1—C5—C6179.33 (9)N2—C10—C15—C14178.86 (12)
C4—C5—C6—C70.21 (14)C13—C14—C15—C100.22 (19)
O1—C5—C6—C7179.51 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.89 (2)2.21 (2)3.0878 (15)170 (2)
N1—H2···O4ii0.88 (2)2.01 (2)2.8790 (14)172 (1)
N2—H3···O3iii0.84 (2)2.13 (2)2.9255 (14)159 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC15H11N3O4S
Mr329.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)30.669 (4), 8.1760 (14), 12.229 (2)
β (°) 112.611 (8)
V3)2830.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku Saturn724 CCD
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku/MSC, 2009)
Tmin, Tmax0.939, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
19659, 4149, 3670
Rint0.037
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.08
No. of reflections4149
No. of parameters220
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.27

Computer programs: CrystalClear-SM Expert (Rigaku/MSC, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N3i0.89 (2)2.21 (2)3.0878 (15)170 (2)
N1—H2···O4ii0.88 (2)2.01 (2)2.8790 (14)172 (1)
N2—H3···O3iii0.84 (2)2.13 (2)2.9255 (14)159 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y+1, z; (iii) x, y+1, z1/2.
 

Acknowledgements

The authors are grateful for financial support from the Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions (No. 09 KJ A430003), the Natural Science Foundation of Xuzhou City (No. XM09B016), the Graduate Foundation of Xuzhou Normal University (No. 2010YLB029) and the Qing Lan Project (No. 08QLT001).

References

First citationChao, J. H., Zheng, J. Y. & Aslanian, R. G. (2009). WO Patent No. 2009020578.  Google Scholar
First citationFriary, R. J., Schwerdt, J. H. & Ganguly, A. K. (1991). US Patent No. 5034531.  Google Scholar
First citationRigaku/MSC (2009). CrystalClear-SM Expert. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundberg, R. J. (1996). The Chemistry of Indoles. New York: Academic Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds