organic compounds
(Z)-1-Acetyl-3-[2-oxo-1-phenyl-2-(3-pyridyl)ethylidene]indolin-2-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my
The title compound, C23H16N2O3, exists in a Z configuration with respect to the acyclic C=C bond. The pyridine and phenyl rings are oriented at dihedral angles of 72.97 (4) and 45.05 (4)°, respectively, with respect to the almost planar indoline ring system [maximum deviation 0.080 (1) Å]. The pyridine and phenyl rings are oriented almost perpendicular to each other [dihedral angle 88.93 (5)°]. In the crystal, molecules are interconnected into a three-dimensional framework via intermolecular C—H⋯O and C—H⋯N hydrogen bonds and weak π–π interactions [centroid–centroid distance = 3.681 (1) Å].
Related literature
For general background and applications of indoline compounds, see: Aanandhi et al. (2008); Lawrence et al. (2008); Muthukumar et al. (2008); Wang et al. (2005); Xue et al. (2000); Yu et al. (2010); Zhang & Panek (2009); Zhang et al. (2004a,b). For related indoline structures, see: Fun et al. (2010a,b); Usman et al. (2001,2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810030874/ci5150sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030874/ci5150Isup2.hkl
The title compound was obtained in the reaction between N-acetylisatin and 3-pyridinyl phenyl acetylene under photo-irradiation with light of wavelength > 400 nm. The compound was purified by flash
with ethyl acetate-petroleum ether (1:5) as eluents. X-ray quality single crystals of (I) were obtained by slow evaporation of a acetone-petroleum ether (1:2) solution (m.p. 568–571 K).H atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl group.
Indole derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring
(Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). The C3 carbonyl group is the common reactive group in isatin (1H-indole-2,3-dione) for further derivation in either thermal reactions or photoreactions (Zhang et al., 2004b; 2009). Photoreactions of N-acetylisatin and or have provided a facile way to build various heterocyclic frameworks containing indole moieties (Wang et al., 2005; Zhang et al., 2004a; Xue et al., 2000). Azaaryl substituted have been used to react with carbonyl groups which may lead to formation of various heterocyclic polycycles (Yu et al., 2010). In view of the importance of the title compound, (I), as a typical quinone methide product in photoreaction between carbonyl and this paper reports its crystal structure.The title molecule exists in a cis configuration with respect to the acyclic C8═C9 bond [C8═C9 = 1.3510 (14) Å]. The indoline ring system (C1-C8/N1) is essentially planar, with a maximum deviation of 0.080 (1) Å at atom C7. The phenyl ring (C16-C21) and pyridine ring (C11-C15/N2) are almost perpendicular to each other, as indicated by the interplanar angle of 88.93 (5)° between them. These two rings form dihedral angles of 72.97 (4) and 45.05 (4)° with the indoline ring system, respectively. The bond lengths and angles are consistent to those observed in closely related indole structures (Fun et al., 2010a,b; Usman et al., 2001,2002).
In the crystal packing, intermolecular C12—H12A···O3, C14—H14A···O2 and C20—H20A···N2 hydrogen bonds (Table 1) interconnect adjacent molecules into a three-dimensional framework (Fig. 2). Weak intermolecular π-π interactions involving the pyrrolidine (C1/C6-C8/N1, centroid Cg1) and phenyl (C1-C6, centroid Cg2) rings [Cg1···Cg2* = 3.6812 (11) Å; symmetry code: (*) 2-x, 2-y, -z] further stabilize the crystal packing.
For general background and applications of indoline compounds, see: Aanandhi et al. (2008); Lawrence et al. (2008); Muthukumar et al. (2008); Wang et al. (2005); Xue et al. (2000); Yu et al. (2010); Zhang & Panek (2009); Zhang et al. (2004a,b). For related indoline structures, see: Fun et al. (2010a,b); Usman et al. (2001,2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C23H16N2O3 | Z = 2 |
Mr = 368.38 | F(000) = 384 |
Triclinic, P1 | Dx = 1.410 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.9259 (19) Å | Cell parameters from 7658 reflections |
b = 9.086 (2) Å | θ = 2.3–32.1° |
c = 12.431 (3) Å | µ = 0.10 mm−1 |
α = 84.804 (7)° | T = 100 K |
β = 87.064 (7)° | Block, yellow |
γ = 76.843 (6)° | 0.23 × 0.19 × 0.16 mm |
V = 867.7 (4) Å3 |
Bruker APEXII DUO CCD area-detector diffractometer | 5017 independent reflections |
Radiation source: fine-focus sealed tube | 4237 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
φ and ω scans | θmax = 30.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −11→11 |
Tmin = 0.978, Tmax = 0.985 | k = −12→12 |
19600 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0637P)2 + 0.2808P] where P = (Fo2 + 2Fc2)/3 |
5017 reflections | (Δ/σ)max < 0.001 |
254 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C23H16N2O3 | γ = 76.843 (6)° |
Mr = 368.38 | V = 867.7 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.9259 (19) Å | Mo Kα radiation |
b = 9.086 (2) Å | µ = 0.10 mm−1 |
c = 12.431 (3) Å | T = 100 K |
α = 84.804 (7)° | 0.23 × 0.19 × 0.16 mm |
β = 87.064 (7)° |
Bruker APEXII DUO CCD area-detector diffractometer | 5017 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4237 reflections with I > 2σ(I) |
Tmin = 0.978, Tmax = 0.985 | Rint = 0.028 |
19600 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.116 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.44 e Å−3 |
5017 reflections | Δρmin = −0.20 e Å−3 |
254 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.74656 (11) | 0.64928 (9) | 0.08150 (6) | 0.01988 (17) | |
O2 | 0.94194 (10) | 0.51863 (9) | 0.29214 (7) | 0.01842 (17) | |
O3 | 0.61891 (12) | 0.98853 (10) | −0.16758 (7) | 0.02319 (19) | |
N1 | 0.72823 (12) | 0.89175 (10) | −0.00538 (7) | 0.01472 (18) | |
N2 | 0.48355 (13) | 0.38455 (11) | 0.38814 (8) | 0.0208 (2) | |
C1 | 0.80969 (13) | 1.00838 (12) | 0.13505 (8) | 0.01429 (19) | |
C2 | 0.86200 (14) | 1.12405 (12) | 0.18121 (9) | 0.0175 (2) | |
H2A | 0.8958 | 1.1110 | 0.2526 | 0.021* | |
C3 | 0.86325 (15) | 1.25906 (13) | 0.11949 (10) | 0.0200 (2) | |
H3A | 0.8961 | 1.3375 | 0.1501 | 0.024* | |
C4 | 0.81564 (16) | 1.27772 (13) | 0.01211 (10) | 0.0220 (2) | |
H4A | 0.8160 | 1.3692 | −0.0279 | 0.026* | |
C5 | 0.76744 (15) | 1.16211 (13) | −0.03661 (9) | 0.0199 (2) | |
H5A | 0.7379 | 1.1742 | −0.1088 | 0.024* | |
C6 | 0.76495 (13) | 1.02835 (12) | 0.02614 (8) | 0.0149 (2) | |
C7 | 0.75826 (13) | 0.77964 (12) | 0.08245 (8) | 0.01466 (19) | |
C8 | 0.79925 (13) | 0.85485 (11) | 0.17647 (8) | 0.01383 (19) | |
C9 | 0.80773 (13) | 0.78123 (11) | 0.27615 (8) | 0.01317 (19) | |
C10 | 0.80593 (13) | 0.61403 (11) | 0.29125 (8) | 0.01361 (19) | |
C11 | 0.63598 (13) | 0.57473 (11) | 0.31789 (8) | 0.01344 (19) | |
C12 | 0.47958 (14) | 0.67902 (12) | 0.29924 (9) | 0.0165 (2) | |
H12A | 0.4784 | 0.7776 | 0.2711 | 0.020* | |
C13 | 0.32642 (14) | 0.63324 (13) | 0.32333 (9) | 0.0187 (2) | |
H13A | 0.2201 | 0.6996 | 0.3104 | 0.022* | |
C14 | 0.33486 (14) | 0.48613 (13) | 0.36719 (9) | 0.0192 (2) | |
H14A | 0.2312 | 0.4559 | 0.3831 | 0.023* | |
C15 | 0.63067 (14) | 0.42976 (12) | 0.36275 (9) | 0.0170 (2) | |
H15A | 0.7352 | 0.3606 | 0.3757 | 0.020* | |
C16 | 0.80906 (13) | 0.84819 (11) | 0.38002 (8) | 0.01300 (19) | |
C17 | 0.90394 (13) | 0.76491 (12) | 0.46632 (8) | 0.0148 (2) | |
H17A | 0.9728 | 0.6691 | 0.4568 | 0.018* | |
C18 | 0.89565 (14) | 0.82461 (12) | 0.56573 (9) | 0.0164 (2) | |
H18A | 0.9591 | 0.7688 | 0.6226 | 0.020* | |
C19 | 0.79292 (14) | 0.96743 (12) | 0.58082 (9) | 0.0173 (2) | |
H19A | 0.7894 | 1.0079 | 0.6472 | 0.021* | |
C20 | 0.69532 (14) | 1.04977 (12) | 0.49644 (9) | 0.0169 (2) | |
H20A | 0.6253 | 1.1448 | 0.5068 | 0.020* | |
C21 | 0.70218 (13) | 0.99052 (12) | 0.39705 (9) | 0.0150 (2) | |
H21A | 0.6355 | 1.0455 | 0.3412 | 0.018* | |
C22 | 0.66296 (14) | 0.87655 (13) | −0.10556 (9) | 0.0168 (2) | |
C23 | 0.65025 (17) | 0.72265 (14) | −0.13229 (10) | 0.0238 (2) | |
H23D | 0.6085 | 0.7288 | −0.2041 | 0.036* | |
H23A | 0.5715 | 0.6849 | −0.0817 | 0.036* | |
H23B | 0.7626 | 0.6552 | −0.1283 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0294 (4) | 0.0142 (4) | 0.0177 (4) | −0.0079 (3) | −0.0024 (3) | −0.0016 (3) |
O2 | 0.0157 (3) | 0.0153 (4) | 0.0234 (4) | −0.0011 (3) | −0.0024 (3) | −0.0019 (3) |
O3 | 0.0304 (4) | 0.0212 (4) | 0.0168 (4) | −0.0038 (3) | −0.0049 (3) | 0.0021 (3) |
N1 | 0.0193 (4) | 0.0125 (4) | 0.0125 (4) | −0.0037 (3) | −0.0008 (3) | −0.0007 (3) |
N2 | 0.0205 (5) | 0.0161 (4) | 0.0260 (5) | −0.0057 (4) | −0.0015 (4) | 0.0014 (4) |
C1 | 0.0149 (4) | 0.0134 (4) | 0.0147 (5) | −0.0037 (4) | 0.0014 (3) | −0.0010 (3) |
C2 | 0.0196 (5) | 0.0168 (5) | 0.0175 (5) | −0.0067 (4) | 0.0016 (4) | −0.0029 (4) |
C3 | 0.0230 (5) | 0.0148 (5) | 0.0239 (6) | −0.0076 (4) | 0.0035 (4) | −0.0038 (4) |
C4 | 0.0262 (6) | 0.0145 (5) | 0.0250 (6) | −0.0062 (4) | 0.0030 (4) | 0.0016 (4) |
C5 | 0.0248 (5) | 0.0167 (5) | 0.0176 (5) | −0.0048 (4) | 0.0002 (4) | 0.0017 (4) |
C6 | 0.0166 (4) | 0.0132 (4) | 0.0147 (5) | −0.0035 (4) | 0.0015 (3) | −0.0017 (4) |
C7 | 0.0167 (4) | 0.0141 (4) | 0.0130 (4) | −0.0033 (4) | −0.0004 (3) | −0.0008 (4) |
C8 | 0.0150 (4) | 0.0129 (4) | 0.0141 (5) | −0.0038 (3) | −0.0006 (3) | −0.0017 (3) |
C9 | 0.0121 (4) | 0.0126 (4) | 0.0151 (5) | −0.0032 (3) | −0.0010 (3) | −0.0015 (3) |
C10 | 0.0157 (4) | 0.0128 (4) | 0.0122 (4) | −0.0028 (4) | −0.0022 (3) | −0.0006 (3) |
C11 | 0.0149 (4) | 0.0126 (4) | 0.0131 (4) | −0.0035 (4) | −0.0015 (3) | −0.0009 (3) |
C12 | 0.0168 (5) | 0.0135 (4) | 0.0182 (5) | −0.0022 (4) | −0.0006 (4) | 0.0017 (4) |
C13 | 0.0142 (4) | 0.0191 (5) | 0.0213 (5) | −0.0015 (4) | −0.0010 (4) | 0.0013 (4) |
C14 | 0.0177 (5) | 0.0207 (5) | 0.0204 (5) | −0.0074 (4) | −0.0001 (4) | −0.0010 (4) |
C15 | 0.0159 (5) | 0.0129 (4) | 0.0213 (5) | −0.0020 (4) | −0.0024 (4) | 0.0007 (4) |
C16 | 0.0136 (4) | 0.0130 (4) | 0.0130 (4) | −0.0048 (3) | −0.0002 (3) | −0.0004 (3) |
C17 | 0.0154 (4) | 0.0135 (4) | 0.0154 (5) | −0.0031 (4) | −0.0007 (4) | −0.0003 (4) |
C18 | 0.0181 (5) | 0.0175 (5) | 0.0138 (5) | −0.0047 (4) | −0.0028 (4) | 0.0009 (4) |
C19 | 0.0213 (5) | 0.0176 (5) | 0.0139 (5) | −0.0059 (4) | 0.0013 (4) | −0.0028 (4) |
C20 | 0.0194 (5) | 0.0138 (4) | 0.0169 (5) | −0.0026 (4) | 0.0025 (4) | −0.0024 (4) |
C21 | 0.0159 (4) | 0.0139 (4) | 0.0145 (5) | −0.0030 (4) | −0.0004 (3) | 0.0006 (4) |
C22 | 0.0169 (5) | 0.0194 (5) | 0.0136 (5) | −0.0023 (4) | 0.0002 (4) | −0.0030 (4) |
C23 | 0.0328 (6) | 0.0205 (5) | 0.0189 (5) | −0.0051 (5) | −0.0066 (4) | −0.0047 (4) |
O1—C7 | 1.2100 (13) | C11—C15 | 1.3919 (15) |
O2—C10 | 1.2196 (13) | C11—C12 | 1.3940 (14) |
O3—C22 | 1.2146 (14) | C12—C13 | 1.3807 (15) |
N1—C22 | 1.4027 (14) | C12—H12A | 0.93 |
N1—C7 | 1.4146 (13) | C13—C14 | 1.3854 (16) |
N1—C6 | 1.4293 (14) | C13—H13A | 0.93 |
N2—C15 | 1.3360 (15) | C14—H14A | 0.93 |
N2—C14 | 1.3421 (15) | C15—H15A | 0.93 |
C1—C2 | 1.3920 (15) | C16—C17 | 1.4020 (14) |
C1—C6 | 1.4025 (15) | C16—C21 | 1.4026 (14) |
C1—C8 | 1.4614 (14) | C17—C18 | 1.3866 (15) |
C2—C3 | 1.3884 (16) | C17—H17A | 0.93 |
C2—H2A | 0.93 | C18—C19 | 1.3890 (15) |
C3—C4 | 1.3909 (17) | C18—H18A | 0.93 |
C3—H3A | 0.93 | C19—C20 | 1.3914 (15) |
C4—C5 | 1.3920 (17) | C19—H19A | 0.93 |
C4—H4A | 0.93 | C20—C21 | 1.3855 (15) |
C5—C6 | 1.3868 (15) | C20—H20A | 0.93 |
C5—H5A | 0.93 | C21—H21A | 0.93 |
C7—C8 | 1.4911 (14) | C22—C23 | 1.4925 (16) |
C8—C9 | 1.3510 (14) | C23—H23D | 0.96 |
C9—C16 | 1.4779 (14) | C23—H23A | 0.96 |
C9—C10 | 1.5169 (15) | C23—H23B | 0.96 |
C10—C11 | 1.4844 (15) | ||
C22—N1—C7 | 126.23 (9) | C13—C12—H12A | 120.6 |
C22—N1—C6 | 124.62 (9) | C11—C12—H12A | 120.6 |
C7—N1—C6 | 109.05 (8) | C12—C13—C14 | 118.45 (10) |
C15—N2—C14 | 116.88 (10) | C12—C13—H13A | 120.8 |
C2—C1—C6 | 119.44 (10) | C14—C13—H13A | 120.8 |
C2—C1—C8 | 132.38 (10) | N2—C14—C13 | 123.95 (10) |
C6—C1—C8 | 108.08 (9) | N2—C14—H14A | 118.0 |
C3—C2—C1 | 119.30 (10) | C13—C14—H14A | 118.0 |
C3—C2—H2A | 120.3 | N2—C15—C11 | 123.54 (10) |
C1—C2—H2A | 120.3 | N2—C15—H15A | 118.2 |
C2—C3—C4 | 120.41 (10) | C11—C15—H15A | 118.2 |
C2—C3—H3A | 119.8 | C17—C16—C21 | 118.84 (10) |
C4—C3—H3A | 119.8 | C17—C16—C9 | 120.64 (9) |
C3—C4—C5 | 121.29 (10) | C21—C16—C9 | 120.24 (9) |
C3—C4—H4A | 119.4 | C18—C17—C16 | 120.34 (10) |
C5—C4—H4A | 119.4 | C18—C17—H17A | 119.8 |
C6—C5—C4 | 117.78 (11) | C16—C17—H17A | 119.8 |
C6—C5—H5A | 121.1 | C17—C18—C19 | 120.29 (10) |
C4—C5—H5A | 121.1 | C17—C18—H18A | 119.9 |
C5—C6—C1 | 121.74 (10) | C19—C18—H18A | 119.9 |
C5—C6—N1 | 128.68 (10) | C18—C19—C20 | 119.87 (10) |
C1—C6—N1 | 109.51 (9) | C18—C19—H19A | 120.1 |
O1—C7—N1 | 126.06 (10) | C20—C19—H19A | 120.1 |
O1—C7—C8 | 127.05 (10) | C21—C20—C19 | 120.17 (10) |
N1—C7—C8 | 106.84 (9) | C21—C20—H20A | 119.9 |
C9—C8—C1 | 133.76 (10) | C19—C20—H20A | 119.9 |
C9—C8—C7 | 119.91 (10) | C20—C21—C16 | 120.45 (10) |
C1—C8—C7 | 106.16 (9) | C20—C21—H21A | 119.8 |
C8—C9—C16 | 126.82 (10) | C16—C21—H21A | 119.8 |
C8—C9—C10 | 120.64 (9) | O3—C22—N1 | 119.12 (10) |
C16—C9—C10 | 112.44 (9) | O3—C22—C23 | 122.22 (10) |
O2—C10—C11 | 122.38 (10) | N1—C22—C23 | 118.65 (10) |
O2—C10—C9 | 120.09 (9) | C22—C23—H23D | 109.5 |
C11—C10—C9 | 117.10 (9) | C22—C23—H23A | 109.5 |
C15—C11—C12 | 118.37 (10) | H23D—C23—H23A | 109.5 |
C15—C11—C10 | 119.66 (9) | C22—C23—H23B | 109.5 |
C12—C11—C10 | 121.97 (9) | H23D—C23—H23B | 109.5 |
C13—C12—C11 | 118.78 (10) | H23A—C23—H23B | 109.5 |
C6—C1—C2—C3 | 2.16 (16) | C16—C9—C10—O2 | −91.54 (12) |
C8—C1—C2—C3 | 177.86 (11) | C8—C9—C10—C11 | −95.54 (12) |
C1—C2—C3—C4 | −1.10 (17) | C16—C9—C10—C11 | 81.14 (11) |
C2—C3—C4—C5 | −0.66 (18) | O2—C10—C11—C15 | 10.99 (16) |
C3—C4—C5—C6 | 1.30 (17) | C9—C10—C11—C15 | −161.52 (10) |
C4—C5—C6—C1 | −0.20 (17) | O2—C10—C11—C12 | −168.92 (10) |
C4—C5—C6—N1 | −176.92 (10) | C9—C10—C11—C12 | 18.58 (15) |
C2—C1—C6—C5 | −1.54 (16) | C15—C11—C12—C13 | −1.65 (16) |
C8—C1—C6—C5 | −178.19 (10) | C10—C11—C12—C13 | 178.26 (10) |
C2—C1—C6—N1 | 175.75 (9) | C11—C12—C13—C14 | 1.31 (16) |
C8—C1—C6—N1 | −0.91 (12) | C15—N2—C14—C13 | −1.21 (18) |
C22—N1—C6—C5 | −9.52 (17) | C12—C13—C14—N2 | 0.14 (18) |
C7—N1—C6—C5 | 173.99 (11) | C14—N2—C15—C11 | 0.83 (17) |
C22—N1—C6—C1 | 173.44 (9) | C12—C11—C15—N2 | 0.58 (17) |
C7—N1—C6—C1 | −3.05 (12) | C10—C11—C15—N2 | −179.33 (10) |
C22—N1—C7—O1 | 6.86 (17) | C8—C9—C16—C17 | −146.10 (11) |
C6—N1—C7—O1 | −176.72 (10) | C10—C9—C16—C17 | 37.46 (13) |
C22—N1—C7—C8 | −170.80 (9) | C8—C9—C16—C21 | 40.03 (15) |
C6—N1—C7—C8 | 5.61 (11) | C10—C9—C16—C21 | −136.40 (10) |
C2—C1—C8—C9 | 13.1 (2) | C21—C16—C17—C18 | −1.83 (15) |
C6—C1—C8—C9 | −170.79 (11) | C9—C16—C17—C18 | −175.78 (9) |
C2—C1—C8—C7 | −171.80 (11) | C16—C17—C18—C19 | 0.13 (16) |
C6—C1—C8—C7 | 4.26 (11) | C17—C18—C19—C20 | 1.24 (16) |
O1—C7—C8—C9 | −7.79 (17) | C18—C19—C20—C21 | −0.87 (17) |
N1—C7—C8—C9 | 169.84 (9) | C19—C20—C21—C16 | −0.86 (16) |
O1—C7—C8—C1 | 176.33 (11) | C17—C16—C21—C20 | 2.19 (15) |
N1—C7—C8—C1 | −6.04 (11) | C9—C16—C21—C20 | 176.17 (10) |
C1—C8—C9—C16 | 8.63 (19) | C7—N1—C22—O3 | 168.91 (10) |
C7—C8—C9—C16 | −165.88 (9) | C6—N1—C22—O3 | −6.97 (16) |
C1—C8—C9—C10 | −175.20 (10) | C7—N1—C22—C23 | −11.15 (16) |
C7—C8—C9—C10 | 10.28 (15) | C6—N1—C22—C23 | 172.96 (10) |
C8—C9—C10—O2 | 91.78 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···O3i | 0.93 | 2.37 | 3.2518 (16) | 158 |
C14—H14A···O2ii | 0.93 | 2.53 | 3.2381 (16) | 133 |
C20—H20A···N2iii | 0.93 | 2.58 | 3.3238 (17) | 137 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z; (iii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C23H16N2O3 |
Mr | 368.38 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.9259 (19), 9.086 (2), 12.431 (3) |
α, β, γ (°) | 84.804 (7), 87.064 (7), 76.843 (6) |
V (Å3) | 867.7 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.23 × 0.19 × 0.16 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.978, 0.985 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19600, 5017, 4237 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.116, 1.04 |
No. of reflections | 5017 |
No. of parameters | 254 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.20 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C12—H12A···O3i | 0.93 | 2.37 | 3.2518 (16) | 158 |
C14—H14A···O2ii | 0.93 | 2.53 | 3.2381 (16) | 133 |
C20—H20A···N2iii | 0.93 | 2.58 | 3.3238 (17) | 137 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z; (iii) x, y+1, z. |
Acknowledgements
HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China on the Austria-China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.
References
Aanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588–4594. CAS Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010a). Acta Cryst. E66, o737–o738. Web of Science CrossRef IUCr Journals Google Scholar
Fun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010b). Acta Cryst. E66, o2257–o2258. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J. & Lawrence, N. J. (2008). J. Med. Chem. 51, 4948–4956. Web of Science CrossRef PubMed CAS Google Scholar
Muthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461–1464. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070–o1072. Web of Science CSD CrossRef IUCr Journals Google Scholar
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o511–o513. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, L., Zhang, Y., Hu, H.-Y., Fun, H. K. & Xu, J.-X. (2005). J. Org. Chem. 70, 3850–3858. Web of Science CSD CrossRef PubMed CAS Google Scholar
Xue, J., Zhang, Y., Wang, X.-L., Fun, H. K. & Xu, J.-X. (2000). Org. Lett. 2, 2583–2586. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001. Web of Science CSD CrossRef CAS PubMed Google Scholar
Zhang, Y. & Panek, J. S. (2009). Org. Lett. 11, 3366–3369. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004a). Org. Lett. 6, 4893–4895. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, Y., Wang, L., Zhu, Y. & Xu, J.-H. (2004b). Eur. J. Org. Chem. pp. 527–534. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Indole derivatives have a variety of biological activities and are synthetic precursors for many naturally occuring alkaloids (Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). The C3 carbonyl group is the common reactive group in isatin (1H-indole-2,3-dione) for further derivation in either thermal reactions or photoreactions (Zhang et al., 2004b; 2009). Photoreactions of N-acetylisatin and alkenes or alkynes have provided a facile way to build various heterocyclic frameworks containing indole moieties (Wang et al., 2005; Zhang et al., 2004a; Xue et al., 2000). Azaaryl substituted acetylenes have been used to react with carbonyl groups which may lead to formation of various heterocyclic polycycles (Yu et al., 2010). In view of the importance of the title compound, (I), as a typical quinone methide product in photoreaction between carbonyl and acetylenes, this paper reports its crystal structure.
The title molecule exists in a cis configuration with respect to the acyclic C8═C9 bond [C8═C9 = 1.3510 (14) Å]. The indoline ring system (C1-C8/N1) is essentially planar, with a maximum deviation of 0.080 (1) Å at atom C7. The phenyl ring (C16-C21) and pyridine ring (C11-C15/N2) are almost perpendicular to each other, as indicated by the interplanar angle of 88.93 (5)° between them. These two rings form dihedral angles of 72.97 (4) and 45.05 (4)° with the indoline ring system, respectively. The bond lengths and angles are consistent to those observed in closely related indole structures (Fun et al., 2010a,b; Usman et al., 2001,2002).
In the crystal packing, intermolecular C12—H12A···O3, C14—H14A···O2 and C20—H20A···N2 hydrogen bonds (Table 1) interconnect adjacent molecules into a three-dimensional framework (Fig. 2). Weak intermolecular π-π interactions involving the pyrrolidine (C1/C6-C8/N1, centroid Cg1) and phenyl (C1-C6, centroid Cg2) rings [Cg1···Cg2* = 3.6812 (11) Å; symmetry code: (*) 2-x, 2-y, -z] further stabilize the crystal packing.