metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ-azido-κ4N1:N1-bis­­[(1,10-phen­anthroline-κ2N,N′)(thio­cyanato-κN)lead(II)]

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 3 August 2010; accepted 10 August 2010; online 18 August 2010)

In the centrosymmetric binuclear title compound, [Pb2(N3)2(NCS)2(C12H8N2)4], the N-donor atoms of one N-heterocycle and the N-donor atom of a thio­cyanate anion along with the sterically active lone-pair electrons comprise an approximate square; a plane through three atoms of this square is twisted slightly with respect to the square made up of the other four atoms (two from the other N-heterocycle and one each from the bridging azide anions) at a dihedral angle of 18.7 (1)°. The PbII atom is in a Ψ-square-anti­prismaic coordination.

Related literature

For related structures, see: Engelhardt et al. (1989[Engelhardt, L. M., Furphy, B. M., Harrowfield, J. M., Patrick, J. M., Skelton, B. W. & White, A. H. (1989). J. Chem. Soc. Dalton Trans. pp. 595-599.]); Zhu et al. (2008[Zhu, L. H., Zeng, M. H., Shen, X. C. & Ng, S. W. (2008). Main Group Met. Chem. 30, 103-104.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb2(N3)2(NCS)2(C12H8N2)4]

  • Mr = 1335.42

  • Triclinic, [P \overline 1]

  • a = 10.3412 (6) Å

  • b = 10.8327 (6) Å

  • c = 11.4178 (6) Å

  • α = 89.923 (1)°

  • β = 72.080 (1)°

  • γ = 65.273 (1)°

  • V = 1093.35 (10) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 7.85 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.244, Tmax = 0.386

  • 10523 measured reflections

  • 5002 independent reflections

  • 4783 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.061

  • S = 1.09

  • 5002 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 1.23 e Å−3

  • Δρmin = −1.38 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Relative to the (1,10-phenanthroline)lead(II) species, the azide counterion can function as a bridging unit through only one nitrogen atom only or through two end nitrogen atoms. In fact, an example is known in which the anion functions in both bridging modes (Zhu et al., 2008). Similarly, an example is known in which the thiocyanate anion functions in dual bridging modes (Engelhardt et al., 1989). The title compound (Scheme I) is a centrosymmetric dinuclear lead(II) compound having the azide and thiocyanate anions behaving only in one type of bonding interaction; the azide bridges through only one nitrogen atom but the thiocyanate anion is unidentate (Fig. 1). The nitrogen donor-atoms of one 1,10-phenanthroline ligand, the nitrogen donor-atom of a thiocyanate along with the sterically active lone-pair electrons comprise an approximate square (Fig. 2); the three atoms of this square is slightly twisted with respect to the square made up by the other four atoms (two from the other 1,10-phenanthroline and one each from the bridging azide anions) at a dihedral angle of 18.7 (1)°. Obviously, the tilt arises from the presence of the lone pair. The lead atom is displaced by 1.044 (3) Å with respect to the three-atom plane and is displaced in the opposite direction by 1.548 (1) Å with respect to the four atom plane. The geometry of the lead atom is better regarded as showing Ψ-square antiprismatic coordination.

Related literature top

For related structures, see: Engelhardt et al. (1989); Zhu et al. (2008).

Experimental top

Potassium thiocyanate (0.5 mmol, 0.09 g), sodium azide (0.03 g, 0.05 mmol) and 1,10-phenanthroline (2 mmol, 0.36 g) were loaded into one arm of a U-shaped glass tube. Lead(II) acetate (0.38 g, 1 mmol) and sodium nitrite (0.07 g, 1 mmol) were loaded into the other. Methanol was added to both arms. The ligand-containing arm was immersed in an oil bath at 333 K whereas the other arm was kept at ambient temperature. Crystals were collected after 10 days.

Refinement top

H atoms were placed in calculated positions (C–H = 0.95 Å) and included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 times Ueq(C). The final difference Fourier map had a peak and a hole in the vicinity of the lead atom.

Structure description top

Relative to the (1,10-phenanthroline)lead(II) species, the azide counterion can function as a bridging unit through only one nitrogen atom only or through two end nitrogen atoms. In fact, an example is known in which the anion functions in both bridging modes (Zhu et al., 2008). Similarly, an example is known in which the thiocyanate anion functions in dual bridging modes (Engelhardt et al., 1989). The title compound (Scheme I) is a centrosymmetric dinuclear lead(II) compound having the azide and thiocyanate anions behaving only in one type of bonding interaction; the azide bridges through only one nitrogen atom but the thiocyanate anion is unidentate (Fig. 1). The nitrogen donor-atoms of one 1,10-phenanthroline ligand, the nitrogen donor-atom of a thiocyanate along with the sterically active lone-pair electrons comprise an approximate square (Fig. 2); the three atoms of this square is slightly twisted with respect to the square made up by the other four atoms (two from the other 1,10-phenanthroline and one each from the bridging azide anions) at a dihedral angle of 18.7 (1)°. Obviously, the tilt arises from the presence of the lone pair. The lead atom is displaced by 1.044 (3) Å with respect to the three-atom plane and is displaced in the opposite direction by 1.548 (1) Å with respect to the four atom plane. The geometry of the lead atom is better regarded as showing Ψ-square antiprismatic coordination.

For related structures, see: Engelhardt et al. (1989); Zhu et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot (Barbour, 2001) of centrosymmetric [Pb2(N3)2(NCS)2(C12H8N2)4] at the 70% probability level. H atoms are drawn as spheres of arbitrary radius. Symmetry-related (1 - x, 1 - y, 1 - z) atoms are not labeled.
[Figure 2] Fig. 2. The square environment of the Pb atom.
Di-µ-azido-κ4N1:N1-bis[(1,10-phenanthroline- κ2N,N')(thiocyanato-κN)lead(II)] top
Crystal data top
[Pb2(N3)2(NCS)2(C12H8N2)4]Z = 1
Mr = 1335.42F(000) = 642
Triclinic, P1Dx = 2.034 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3412 (6) ÅCell parameters from 8054 reflections
b = 10.8327 (6) Åθ = 2.3–28.3°
c = 11.4178 (6) ŵ = 7.85 mm1
α = 89.923 (1)°T = 100 K
β = 72.080 (1)°Prism, colourless
γ = 65.273 (1)°0.25 × 0.15 × 0.15 mm
V = 1093.35 (10) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5002 independent reflections
Radiation source: fine-focus sealed tube4783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.244, Tmax = 0.386k = 1413
10523 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.041P)2]
where P = (Fo2 + 2Fc2)/3
5002 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 1.23 e Å3
0 restraintsΔρmin = 1.38 e Å3
Crystal data top
[Pb2(N3)2(NCS)2(C12H8N2)4]γ = 65.273 (1)°
Mr = 1335.42V = 1093.35 (10) Å3
Triclinic, P1Z = 1
a = 10.3412 (6) ÅMo Kα radiation
b = 10.8327 (6) ŵ = 7.85 mm1
c = 11.4178 (6) ÅT = 100 K
α = 89.923 (1)°0.25 × 0.15 × 0.15 mm
β = 72.080 (1)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
5002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4783 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.386Rint = 0.021
10523 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0200 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.09Δρmax = 1.23 e Å3
5002 reflectionsΔρmin = 1.38 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.451831 (12)0.668463 (11)0.618902 (10)0.00916 (5)
S10.09428 (10)0.84240 (11)0.95648 (9)0.0222 (2)
N10.3623 (3)0.8343 (3)0.4496 (3)0.0121 (6)
N20.6474 (3)0.7683 (3)0.4566 (3)0.0114 (6)
N30.4103 (3)0.4959 (3)0.7794 (3)0.0120 (6)
N40.6519 (3)0.5550 (3)0.7575 (3)0.0120 (6)
N50.6529 (3)0.4519 (3)0.4832 (3)0.0123 (6)
N60.7855 (3)0.4215 (3)0.4627 (3)0.0126 (6)
N70.9113 (4)0.3913 (3)0.4423 (3)0.0233 (7)
N80.1509 (3)0.8079 (3)0.7442 (3)0.0192 (6)
C10.4430 (4)0.8968 (3)0.3809 (3)0.0105 (6)
C20.2277 (4)0.8640 (4)0.4419 (4)0.0155 (7)
H20.17090.82050.49040.019*
C30.1637 (4)0.9559 (4)0.3663 (3)0.0142 (7)
H30.06720.97240.36310.017*
C40.2422 (4)1.0207 (4)0.2979 (3)0.0151 (7)
H40.20061.08410.24680.018*
C50.3852 (4)0.9931 (4)0.3035 (3)0.0124 (6)
C60.4768 (4)1.0539 (3)0.2299 (3)0.0137 (7)
H60.43861.11740.17750.016*
C70.6157 (4)1.0224 (4)0.2339 (3)0.0135 (7)
H70.67381.06410.18440.016*
C80.6776 (4)0.9273 (3)0.3113 (3)0.0120 (6)
C90.8244 (4)0.8902 (4)0.3146 (3)0.0141 (7)
H90.88490.93090.26700.017*
C100.8783 (4)0.7946 (4)0.3876 (3)0.0151 (7)
H100.97660.76820.39150.018*
C110.7866 (4)0.7369 (4)0.4559 (3)0.0138 (7)
H110.82630.67030.50540.017*
C120.5929 (4)0.8631 (3)0.3841 (3)0.0098 (6)
C130.5152 (4)0.4199 (4)0.8317 (3)0.0115 (6)
C140.2921 (4)0.4702 (4)0.7950 (3)0.0141 (7)
H140.21830.52430.75970.017*
C150.2702 (4)0.3671 (4)0.8612 (3)0.0133 (7)
H150.18330.35270.87060.016*
C160.3759 (4)0.2880 (4)0.9118 (3)0.0136 (7)
H160.36390.21720.95630.016*
C170.5034 (4)0.3128 (3)0.8971 (3)0.0113 (6)
C180.6175 (4)0.2330 (4)0.9489 (3)0.0145 (7)
H180.61070.15840.98980.017*
C190.7349 (4)0.2629 (4)0.9401 (3)0.0142 (7)
H190.80930.20950.97520.017*
C200.7469 (4)0.3743 (4)0.8785 (3)0.0125 (7)
C210.8638 (4)0.4121 (4)0.8715 (3)0.0145 (7)
H210.93640.36400.91000.017*
C220.8727 (4)0.5168 (4)0.8102 (3)0.0150 (7)
H220.95050.54350.80570.018*
C230.7647 (4)0.5852 (4)0.7531 (3)0.0139 (7)
H230.77320.65730.70890.017*
C240.6409 (4)0.4512 (3)0.8211 (3)0.0102 (6)
C250.0496 (4)0.8222 (4)0.8327 (3)0.0142 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.00832 (7)0.01057 (7)0.00924 (8)0.00546 (5)0.00197 (5)0.00214 (5)
S10.0135 (4)0.0343 (5)0.0161 (5)0.0093 (4)0.0034 (4)0.0113 (4)
N10.0106 (13)0.0119 (14)0.0143 (14)0.0061 (11)0.0032 (11)0.0025 (11)
N20.0114 (13)0.0113 (14)0.0117 (14)0.0057 (11)0.0030 (11)0.0027 (11)
N30.0125 (13)0.0134 (14)0.0113 (14)0.0069 (11)0.0040 (11)0.0053 (11)
N40.0122 (13)0.0137 (14)0.0096 (14)0.0071 (11)0.0010 (11)0.0016 (11)
N50.0106 (13)0.0121 (14)0.0144 (14)0.0064 (11)0.0023 (11)0.0008 (11)
N60.0145 (14)0.0113 (14)0.0143 (15)0.0075 (11)0.0055 (12)0.0026 (11)
N70.0137 (15)0.0235 (17)0.034 (2)0.0092 (13)0.0084 (14)0.0047 (15)
N80.0147 (15)0.0193 (16)0.0184 (16)0.0066 (13)0.0002 (13)0.0012 (13)
C10.0117 (15)0.0119 (16)0.0044 (14)0.0051 (13)0.0016 (12)0.0017 (12)
C20.0154 (16)0.0155 (18)0.0184 (18)0.0087 (14)0.0069 (14)0.0040 (14)
C30.0108 (15)0.0165 (17)0.0145 (17)0.0050 (14)0.0047 (13)0.0010 (14)
C40.0159 (17)0.0148 (17)0.0142 (17)0.0049 (14)0.0073 (14)0.0030 (14)
C50.0131 (15)0.0112 (16)0.0104 (16)0.0046 (13)0.0019 (13)0.0002 (13)
C60.0158 (16)0.0100 (16)0.0118 (16)0.0036 (13)0.0029 (13)0.0023 (13)
C70.0152 (16)0.0137 (16)0.0091 (16)0.0086 (13)0.0021 (13)0.0001 (13)
C80.0121 (15)0.0098 (16)0.0107 (16)0.0045 (13)0.0002 (13)0.0021 (13)
C90.0134 (16)0.0115 (16)0.0160 (17)0.0075 (13)0.0003 (13)0.0009 (13)
C100.0109 (15)0.0179 (18)0.0142 (17)0.0048 (14)0.0034 (13)0.0014 (14)
C110.0120 (15)0.0138 (17)0.0136 (17)0.0052 (13)0.0025 (13)0.0008 (13)
C120.0103 (15)0.0103 (15)0.0057 (15)0.0043 (12)0.0012 (12)0.0007 (12)
C130.0110 (15)0.0127 (16)0.0093 (16)0.0042 (13)0.0028 (12)0.0004 (13)
C140.0138 (16)0.0175 (17)0.0138 (17)0.0080 (14)0.0068 (13)0.0038 (14)
C150.0120 (15)0.0181 (17)0.0114 (16)0.0108 (14)0.0001 (13)0.0003 (13)
C160.0159 (16)0.0131 (16)0.0075 (16)0.0069 (14)0.0023 (13)0.0009 (13)
C170.0136 (15)0.0105 (16)0.0053 (15)0.0039 (13)0.0006 (12)0.0022 (12)
C180.0161 (16)0.0130 (17)0.0112 (16)0.0047 (14)0.0031 (13)0.0037 (13)
C190.0140 (16)0.0143 (17)0.0125 (16)0.0043 (13)0.0047 (13)0.0027 (13)
C200.0123 (16)0.0148 (17)0.0069 (15)0.0040 (13)0.0016 (13)0.0025 (13)
C210.0120 (15)0.0172 (17)0.0122 (16)0.0039 (13)0.0050 (13)0.0004 (13)
C220.0100 (15)0.0227 (19)0.0120 (16)0.0094 (14)0.0000 (13)0.0008 (14)
C230.0118 (15)0.0165 (17)0.0115 (16)0.0077 (13)0.0004 (13)0.0006 (13)
C240.0100 (15)0.0120 (16)0.0061 (15)0.0043 (13)0.0003 (12)0.0009 (12)
C250.0127 (16)0.0134 (17)0.0163 (17)0.0048 (13)0.0059 (14)0.0043 (13)
Geometric parameters (Å, º) top
Pb1—N52.485 (3)C6—H60.95
Pb1—N5i2.489 (3)C7—C81.430 (5)
Pb1—N32.687 (3)C7—H70.95
Pb1—N82.711 (3)C8—C121.415 (5)
Pb1—N12.742 (3)C8—C91.412 (5)
Pb1—N42.860 (3)C9—C101.370 (5)
Pb1—N22.865 (3)C9—H90.95
S1—C251.641 (4)C10—C111.392 (5)
N1—C21.324 (4)C10—H100.95
N1—C11.356 (4)C11—H110.95
N2—C111.331 (4)C13—C171.407 (5)
N2—C121.364 (4)C13—C241.446 (5)
N3—C141.324 (4)C14—C151.404 (5)
N3—C131.364 (4)C14—H140.95
N4—C231.325 (4)C15—C161.366 (5)
N4—C241.363 (4)C15—H150.95
N5—N61.211 (4)C16—C171.413 (5)
N5—Pb1i2.489 (3)C16—H160.95
N6—N71.145 (4)C17—C181.437 (5)
N8—C251.164 (5)C18—C191.358 (5)
C1—C51.423 (5)C18—H180.95
C1—C121.448 (5)C19—C201.427 (5)
C2—C31.404 (5)C19—H190.95
C2—H20.95C20—C211.412 (5)
C3—C41.359 (5)C20—C241.415 (5)
C3—H30.95C21—C221.353 (5)
C4—C51.403 (5)C21—H210.95
C4—H40.95C22—C231.405 (5)
C5—C61.439 (5)C22—H220.95
C6—C71.347 (5)C23—H230.95
N5—Pb1—N5i67.99 (11)C6—C7—C8121.3 (3)
N5—Pb1—N382.92 (9)C6—C7—H7119.3
N5i—Pb1—N377.99 (9)C8—C7—H7119.3
N5—Pb1—N8144.35 (10)C12—C8—C9118.0 (3)
N5i—Pb1—N878.18 (10)C12—C8—C7119.8 (3)
N3—Pb1—N879.30 (9)C9—C8—C7122.2 (3)
N5—Pb1—N1102.42 (9)C10—C9—C8118.9 (3)
N5i—Pb1—N176.63 (9)C10—C9—H9120.5
N3—Pb1—N1149.70 (8)C8—C9—H9120.5
N8—Pb1—N179.54 (9)C9—C10—C11119.0 (3)
N5—Pb1—N476.52 (9)C9—C10—H10120.5
N5i—Pb1—N4127.42 (9)C11—C10—H10120.5
N3—Pb1—N459.80 (8)N2—C11—C10124.6 (3)
N8—Pb1—N4118.75 (9)N2—C11—H11117.7
N1—Pb1—N4150.49 (8)C10—C11—H11117.7
N5—Pb1—N279.06 (9)N2—C12—C8122.6 (3)
N5i—Pb1—N2116.13 (9)N2—C12—C1118.0 (3)
N3—Pb1—N2150.03 (8)C8—C12—C1119.4 (3)
N8—Pb1—N2127.96 (9)N3—C13—C17121.7 (3)
N1—Pb1—N258.79 (8)N3—C13—C24119.2 (3)
N4—Pb1—N292.59 (8)C17—C13—C24119.0 (3)
C2—N1—C1118.1 (3)N3—C14—C15123.3 (3)
C2—N1—Pb1118.2 (2)N3—C14—H14118.3
C1—N1—Pb1123.5 (2)C15—C14—H14118.3
C11—N2—C12116.9 (3)C16—C15—C14118.9 (3)
C11—N2—Pb1123.4 (2)C16—C15—H15120.5
C12—N2—Pb1119.4 (2)C14—C15—H15120.5
C14—N3—C13118.5 (3)C15—C16—C17119.2 (3)
C14—N3—Pb1117.9 (2)C15—C16—H16120.4
C13—N3—Pb1123.0 (2)C17—C16—H16120.4
C23—N4—C24117.7 (3)C16—C17—C13118.3 (3)
C23—N4—Pb1124.6 (2)C16—C17—C18121.4 (3)
C24—N4—Pb1117.2 (2)C13—C17—C18120.3 (3)
N6—N5—Pb1121.1 (2)C19—C18—C17120.8 (3)
N6—N5—Pb1i126.5 (2)C19—C18—H18119.6
Pb1—N5—Pb1i112.01 (11)C17—C18—H18119.6
N7—N6—N5179.1 (4)C18—C19—C20120.2 (3)
C25—N8—Pb1147.1 (3)C18—C19—H19119.9
N1—C1—C5121.6 (3)C20—C19—H19119.9
N1—C1—C12119.4 (3)C21—C20—C24117.3 (3)
C5—C1—C12119.0 (3)C21—C20—C19122.0 (3)
N1—C2—C3123.8 (3)C24—C20—C19120.7 (3)
N1—C2—H2118.1C22—C21—C20120.1 (3)
C3—C2—H2118.1C22—C21—H21120.0
C4—C3—C2118.9 (3)C20—C21—H21120.0
C4—C3—H3120.5C21—C22—C23118.7 (3)
C2—C3—H3120.5C21—C22—H22120.6
C3—C4—C5119.3 (3)C23—C22—H22120.6
C3—C4—H4120.4N4—C23—C22123.8 (3)
C5—C4—H4120.4N4—C23—H23118.1
C4—C5—C1118.3 (3)C22—C23—H23118.1
C4—C5—C6122.2 (3)N4—C24—C20122.4 (3)
C1—C5—C6119.5 (3)N4—C24—C13118.8 (3)
C7—C6—C5121.1 (3)C20—C24—C13118.8 (3)
C7—C6—H6119.5N8—C25—S1179.4 (3)
C5—C6—H6119.5
N5—Pb1—N1—C2109.1 (3)C1—N1—C2—C30.3 (5)
N5i—Pb1—N1—C245.6 (3)Pb1—N1—C2—C3174.9 (3)
N3—Pb1—N1—C211.8 (4)N1—C2—C3—C41.1 (6)
N8—Pb1—N1—C234.6 (3)C2—C3—C4—C50.7 (5)
N4—Pb1—N1—C2166.4 (2)C3—C4—C5—C10.3 (5)
N2—Pb1—N1—C2178.0 (3)C3—C4—C5—C6177.5 (3)
N5—Pb1—N1—C176.6 (3)N1—C1—C5—C41.1 (5)
N5i—Pb1—N1—C1140.1 (3)C12—C1—C5—C4177.6 (3)
N3—Pb1—N1—C1173.9 (2)N1—C1—C5—C6178.4 (3)
N8—Pb1—N1—C1139.7 (3)C12—C1—C5—C60.4 (5)
N4—Pb1—N1—C17.9 (4)C4—C5—C6—C7177.9 (3)
N2—Pb1—N1—C17.8 (2)C1—C5—C6—C70.7 (5)
N5—Pb1—N2—C1167.0 (3)C5—C6—C7—C80.0 (5)
N5i—Pb1—N2—C11125.6 (3)C6—C7—C8—C120.9 (5)
N3—Pb1—N2—C1112.9 (4)C6—C7—C8—C9178.4 (3)
N8—Pb1—N2—C11139.0 (3)C12—C8—C9—C100.1 (5)
N1—Pb1—N2—C11178.9 (3)C7—C8—C9—C10177.6 (3)
N4—Pb1—N2—C118.8 (3)C8—C9—C10—C110.2 (5)
N5—Pb1—N2—C12119.5 (2)C12—N2—C11—C100.6 (5)
N5i—Pb1—N2—C1260.9 (3)Pb1—N2—C11—C10173.1 (3)
N3—Pb1—N2—C12173.6 (2)C9—C10—C11—N20.4 (6)
N8—Pb1—N2—C1234.5 (3)C11—N2—C12—C80.5 (5)
N1—Pb1—N2—C127.6 (2)Pb1—N2—C12—C8173.4 (2)
N4—Pb1—N2—C12164.7 (2)C11—N2—C12—C1178.6 (3)
N5—Pb1—N3—C14104.1 (3)Pb1—N2—C12—C17.5 (4)
N5i—Pb1—N3—C1435.1 (3)C9—C8—C12—N20.3 (5)
N8—Pb1—N3—C1444.9 (3)C7—C8—C12—N2177.8 (3)
N1—Pb1—N3—C141.5 (4)C9—C8—C12—C1178.8 (3)
N4—Pb1—N3—C14177.4 (3)C7—C8—C12—C11.2 (5)
N2—Pb1—N3—C14157.3 (2)N1—C1—C12—N20.3 (5)
N5—Pb1—N3—C1366.6 (3)C5—C1—C12—N2178.5 (3)
N5i—Pb1—N3—C13135.5 (3)N1—C1—C12—C8179.4 (3)
N8—Pb1—N3—C13144.4 (3)C5—C1—C12—C80.6 (5)
N1—Pb1—N3—C13169.2 (2)C14—N3—C13—C172.3 (5)
N4—Pb1—N3—C1311.9 (2)Pb1—N3—C13—C17168.3 (2)
N2—Pb1—N3—C1313.4 (4)C14—N3—C13—C24176.8 (3)
N5—Pb1—N4—C2393.2 (3)Pb1—N3—C13—C2412.6 (4)
N5i—Pb1—N4—C23141.3 (3)C13—N3—C14—C151.0 (5)
N3—Pb1—N4—C23177.2 (3)Pb1—N3—C14—C15170.1 (3)
N8—Pb1—N4—C23121.5 (3)N3—C14—C15—C160.4 (6)
N1—Pb1—N4—C231.8 (4)C14—C15—C16—C170.5 (5)
N2—Pb1—N4—C2315.1 (3)C15—C16—C17—C130.8 (5)
N5—Pb1—N4—C2478.8 (2)C15—C16—C17—C18179.7 (3)
N5i—Pb1—N4—C2430.8 (3)N3—C13—C17—C162.2 (5)
N3—Pb1—N4—C2410.8 (2)C24—C13—C17—C16176.9 (3)
N8—Pb1—N4—C2466.4 (2)N3—C13—C17—C18178.8 (3)
N1—Pb1—N4—C24170.3 (2)C24—C13—C17—C182.1 (5)
N2—Pb1—N4—C24156.9 (2)C16—C17—C18—C19176.2 (3)
N5i—Pb1—N5—N6173.0 (3)C13—C17—C18—C192.7 (5)
N3—Pb1—N5—N6107.1 (3)C17—C18—C19—C200.3 (5)
N8—Pb1—N5—N6167.5 (2)C18—C19—C20—C21177.5 (3)
N1—Pb1—N5—N6103.1 (3)C18—C19—C20—C242.7 (5)
N4—Pb1—N5—N646.6 (3)C24—C20—C21—C221.0 (5)
N2—Pb1—N5—N648.8 (3)C19—C20—C21—C22178.8 (3)
N5i—Pb1—N5—Pb1i0.0C20—C21—C22—C230.6 (5)
N3—Pb1—N5—Pb1i79.87 (12)C24—N4—C23—C220.1 (5)
N8—Pb1—N5—Pb1i19.5 (2)Pb1—N4—C23—C22172.1 (3)
N1—Pb1—N5—Pb1i69.85 (12)C21—C22—C23—N41.2 (5)
N4—Pb1—N5—Pb1i140.43 (13)C23—N4—C24—C201.6 (5)
N2—Pb1—N5—Pb1i124.19 (12)Pb1—N4—C24—C20171.0 (2)
N5—Pb1—N8—C2579.2 (6)C23—N4—C24—C13177.5 (3)
N5i—Pb1—N8—C2597.7 (5)Pb1—N4—C24—C139.9 (4)
N3—Pb1—N8—C2517.8 (5)C21—C20—C24—N42.2 (5)
N1—Pb1—N8—C25176.0 (5)C19—C20—C24—N4177.6 (3)
N4—Pb1—N8—C2528.7 (6)C21—C20—C24—C13176.9 (3)
N2—Pb1—N8—C25148.3 (5)C19—C20—C24—C133.3 (5)
C2—N1—C1—C50.8 (5)N3—C13—C24—N40.9 (5)
Pb1—N1—C1—C5173.5 (2)C17—C13—C24—N4180.0 (3)
C2—N1—C1—C12177.9 (3)N3—C13—C24—C20178.3 (3)
Pb1—N1—C1—C127.8 (4)C17—C13—C24—C200.9 (5)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb2(N3)2(NCS)2(C12H8N2)4]
Mr1335.42
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.3412 (6), 10.8327 (6), 11.4178 (6)
α, β, γ (°)89.923 (1), 72.080 (1), 65.273 (1)
V3)1093.35 (10)
Z1
Radiation typeMo Kα
µ (mm1)7.85
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.244, 0.386
No. of measured, independent and
observed [I > 2σ(I)] reflections
10523, 5002, 4783
Rint0.021
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.061, 1.09
No. of reflections5002
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 1.38

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEngelhardt, L. M., Furphy, B. M., Harrowfield, J. M., Patrick, J. M., Skelton, B. W. & White, A. H. (1989). J. Chem. Soc. Dalton Trans. pp. 595–599.  CSD CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, L. H., Zeng, M. H., Shen, X. C. & Ng, S. W. (2008). Main Group Met. Chem. 30, 103–104.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds