organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 August 2010; accepted 11 August 2010; online 18 August 2010)

The asymmetric unit of the title salt, C5H6ClN2+·C7H5O6S, contains two independent 2-amino-5-chloro­pyridinium cations and two independent 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions. In both anions, the O atoms of the sulfonate group are disordered over two sets of positions, with occupancy ratios of 0.47 (5):0.53 (5) and 0.50 (8):0.50 (8). In each anion, an intra­molecular O—H⋯O hydrogen bond generating an S(6) motif is observed. In the crystal structure, the cations and anions are linked via N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to (110). The structure is further stabilized by ππ inter­actions between cations and anions [centroid–centroid distance = 3.5454 (12) Å]. The crystal studied was a non-merohedral twin, with a ratio of the twin components of 0.715 (3):0.285 (3).

Related literature

For applications of inter­molecular inter­actions, see: Lam & Mak (2000[Lam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657-6665.]). For sulfosalicylic acid complexes, see: Smith et al. (2004[Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575-o581.]); Muthiah et al. (2003[Muthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015-o2017.]); Raj et al. (2003[Raj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70-76.]); Fan et al. (2005[Fan, S.-R., Xiao, H.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, o253-o255.]). For a related structure, see: Pourayoubi et al. (2007[Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C7H5O6S

  • Mr = 346.74

  • Triclinic, [P \overline 1]

  • a = 7.9455 (3) Å

  • b = 10.9173 (5) Å

  • c = 16.3535 (7) Å

  • α = 85.223 (2)°

  • β = 83.327 (2)°

  • γ = 85.842 (2)°

  • V = 1401.22 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.45 mm−1

  • T = 296 K

  • 0.50 × 0.36 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.935

  • 8143 measured reflections

  • 8143 independent reflections

  • 5951 reflections with I > 2σ(I)

  • Rint = 0.000

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.04

  • 8143 reflections

  • 478 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H2AA⋯O6Xi 0.86 2.08 2.900 (15) 159
N2A—H2AB⋯O5Xii 0.86 2.26 3.115 (9) 171
N2B—H2BA⋯O6B 0.86 2.34 3.114 (19) 150
N2B—H2BA⋯O6Y 0.86 2.20 2.985 (17) 152
N2B—H2BB⋯O5Biii 0.86 2.30 3.146 (17) 168
N2B—H2BB⋯O5Yiii 0.86 2.18 3.013 (15) 164
O3A—H2OA⋯O5Biii 0.83 (3) 1.83 (4) 2.657 (16) 180 (5)
O3A—H2OA⋯O5Yiii 0.83 (3) 1.84 (4) 2.663 (16) 173 (3)
O3B—H2OB⋯O5Xiv 0.82 (3) 1.90 (3) 2.698 (10) 166 (3)
O1B—H1OB⋯O2B 0.83 (3) 1.84 (3) 2.604 (2) 152 (3)
O1A—H1OA⋯O2A 0.84 (3) 1.85 (3) 2.584 (2) 145 (3)
O1A—H1OO⋯O6B 0.84 (3) 2.51 (4) 3.086 (16) 127 (3)
O1A—H1OA⋯O6Y 0.84 (3) 2.58 (4) 3.163 (18) 128 (3)
N1B—H1NB⋯O4B 0.88 (3) 2.23 (4) 2.999 (19) 146 (3)
N1B—H1NB⋯O4Y 0.88 (3) 2.09 (3) 2.865 (13) 148 (3)
N1A—H1NA⋯O4Xi 0.86 (3) 2.08 (4) 2.87 (2) 153 (3)
C1A—H1AA⋯O1Bv 0.93 2.60 3.422 (3) 148
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+1, -z; (v) x-1, y+1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of them allows us to comprehend collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). 5-Sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) and its organic complexes or salts can develop well-defined non-covalent supramolecular architectures because of their ability to form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites (Smith et al., 2004; Muthiah et al., 2003; Raj et al., 2003; Fan et al., 2005). The present study has been undertaken to study the hydrogen bonding patterns involving the 3-carboxy-4-hydroxybenzenesulfonate anions with the 2-amino-5-chloropyridinium cations.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-chloropyridinium cations (A and B) and two 3-carboxy-4-hydroxybenzenesulfonate anions (A and B) (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.003 (2) Å for atom C8A in cation A and 0.013 (2) Å for C12B atom in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C8A—N1A—C12A [123.3 (2)°] and C8B—N1B—C12B [123.56 (19)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). Bond lengths (Allen et al., 1987) and angles are normal. Each 3-carboxy-4-hydroxybenzenesulfonate anions contains an intramolecular O—H···O hydrogen bond, which generates an S(6) ring.

In the crystal structure, (Fig. 2), the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-chloropyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Here, sulfonate groups mimic the role of the carboxylate groups. The ionic units are further linked by N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a two dimensional network parallel to the (110) plane.

Related literature top

For applications of intermolecular interactions, see: Lam & Mak (2000). For sulfosalicylic acid complexes, see: Smith et al. (2004); Muthiah et al. (2003); Raj et al. (2003); Fan et al. (2005). For a related structure, see: Pourayoubi et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (32 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

Atoms H2OA, H2OB, H1OA, H1OB, H1NA and H1NB were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [C—H = 0.93 Å] and were refined using a riding model, with Uiso(H) = 1.2Ueq(C). The O atoms in the both sulfonate anions are disordered over two sets of positions, with occupancy ratios of 0.47 (5):0.53 (5) and 0.50 (8):0.50 (8). The crystal studied was a non-merohedral twin, the refined ratio of the two components being 0.715 (3):0.285 (3); the twin matrix is [-1 0 0.111, 0 -1 0.111, 0 0 1].

Structure description top

Intermolecular interactions are responsible for crystal packing and gaining an understanding of them allows us to comprehend collective properties and permits the design of new crystals with specific physical and chemical properties (Lam & Mak, 2000). 5-Sulfosalicylic acid (3-carboxy-4-hydroxybenzenesulfonic acid) and its organic complexes or salts can develop well-defined non-covalent supramolecular architectures because of their ability to form multiple hydrogen bonds containing components of complementary arrays of hydrogen-bonding sites (Smith et al., 2004; Muthiah et al., 2003; Raj et al., 2003; Fan et al., 2005). The present study has been undertaken to study the hydrogen bonding patterns involving the 3-carboxy-4-hydroxybenzenesulfonate anions with the 2-amino-5-chloropyridinium cations.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-chloropyridinium cations (A and B) and two 3-carboxy-4-hydroxybenzenesulfonate anions (A and B) (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.003 (2) Å for atom C8A in cation A and 0.013 (2) Å for C12B atom in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C8A—N1A—C12A [123.3 (2)°] and C8B—N1B—C12B [123.56 (19)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). Bond lengths (Allen et al., 1987) and angles are normal. Each 3-carboxy-4-hydroxybenzenesulfonate anions contains an intramolecular O—H···O hydrogen bond, which generates an S(6) ring.

In the crystal structure, (Fig. 2), the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-chloropyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Here, sulfonate groups mimic the role of the carboxylate groups. The ionic units are further linked by N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a two dimensional network parallel to the (110) plane.

For applications of intermolecular interactions, see: Lam & Mak (2000). For sulfosalicylic acid complexes, see: Smith et al. (2004); Muthiah et al. (2003); Raj et al. (2003); Fan et al. (2005). For a related structure, see: Pourayoubi et al. (2007). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 30% probability level. Open bonds indicate minor disordered components.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing a hydrogen-bonded (dashed lines) network. H atoms not involved in the interactions have been omitted for clarity. Only the major component of the disordered O atoms of the sulfonate group are shown.
2-Amino-5-chloropyridinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C5H6ClN2+·C7H5O6SZ = 4
Mr = 346.74F(000) = 712
Triclinic, P1Dx = 1.644 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9455 (3) ÅCell parameters from 9907 reflections
b = 10.9173 (5) Åθ = 2.5–29.9°
c = 16.3535 (7) ŵ = 0.45 mm1
α = 85.223 (2)°T = 296 K
β = 83.327 (2)°Plate, yellow
γ = 85.842 (2)°0.50 × 0.36 × 0.15 mm
V = 1401.22 (10) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8143 independent reflections
Radiation source: fine-focus sealed tube5951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
φ and ω scansθmax = 30.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.804, Tmax = 0.935k = 1515
8143 measured reflectionsl = 022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0866P)2 + 0.2919P]
where P = (Fo2 + 2Fc2)/3
8143 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.54 e Å3
6 restraintsΔρmin = 0.42 e Å3
Crystal data top
C5H6ClN2+·C7H5O6Sγ = 85.842 (2)°
Mr = 346.74V = 1401.22 (10) Å3
Triclinic, P1Z = 4
a = 7.9455 (3) ÅMo Kα radiation
b = 10.9173 (5) ŵ = 0.45 mm1
c = 16.3535 (7) ÅT = 296 K
α = 85.223 (2)°0.50 × 0.36 × 0.15 mm
β = 83.327 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8143 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5951 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.935Rint = 0.000
8143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0516 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.54 e Å3
8143 reflectionsΔρmin = 0.42 e Å3
478 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S1A0.35527 (7)0.80743 (5)0.00751 (3)0.04328 (15)
O1A0.7640 (2)0.53220 (16)0.24854 (11)0.0476 (4)
O2A0.5653 (2)0.63703 (16)0.36240 (9)0.0513 (4)
O3A0.3497 (2)0.76513 (15)0.32837 (10)0.0455 (4)
O4A0.460 (2)0.837 (2)0.0643 (13)0.072 (5)0.47 (5)
O5A0.233 (3)0.711 (3)0.0064 (12)0.086 (4)0.47 (5)
O6A0.266 (3)0.906 (2)0.0472 (9)0.075 (4)0.47 (5)
O4X0.465 (2)0.822 (2)0.0720 (11)0.061 (3)0.53 (5)
O5X0.2139 (10)0.7391 (10)0.0023 (6)0.045 (2)0.53 (5)
O6X0.304 (2)0.9285 (11)0.0377 (11)0.074 (3)0.53 (5)
C1A0.4393 (2)0.74515 (17)0.16239 (11)0.0312 (4)
H1AA0.34980.80040.17920.037*
C2A0.4802 (3)0.72879 (19)0.07962 (12)0.0352 (4)
C3A0.6153 (3)0.6469 (2)0.05434 (14)0.0496 (6)
H3AA0.64270.63580.00150.060*
C4A0.7087 (3)0.5821 (2)0.11146 (14)0.0506 (6)
H4AA0.79890.52790.09400.061*
C5A0.6684 (2)0.59768 (18)0.19527 (12)0.0352 (4)
C6A0.5314 (2)0.67910 (16)0.22106 (11)0.0291 (4)
C7A0.4856 (2)0.69252 (17)0.30980 (12)0.0327 (4)
Cl1A0.65336 (10)0.96478 (9)0.40572 (4)0.0741 (2)
N1A0.6964 (2)0.97630 (18)0.16358 (12)0.0434 (4)
N2A0.8778 (3)0.8864 (2)0.06209 (13)0.0584 (6)
H2AA0.82030.92510.02550.070*
H2AB0.96460.83830.04720.070*
C8A0.8330 (3)0.9006 (2)0.14072 (14)0.0415 (5)
C9A0.9200 (3)0.8392 (2)0.20505 (16)0.0469 (5)
H9AA1.01380.78540.19220.056*
C10A0.8675 (3)0.8583 (2)0.28486 (15)0.0460 (5)
H10A0.92590.81860.32660.055*
C11A0.7244 (3)0.9383 (2)0.30458 (14)0.0438 (5)
C12A0.6419 (3)0.9960 (2)0.24326 (15)0.0448 (5)
H12A0.54751.04940.25570.054*
S1B0.85425 (6)0.30940 (5)0.47122 (3)0.03661 (13)
O1B1.2477 (2)0.02225 (16)0.21626 (10)0.0469 (4)
O2B1.0653 (2)0.14325 (18)0.11015 (10)0.0600 (5)
O3B0.8506 (2)0.27142 (16)0.15525 (11)0.0530 (4)
O4B0.9689 (18)0.322 (2)0.5284 (9)0.078 (5)0.50 (8)
O5B0.7188 (19)0.226 (2)0.5092 (10)0.053 (3)0.50 (8)
O6B0.784 (2)0.4156 (19)0.4259 (9)0.061 (3)0.50 (8)
O4Y0.9709 (15)0.3365 (13)0.5308 (7)0.042 (3)0.50 (8)
O5Y0.7124 (15)0.2449 (19)0.5077 (10)0.041 (2)0.50 (8)
O6Y0.802 (2)0.4296 (15)0.4326 (11)0.059 (3)0.50 (8)
C1B0.9347 (2)0.24440 (17)0.31394 (12)0.0309 (4)
H1BA0.85220.30520.30030.037*
C2B0.9681 (2)0.22231 (17)0.39468 (11)0.0310 (4)
C3B1.0904 (3)0.13016 (19)0.41552 (12)0.0370 (4)
H3BA1.11140.11400.47030.044*
C4B1.1802 (3)0.06305 (19)0.35518 (13)0.0390 (4)
H4BA1.26070.00130.36950.047*
C5B1.1508 (2)0.08727 (17)0.27276 (12)0.0323 (4)
C6B1.0231 (2)0.17659 (16)0.25225 (11)0.0292 (4)
C7B0.9840 (3)0.19622 (19)0.16594 (13)0.0371 (4)
Cl1B0.81241 (10)0.51032 (8)0.86096 (4)0.0679 (2)
N1B0.7949 (2)0.52963 (17)0.62141 (11)0.0374 (4)
N2B0.6228 (3)0.6290 (2)0.53013 (13)0.0544 (5)
H2BA0.68390.59430.49050.065*
H2BB0.53710.67820.51990.065*
C8B0.6606 (3)0.60676 (19)0.60619 (13)0.0375 (4)
C9B0.5673 (3)0.6602 (2)0.67497 (15)0.0450 (5)
H9BA0.47430.71490.66710.054*
C10B0.6122 (3)0.6323 (2)0.75211 (14)0.0456 (5)
H10B0.54970.66690.79710.055*
C11B0.7538 (3)0.5506 (2)0.76350 (13)0.0402 (4)
C12B0.8428 (3)0.5010 (2)0.69775 (14)0.0397 (4)
H12B0.93700.44710.70480.048*
H2OA0.328 (4)0.768 (3)0.379 (2)0.075 (10)*
H2OB0.840 (4)0.279 (3)0.106 (2)0.062 (9)*
H1OB1.210 (4)0.046 (3)0.172 (2)0.058 (8)*
H1OA0.724 (4)0.545 (3)0.297 (2)0.069 (9)*
H1NB0.855 (3)0.496 (3)0.5796 (19)0.055 (8)*
H1NA0.644 (4)1.017 (3)0.126 (2)0.065 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0503 (3)0.0502 (3)0.0293 (3)0.0092 (2)0.0148 (2)0.0015 (2)
O1A0.0462 (9)0.0562 (10)0.0372 (8)0.0221 (7)0.0100 (7)0.0004 (7)
O2A0.0643 (10)0.0587 (10)0.0276 (7)0.0213 (8)0.0099 (7)0.0010 (7)
O3A0.0515 (9)0.0503 (9)0.0298 (7)0.0173 (7)0.0029 (6)0.0019 (6)
O4A0.070 (7)0.085 (6)0.049 (8)0.030 (5)0.002 (5)0.027 (5)
O5A0.125 (9)0.081 (8)0.066 (6)0.031 (6)0.071 (6)0.024 (5)
O6A0.088 (7)0.093 (9)0.037 (3)0.063 (6)0.017 (4)0.007 (5)
O4X0.061 (6)0.093 (7)0.027 (3)0.001 (5)0.007 (3)0.011 (4)
O5X0.044 (4)0.055 (3)0.036 (2)0.002 (2)0.015 (3)0.002 (2)
O6X0.107 (7)0.039 (3)0.078 (7)0.019 (4)0.040 (5)0.007 (3)
C1A0.0317 (9)0.0326 (9)0.0295 (9)0.0047 (7)0.0072 (7)0.0037 (7)
C2A0.0392 (10)0.0390 (10)0.0280 (9)0.0057 (8)0.0099 (7)0.0036 (7)
C3A0.0586 (14)0.0608 (14)0.0274 (10)0.0219 (11)0.0074 (9)0.0101 (9)
C4A0.0527 (13)0.0596 (14)0.0357 (11)0.0279 (11)0.0050 (9)0.0090 (10)
C5A0.0363 (9)0.0375 (10)0.0311 (9)0.0089 (8)0.0075 (7)0.0023 (8)
C6A0.0302 (8)0.0300 (9)0.0270 (8)0.0029 (7)0.0046 (6)0.0032 (7)
C7A0.0385 (9)0.0305 (9)0.0282 (9)0.0017 (7)0.0036 (7)0.0010 (7)
Cl1A0.0750 (5)0.1075 (6)0.0413 (3)0.0024 (4)0.0094 (3)0.0165 (4)
N1A0.0434 (10)0.0474 (10)0.0375 (9)0.0002 (8)0.0086 (8)0.0109 (8)
N2A0.0645 (13)0.0678 (14)0.0390 (11)0.0034 (11)0.0013 (9)0.0032 (10)
C8A0.0443 (11)0.0414 (11)0.0380 (11)0.0072 (9)0.0035 (9)0.0042 (9)
C9A0.0401 (11)0.0455 (12)0.0539 (13)0.0031 (9)0.0080 (10)0.0021 (10)
C10A0.0472 (12)0.0487 (12)0.0435 (12)0.0025 (10)0.0173 (9)0.0056 (10)
C11A0.0428 (11)0.0520 (13)0.0375 (11)0.0071 (10)0.0071 (9)0.0022 (9)
C12A0.0405 (11)0.0436 (12)0.0485 (12)0.0016 (9)0.0036 (9)0.0007 (10)
S1B0.0375 (3)0.0410 (3)0.0302 (2)0.00613 (19)0.00170 (18)0.01102 (19)
O1B0.0503 (9)0.0549 (10)0.0337 (8)0.0255 (7)0.0069 (7)0.0143 (7)
O2B0.0735 (12)0.0750 (12)0.0305 (8)0.0284 (10)0.0126 (8)0.0174 (8)
O3B0.0641 (11)0.0569 (10)0.0401 (9)0.0240 (8)0.0265 (8)0.0124 (8)
O4B0.051 (5)0.115 (10)0.076 (7)0.002 (5)0.006 (4)0.067 (7)
O5B0.067 (7)0.052 (5)0.039 (4)0.015 (4)0.022 (4)0.018 (3)
O6B0.079 (5)0.057 (6)0.043 (3)0.041 (5)0.012 (5)0.014 (3)
O4Y0.044 (4)0.049 (5)0.035 (4)0.006 (2)0.009 (3)0.024 (3)
O5Y0.035 (4)0.053 (5)0.035 (4)0.004 (3)0.001 (3)0.007 (3)
O6Y0.078 (5)0.033 (3)0.058 (6)0.007 (4)0.028 (5)0.009 (3)
C1B0.0306 (8)0.0294 (9)0.0324 (9)0.0055 (7)0.0051 (7)0.0053 (7)
C2B0.0299 (8)0.0334 (9)0.0292 (9)0.0036 (7)0.0006 (7)0.0077 (7)
C3B0.0416 (10)0.0429 (11)0.0259 (9)0.0084 (8)0.0077 (7)0.0027 (8)
C4B0.0421 (10)0.0386 (10)0.0349 (10)0.0146 (8)0.0082 (8)0.0044 (8)
C5B0.0329 (9)0.0323 (9)0.0316 (9)0.0073 (7)0.0044 (7)0.0092 (7)
C6B0.0308 (8)0.0293 (8)0.0284 (8)0.0027 (7)0.0069 (7)0.0059 (7)
C7B0.0446 (11)0.0368 (10)0.0314 (9)0.0057 (8)0.0117 (8)0.0077 (8)
Cl1B0.0757 (5)0.0929 (5)0.0356 (3)0.0065 (4)0.0114 (3)0.0010 (3)
N1B0.0349 (8)0.0443 (10)0.0331 (8)0.0013 (7)0.0007 (7)0.0125 (7)
N2B0.0505 (11)0.0758 (15)0.0366 (10)0.0078 (10)0.0084 (8)0.0080 (10)
C8B0.0354 (10)0.0415 (11)0.0357 (10)0.0041 (8)0.0011 (8)0.0070 (8)
C9B0.0405 (11)0.0451 (12)0.0480 (12)0.0086 (9)0.0007 (9)0.0113 (10)
C10B0.0476 (12)0.0508 (13)0.0379 (11)0.0012 (10)0.0055 (9)0.0166 (9)
C11B0.0465 (11)0.0437 (11)0.0315 (10)0.0092 (9)0.0047 (8)0.0040 (8)
C12B0.0377 (10)0.0396 (11)0.0421 (11)0.0010 (8)0.0048 (8)0.0052 (9)
Geometric parameters (Å, º) top
S1A—O4A1.386 (18)S1B—O4B1.400 (15)
S1A—O5X1.407 (10)S1B—O5Y1.418 (14)
S1A—O6A1.411 (13)S1B—O6B1.436 (11)
S1A—O6X1.463 (12)S1B—O6Y1.462 (12)
S1A—O4X1.481 (16)S1B—O4Y1.481 (13)
S1A—O5A1.527 (17)S1B—O5B1.502 (17)
S1A—C2A1.7586 (19)S1B—C2B1.7605 (18)
O1A—C5A1.348 (2)O1B—C5B1.347 (2)
O1A—H1OA0.84 (3)O1B—H1OB0.84 (3)
O2A—C7A1.222 (2)O2B—C7B1.217 (3)
O3A—C7A1.314 (2)O3B—C7B1.312 (2)
O3A—H2OA0.83 (4)O3B—H2OB0.82 (3)
C1A—C2A1.378 (3)C1B—C2B1.375 (3)
C1A—C6A1.396 (2)C1B—C6B1.394 (2)
C1A—H1AA0.93C1B—H1BA0.93
C2A—C3A1.394 (3)C2B—C3B1.397 (3)
C3A—C4A1.378 (3)C3B—C4B1.378 (3)
C3A—H3AA0.93C3B—H3BA0.93
C4A—C5A1.392 (3)C4B—C5B1.395 (3)
C4A—H4AA0.93C4B—H4BA0.93
C5A—C6A1.403 (2)C5B—C6B1.405 (2)
C6A—C7A1.472 (3)C6B—C7B1.475 (3)
Cl1A—C11A1.725 (2)Cl1B—C11B1.725 (2)
N1A—C8A1.352 (3)N1B—C8B1.344 (3)
N1A—C12A1.354 (3)N1B—C12B1.353 (3)
N1A—H1NA0.85 (3)N1B—H1NB0.88 (3)
N2A—C8A1.313 (3)N2B—C8B1.312 (3)
N2A—H2AA0.86N2B—H2BA0.86
N2A—H2AB0.86N2B—H2BB0.86
C8A—C9A1.421 (3)C8B—C9B1.417 (3)
C9A—C10A1.352 (4)C9B—C10B1.355 (3)
C9A—H9AA0.93C9B—H9BA0.93
C10A—C11A1.406 (3)C10B—C11B1.404 (3)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.350 (3)C11B—C12B1.347 (3)
C12A—H12A0.93C12B—H12B0.93
O4A—S1A—O5X118.5 (11)O4B—S1B—O5Y111.5 (9)
O4A—S1A—O6A116.7 (12)O4B—S1B—O6B120.8 (18)
O5X—S1A—O6A96.8 (11)O5Y—S1B—O6B105.3 (9)
O4A—S1A—O6X102.2 (12)O4B—S1B—O6Y110.8 (18)
O5X—S1A—O6X111.5 (7)O5Y—S1B—O6Y111.5 (7)
O5X—S1A—O4X112.8 (8)O5Y—S1B—O4Y113.8 (7)
O6A—S1A—O4X123.8 (12)O6B—S1B—O4Y115.0 (14)
O6X—S1A—O4X109.6 (9)O6Y—S1B—O4Y105.0 (13)
O4A—S1A—O5A111.0 (11)O4B—S1B—O5B109.7 (10)
O6A—S1A—O5A110.2 (8)O6B—S1B—O5B111.7 (7)
O6X—S1A—O5A124.9 (10)O6Y—S1B—O5B118.3 (9)
O4X—S1A—O5A104.3 (10)O4Y—S1B—O5B112.6 (8)
O4A—S1A—C2A108.6 (9)O4B—S1B—C2B105.3 (8)
O5X—S1A—C2A108.6 (5)O5Y—S1B—C2B109.0 (8)
O6A—S1A—C2A106.6 (6)O6B—S1B—C2B104.2 (7)
O6X—S1A—C2A106.7 (6)O6Y—S1B—C2B108.4 (7)
O4X—S1A—C2A107.3 (8)O4Y—S1B—C2B109.0 (5)
O5A—S1A—C2A102.7 (7)O5B—S1B—C2B103.3 (9)
C5A—O1A—H1OA110 (2)C5B—O1B—H1OB104.2 (19)
C7A—O3A—H2OA111 (2)C7B—O3B—H2OB108 (2)
C2A—C1A—C6A120.28 (17)C2B—C1B—C6B120.67 (16)
C2A—C1A—H1AA119.9C2B—C1B—H1BA119.7
C6A—C1A—H1AA119.9C6B—C1B—H1BA119.7
C1A—C2A—C3A119.85 (18)C1B—C2B—C3B119.86 (17)
C1A—C2A—S1A119.28 (15)C1B—C2B—S1B119.63 (14)
C3A—C2A—S1A120.82 (15)C3B—C2B—S1B120.51 (15)
C4A—C3A—C2A120.5 (2)C4B—C3B—C2B120.22 (18)
C4A—C3A—H3AA119.7C4B—C3B—H3BA119.9
C2A—C3A—H3AA119.7C2B—C3B—H3BA119.9
C3A—C4A—C5A120.18 (19)C3B—C4B—C5B120.35 (17)
C3A—C4A—H4AA119.9C3B—C4B—H4BA119.8
C5A—C4A—H4AA119.9C5B—C4B—H4BA119.8
O1A—C5A—C4A117.78 (18)O1B—C5B—C4B117.54 (17)
O1A—C5A—C6A122.72 (18)O1B—C5B—C6B123.07 (17)
C4A—C5A—C6A119.49 (18)C4B—C5B—C6B119.39 (17)
C1A—C6A—C5A119.67 (17)C1B—C6B—C5B119.41 (17)
C1A—C6A—C7A120.87 (16)C1B—C6B—C7B121.17 (16)
C5A—C6A—C7A119.46 (16)C5B—C6B—C7B119.41 (17)
O2A—C7A—O3A122.55 (18)O2B—C7B—O3B123.09 (19)
O2A—C7A—C6A122.24 (18)O2B—C7B—C6B122.51 (18)
O3A—C7A—C6A115.18 (17)O3B—C7B—C6B114.34 (18)
C8A—N1A—C12A123.3 (2)C8B—N1B—C12B123.56 (19)
C8A—N1A—H1NA119 (2)C8B—N1B—H1NB118.3 (19)
C12A—N1A—H1NA117 (2)C12B—N1B—H1NB118.1 (19)
C8A—N2A—H2AA120.0C8B—N2B—H2BA120.0
C8A—N2A—H2AB120.0C8B—N2B—H2BB120.0
H2AA—N2A—H2AB120.0H2BA—N2B—H2BB120.0
N2A—C8A—N1A119.6 (2)N2B—C8B—N1B119.5 (2)
N2A—C8A—C9A123.5 (2)N2B—C8B—C9B123.7 (2)
N1A—C8A—C9A116.9 (2)N1B—C8B—C9B116.86 (19)
C10A—C9A—C8A120.5 (2)C10B—C9B—C8B120.7 (2)
C10A—C9A—H9AA119.8C10B—C9B—H9BA119.7
C8A—C9A—H9AA119.8C8B—C9B—H9BA119.7
C9A—C10A—C11A119.9 (2)C9B—C10B—C11B119.4 (2)
C9A—C10A—H10A120.1C9B—C10B—H10B120.3
C11A—C10A—H10A120.1C11B—C10B—H10B120.3
C12A—C11A—C10A119.4 (2)C12B—C11B—C10B119.6 (2)
C12A—C11A—Cl1A119.39 (19)C12B—C11B—Cl1B119.53 (18)
C10A—C11A—Cl1A121.21 (18)C10B—C11B—Cl1B120.81 (17)
C11A—C12A—N1A120.1 (2)C11B—C12B—N1B119.9 (2)
C11A—C12A—H12A120.0C11B—C12B—H12B120.1
N1A—C12A—H12A120.0N1B—C12B—H12B120.1
C6A—C1A—C2A—C3A0.7 (3)C6B—C1B—C2B—C3B0.7 (3)
C6A—C1A—C2A—S1A176.84 (15)C6B—C1B—C2B—S1B179.98 (14)
O4A—S1A—C2A—C1A145.7 (11)O4B—S1B—C2B—C1B146.3 (9)
O5X—S1A—C2A—C1A84.1 (4)O5Y—S1B—C2B—C1B93.8 (6)
O6A—S1A—C2A—C1A19.2 (13)O6B—S1B—C2B—C1B18.2 (11)
O6X—S1A—C2A—C1A36.2 (8)O6Y—S1B—C2B—C1B27.7 (10)
O4X—S1A—C2A—C1A153.7 (9)O4Y—S1B—C2B—C1B141.4 (5)
O5A—S1A—C2A—C1A96.7 (12)O5B—S1B—C2B—C1B98.6 (7)
O4A—S1A—C2A—C3A36.8 (11)O4B—S1B—C2B—C3B34.4 (9)
O5X—S1A—C2A—C3A93.4 (4)O5Y—S1B—C2B—C3B85.4 (6)
O6A—S1A—C2A—C3A163.3 (13)O6B—S1B—C2B—C3B162.5 (11)
O6X—S1A—C2A—C3A146.3 (8)O6Y—S1B—C2B—C3B153.1 (10)
O4X—S1A—C2A—C3A28.8 (9)O4Y—S1B—C2B—C3B39.3 (5)
O5A—S1A—C2A—C3A80.8 (12)O5B—S1B—C2B—C3B80.6 (8)
C1A—C2A—C3A—C4A0.1 (4)C1B—C2B—C3B—C4B1.3 (3)
S1A—C2A—C3A—C4A177.6 (2)S1B—C2B—C3B—C4B179.42 (17)
C2A—C3A—C4A—C5A0.2 (4)C2B—C3B—C4B—C5B0.6 (3)
C3A—C4A—C5A—O1A179.9 (2)C3B—C4B—C5B—O1B177.2 (2)
C3A—C4A—C5A—C6A0.4 (4)C3B—C4B—C5B—C6B3.1 (3)
C2A—C1A—C6A—C5A1.3 (3)C2B—C1B—C6B—C5B1.8 (3)
C2A—C1A—C6A—C7A177.93 (18)C2B—C1B—C6B—C7B177.69 (18)
O1A—C5A—C6A—C1A179.19 (19)O1B—C5B—C6B—C1B176.61 (18)
C4A—C5A—C6A—C1A1.2 (3)C4B—C5B—C6B—C1B3.7 (3)
O1A—C5A—C6A—C7A1.6 (3)O1B—C5B—C6B—C7B3.9 (3)
C4A—C5A—C6A—C7A178.1 (2)C4B—C5B—C6B—C7B175.82 (19)
C1A—C6A—C7A—O2A179.1 (2)C1B—C6B—C7B—O2B175.9 (2)
C5A—C6A—C7A—O2A1.7 (3)C5B—C6B—C7B—O2B4.7 (3)
C1A—C6A—C7A—O3A3.1 (3)C1B—C6B—C7B—O3B6.8 (3)
C5A—C6A—C7A—O3A176.13 (18)C5B—C6B—C7B—O3B172.69 (18)
C12A—N1A—C8A—N2A180.0 (2)C12B—N1B—C8B—N2B179.7 (2)
C12A—N1A—C8A—C9A0.6 (3)C12B—N1B—C8B—C9B0.5 (3)
N2A—C8A—C9A—C10A179.8 (2)N2B—C8B—C9B—C10B179.4 (2)
N1A—C8A—C9A—C10A0.8 (3)N1B—C8B—C9B—C10B0.8 (3)
C8A—C9A—C10A—C11A0.8 (4)C8B—C9B—C10B—C11B0.7 (4)
C9A—C10A—C11A—C12A0.6 (3)C9B—C10B—C11B—C12B0.1 (3)
C9A—C10A—C11A—Cl1A179.90 (19)C9B—C10B—C11B—Cl1B178.64 (18)
C10A—C11A—C12A—N1A0.3 (3)C10B—C11B—C12B—N1B0.3 (3)
Cl1A—C11A—C12A—N1A179.87 (17)Cl1B—C11B—C12B—N1B178.26 (16)
C8A—N1A—C12A—C11A0.4 (4)C8B—N1B—C12B—C11B0.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O6Xi0.862.082.900 (15)159
N2A—H2AB···O5Xii0.862.263.115 (9)171
N2B—H2BA···O6B0.862.343.114 (19)150
N2B—H2BA···O6Y0.862.202.985 (17)152
N2B—H2BB···O5Biii0.862.303.146 (17)168
N2B—H2BB···O5Yiii0.862.183.013 (15)164
O3A—H2OA···O5Biii0.83 (3)1.83 (4)2.657 (16)180 (5)
O3A—H2OA···O5Yiii0.83 (3)1.84 (4)2.663 (16)173 (3)
O3B—H2OB···O5Xiv0.82 (3)1.90 (3)2.698 (10)166 (3)
O1B—H1OB···O2B0.83 (3)1.84 (3)2.604 (2)152 (3)
O1A—H1OA···O2A0.84 (3)1.85 (3)2.584 (2)145 (3)
O1A—H1OA···O6B0.84 (3)2.51 (4)3.086 (16)127 (3)
O1A—H1OA···O6Y0.84 (3)2.58 (4)3.163 (18)128 (3)
N1B—H1NB···O4B0.88 (3)2.23 (4)2.999 (19)146 (3)
N1B—H1NB···O4Y0.88 (3)2.09 (3)2.865 (13)148 (3)
N1A—H1NA···O4Xi0.86 (3)2.08 (4)2.87 (2)153 (3)
C1A—H1AA···O1Bv0.932.603.422 (3)148
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C7H5O6S
Mr346.74
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.9455 (3), 10.9173 (5), 16.3535 (7)
α, β, γ (°)85.223 (2), 83.327 (2), 85.842 (2)
V3)1401.22 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.45
Crystal size (mm)0.50 × 0.36 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.804, 0.935
No. of measured, independent and
observed [I > 2σ(I)] reflections
8143, 8143, 5951
Rint0.000
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 1.04
No. of reflections8143
No. of parameters478
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H2AA···O6Xi0.862.082.900 (15)159
N2A—H2AB···O5Xii0.862.263.115 (9)171
N2B—H2BA···O6B0.862.343.114 (19)150
N2B—H2BA···O6Y0.862.202.985 (17)152
N2B—H2BB···O5Biii0.862.303.146 (17)168
N2B—H2BB···O5Yiii0.862.183.013 (15)164
O3A—H2OA···O5Biii0.83 (3)1.83 (4)2.657 (16)180 (5)
O3A—H2OA···O5Yiii0.83 (3)1.84 (4)2.663 (16)173 (3)
O3B—H2OB···O5Xiv0.82 (3)1.90 (3)2.698 (10)166 (3)
O1B—H1OB···O2B0.83 (3)1.84 (3)2.604 (2)152 (3)
O1A—H1OA···O2A0.84 (3)1.85 (3)2.584 (2)145 (3)
O1A—H1OA···O6B0.84 (3)2.51 (4)3.086 (16)127 (3)
O1A—H1OA···O6Y0.84 (3)2.58 (4)3.163 (18)128 (3)
N1B—H1NB···O4B0.88 (3)2.23 (4)2.999 (19)146 (3)
N1B—H1NB···O4Y0.88 (3)2.09 (3)2.865 (13)148 (3)
N1A—H1NA···O4Xi0.86 (3)2.08 (4)2.87 (2)153 (3)
C1A—H1AA···O1Bv0.932.603.422 (3)148
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, S.-R., Xiao, H.-P. & Zhu, L.-G. (2005). Acta Cryst. E61, o253–o255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLam, C. K. & Mak, T. C. W. (2000). Tetrahedron, 56, 6657–6665.  Web of Science CSD CrossRef CAS Google Scholar
First citationMuthiah, P. T., Hemamalini, M., Bocelli, G. & Cantoni, A. (2003). Acta Cryst. E59, o2015–o2017.  CSD CrossRef IUCr Journals Google Scholar
First citationPourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, S. B., Sethuraman, V., Francis, S., Hemamalini, M., Muthiah, P. T., Bocelli, G., Cantoni, A., Rychlewska, U. & Warzajtis, B. (2003). CrystEngComm, 5, 70–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575–o581.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds