organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-11-methyl-16-[(E)-4-methyl­benzyl­­idene]-13-(4-methyl­phen­yl)-1,11-di­aza­penta­cyclo­[12.3.1.02,10.03,8.010,14]octa­deca-3(8),4,6-triene-9,15-dione

aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Physical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 August 2010; accepted 17 August 2010; online 21 August 2010)

In the title compound, C32H30N2O3, the piperidin-4-one and the two fused pyrrolidine rings adopt envelope conformations. The two methyl­phenyl rings are oriented at dihedral angle of 20.36 (7) and 56.24 (7)°, respectively, with respect to the indanone ring system. In the crystal structure, inter­molecular O—H⋯N and C—H⋯O hydrogen bonds link the mol­ecules into chains propagating along [001]. Weak C—H⋯π inter­actions are also observed.

Related literature

For general background and the biological activity of pyrrolidine compounds, see: Mitchell & Teh (2005[Mitchell, R. E. & Teh, K. L. (2005). Org. Biomol. Chem. 3, 3540-3543.]); Okazaki et al. (2004[Okazaki, Y., Ishihara, A., Nishida, T. & Iwamura, H. (2004). Tetrahedron, 60, 4765-4771.]); Enyedy et al. (2001[Enyedy, I. J., Zaman, W. A., Sakamuri, S., Kozikowski, A. P., Johnson, K. M. & Wang, S. (2001). Bioorg. Med. Chem. Lett. 11, 1113-1118.]); Yee et al. (1998[Yee, N. K., Nummy, L. J., Byrne, D. P., Smith, L. L. & Roth, G. P. (1998). J. Org. Chem. 63, 326-330.]); Saravanan & Corey (2003[Saravanan, P. & Corey, E. J. (2003). J. Org. Chem. 68, 2760-2764.]); Crane & Corey (2001[Crane, S. N. & Corey, E. J. (2001). Org. Lett. 3, 1395-1397.]); Xi et al. (2004[Xi, N., Arvedson, S., Eisenberg, S., Han, N., Handley, M., Huang, L., Huang, Q., Kiselyov, A., Liu, Q., Lu, Y., Nunez, G., Osslund, T., Powers, D., Tasker, A. S., Wang, L., Xiang, T., Xu, S., Zhang, J., Zhu, J., Kendall, R. & Dominguez, C. (2004). Bioorg. Med. Chem. Lett. 14, 2905-2909.]); Kagan (1975[Kagan, H. B. (1975). Asymmetric Synthesis, Vol. 5, ch. 1, edited by J. D. Morrison. Academic Press: New York.]). For the synthesis, see: Kumar et al. (2010a[Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370-o1371.],b[Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1540-o1541.]). For ring conformations, see Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C32H30N2O3

  • Mr = 490.58

  • Triclinic, [P \overline 1]

  • a = 9.3252 (6) Å

  • b = 12.1781 (8) Å

  • c = 12.9821 (8) Å

  • α = 67.480 (2)°

  • β = 86.093 (2)°

  • γ = 69.475 (2)°

  • V = 1271.68 (14) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 100 K

  • 0.56 × 0.29 × 0.25 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.713, Tmax = 0.851

  • 13699 measured reflections

  • 4121 independent reflections

  • 4004 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.134

  • S = 1.21

  • 4121 reflections

  • 342 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1O2⋯N2i 0.85 (2) 2.00 (2) 2.794 (2) 156 (2)
C5—H5A⋯O3ii 0.93 2.48 3.206 (2) 135
C11—H11B⋯O2i 0.97 2.36 3.258 (2) 154
C13—H13A⋯O2i 0.93 2.40 3.291 (2) 161
C30—H30CCg1iii 0.96 2.83 3.563 (3) 134
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+2, -y, -z+1; (iii) -x+2, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Substituted pyrrolidine derivatives are widespread structural features of natural and designed biologically active molecules (Mitchell & Teh, 2005; Okazaki et al., 2004; Enyedy et al., 2001). In addition, these heterocycles can be used for pharmaceutical purposes (Yee et al., 1998; Saravanan & Corey, 2003; Crane & Corey, 2001; Xi et al., 2004) and ligands of transition metal catalysts (Kagan, 1975). Consequently, the efficient preparation of these heterocycles has received significant attention. In view of this importance, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The piperidin-4-one ring (N1/C12/C8–C11) adopts a distorted envelope conformation (flap atom C11), with puckering parameters Q = 0.625 (2) Å, θ = 140.1 (2)° and φ = 237.9 (2)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences N1/C11/C10/C21/C29 and N2/C20/C19/C10/C21 adopt envelope conformations, with atoms C11 and C21, respectively, as flap atoms. The puckering parameters are Q = 0.454 (2) Å, φ = 38.7 (2)° for the N1/C11/C10/C21/C29 pyrrolidine ring and Q = 0.341 (2) Å, φ = 331.2 (3)° for the N2/C20/C19/C10/C21 pyrrolidine ring. The two benzene rings (C1–C6 and C13–C18) make dihedral angle of 20.36 (7) and 56.24 (7)°, respectively with the mean plane of indan-1-one (C21–C29) ring system. The geometric parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b).

In the crystal structure, intermolecular O2—H1O2···N2, C11—H11B···O2 and C13—H13A···O2 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). The dimers are interconnected into chains propagating along the [001] direction via intermolecular C5—H5A···O3 hydrogen bonds (Fig. 3 and Table 1). Weak intermolecular C30—H30C···π interactions (Table 1) involving the C13–C18 benzene ring are also observed.

Related literature top

For general background and the biological activity of pyrrolidine compounds, see: Mitchell & Teh (2005); Okazaki et al. (2004); Enyedy et al. (2001); Yee et al. (1998); Saravanan & Corey (2003); Crane & Corey (2001); Xi et al. (2004); Kagan (1975). For the synthesis, see: Kumar et al. (2010a,b). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized according to the procedure described by Kumar et al. (2010a,b), and was recrystallized from ethyl acetate to afford pale yellow crystals.

Refinement top

The hydroxyl H atom was located in a difference Fourier map and was refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for methyl groups.

Structure description top

Substituted pyrrolidine derivatives are widespread structural features of natural and designed biologically active molecules (Mitchell & Teh, 2005; Okazaki et al., 2004; Enyedy et al., 2001). In addition, these heterocycles can be used for pharmaceutical purposes (Yee et al., 1998; Saravanan & Corey, 2003; Crane & Corey, 2001; Xi et al., 2004) and ligands of transition metal catalysts (Kagan, 1975). Consequently, the efficient preparation of these heterocycles has received significant attention. In view of this importance, the crystal structure determination of the title compound was carried out and the results are presented here.

The molecular structure of the title compound is shown in Fig. 1. The piperidin-4-one ring (N1/C12/C8–C11) adopts a distorted envelope conformation (flap atom C11), with puckering parameters Q = 0.625 (2) Å, θ = 140.1 (2)° and φ = 237.9 (2)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences N1/C11/C10/C21/C29 and N2/C20/C19/C10/C21 adopt envelope conformations, with atoms C11 and C21, respectively, as flap atoms. The puckering parameters are Q = 0.454 (2) Å, φ = 38.7 (2)° for the N1/C11/C10/C21/C29 pyrrolidine ring and Q = 0.341 (2) Å, φ = 331.2 (3)° for the N2/C20/C19/C10/C21 pyrrolidine ring. The two benzene rings (C1–C6 and C13–C18) make dihedral angle of 20.36 (7) and 56.24 (7)°, respectively with the mean plane of indan-1-one (C21–C29) ring system. The geometric parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b).

In the crystal structure, intermolecular O2—H1O2···N2, C11—H11B···O2 and C13—H13A···O2 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). The dimers are interconnected into chains propagating along the [001] direction via intermolecular C5—H5A···O3 hydrogen bonds (Fig. 3 and Table 1). Weak intermolecular C30—H30C···π interactions (Table 1) involving the C13–C18 benzene ring are also observed.

For general background and the biological activity of pyrrolidine compounds, see: Mitchell & Teh (2005); Okazaki et al. (2004); Enyedy et al. (2001); Yee et al. (1998); Saravanan & Corey (2003); Crane & Corey (2001); Xi et al. (2004); Kagan (1975). For the synthesis, see: Kumar et al. (2010a,b). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacment ellipsoids for non-H atoms and atom labels.
[Figure 2] Fig. 2. A view of a centrosymmtric dimer in the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. The crystal packing of title compound, viewed down the a axis, showing the dimers being linked into chains along the [001] direction. Intermolecular hydrogen bonds are shown as dashed lines.
2-Hydroxy-11-methyl-16-[(E)-4-methylbenzylidene]-13-(4-methylphenyl)- 1,11-diazapentacyclo[12.3.1.02,10.03,8.010,14]octadeca-3(8),4,6-triene- 9,15-dione top
Crystal data top
C32H30N2O3Z = 2
Mr = 490.58F(000) = 520
Triclinic, P1Dx = 1.281 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 9.3252 (6) ÅCell parameters from 9995 reflections
b = 12.1781 (8) Åθ = 5.8–67.8°
c = 12.9821 (8) ŵ = 0.65 mm1
α = 67.480 (2)°T = 100 K
β = 86.093 (2)°Plate, yellow
γ = 69.475 (2)°0.56 × 0.29 × 0.25 mm
V = 1271.68 (14) Å3
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4121 independent reflections
Radiation source: fine-focus sealed tube4004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 65.0°, θmin = 6.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 810
Tmin = 0.713, Tmax = 0.851k = 1414
13699 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0743P)2 + 0.3694P]
where P = (Fo2 + 2Fc2)/3
S = 1.21(Δ/σ)max = 0.001
4121 reflectionsΔρmax = 0.32 e Å3
342 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (4)
Crystal data top
C32H30N2O3γ = 69.475 (2)°
Mr = 490.58V = 1271.68 (14) Å3
Triclinic, P1Z = 2
a = 9.3252 (6) ÅCu Kα radiation
b = 12.1781 (8) ŵ = 0.65 mm1
c = 12.9821 (8) ÅT = 100 K
α = 67.480 (2)°0.56 × 0.29 × 0.25 mm
β = 86.093 (2)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
4121 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4004 reflections with I > 2σ(I)
Tmin = 0.713, Tmax = 0.851Rint = 0.024
13699 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.21Δρmax = 0.32 e Å3
4121 reflectionsΔρmin = 0.40 e Å3
342 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69853 (13)0.26369 (11)0.55957 (9)0.0290 (3)
O21.14244 (12)0.01927 (10)0.92987 (8)0.0219 (3)
O30.90572 (13)0.06206 (11)0.65669 (9)0.0296 (3)
N11.02023 (14)0.19002 (11)0.79859 (10)0.0195 (3)
N20.87997 (14)0.05467 (11)0.88897 (10)0.0213 (3)
C11.18437 (18)0.39376 (14)0.46558 (13)0.0255 (4)
H1A1.15850.41270.52880.031*
C21.30607 (19)0.42114 (15)0.40771 (14)0.0306 (4)
H2A1.36090.45770.43320.037*
C31.3481 (2)0.39515 (16)0.31222 (15)0.0344 (4)
C41.2616 (2)0.34286 (17)0.27535 (15)0.0374 (4)
H4A1.28590.32640.21080.045*
C51.1405 (2)0.31491 (16)0.33248 (14)0.0314 (4)
H5A1.08480.28000.30560.038*
C61.09964 (18)0.33786 (14)0.42997 (12)0.0238 (4)
C70.97216 (17)0.30238 (13)0.48655 (12)0.0230 (4)
H7A0.90310.29790.44120.028*
C80.93923 (17)0.27523 (13)0.59393 (12)0.0207 (3)
C90.80311 (17)0.23458 (13)0.62724 (12)0.0215 (3)
C100.80285 (17)0.15433 (13)0.75147 (12)0.0202 (3)
C110.85546 (16)0.21946 (13)0.81648 (12)0.0202 (3)
H11A0.80030.31040.78650.024*
H11B0.83980.18470.89540.024*
C121.03611 (17)0.27348 (14)0.68483 (12)0.0208 (3)
H12A1.14320.24630.66900.025*
H12B1.00740.35930.68200.025*
C130.52758 (18)0.21075 (15)0.92567 (13)0.0279 (4)
H13A0.60580.14880.97920.033*
C140.4105 (2)0.29883 (16)0.95461 (14)0.0324 (4)
H14A0.41230.29551.02730.039*
C150.29066 (19)0.39205 (16)0.87786 (15)0.0333 (4)
C160.29137 (19)0.39398 (16)0.77021 (15)0.0333 (4)
H16A0.21170.45470.71740.040*
C170.40876 (18)0.30691 (15)0.74029 (14)0.0282 (4)
H17A0.40700.31060.66750.034*
C180.52947 (17)0.21387 (14)0.81723 (13)0.0233 (4)
C190.65657 (17)0.12088 (14)0.78116 (12)0.0227 (4)
H19A0.61580.12130.71330.027*
C200.71422 (18)0.01858 (14)0.86592 (13)0.0250 (4)
H20A0.66210.02610.93420.030*
H20B0.69470.07320.83470.030*
C210.93759 (16)0.02464 (13)0.79105 (12)0.0199 (3)
C220.98737 (18)0.02951 (13)0.69987 (12)0.0223 (3)
C231.14573 (18)0.03556 (14)0.67710 (12)0.0226 (3)
C241.23947 (19)0.08211 (15)0.60366 (13)0.0271 (4)
H24A1.20290.11210.55890.033*
C251.3875 (2)0.08246 (16)0.59918 (13)0.0308 (4)
H25A1.45190.11290.55070.037*
C261.44221 (19)0.03750 (16)0.66696 (13)0.0297 (4)
H26A1.54280.03910.66320.036*
C271.34872 (18)0.00941 (15)0.73970 (12)0.0249 (4)
H27A1.38550.03920.78460.030*
C281.19917 (17)0.01076 (13)0.74373 (11)0.0204 (3)
C291.07917 (17)0.05268 (13)0.81917 (11)0.0193 (3)
C301.4823 (3)0.4233 (2)0.25134 (19)0.0510 (6)
H30A1.51760.37370.20620.077*
H30B1.56390.40210.30460.077*
H30C1.45100.51190.20430.077*
C310.1659 (2)0.4899 (2)0.9091 (2)0.0500 (5)
H31A0.06740.49500.88600.075*
H31B0.17720.57120.87250.075*
H31C0.17370.46600.98860.075*
C320.96162 (18)0.19190 (14)0.92734 (13)0.0253 (4)
H32A0.92880.23360.99880.038*
H32B1.07010.20980.93410.038*
H32C0.93950.22230.87430.038*
H1O21.115 (3)0.022 (2)0.972 (2)0.053 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0255 (6)0.0357 (6)0.0235 (6)0.0126 (5)0.0034 (4)0.0066 (5)
O20.0243 (6)0.0219 (5)0.0167 (5)0.0056 (4)0.0005 (4)0.0066 (4)
O30.0326 (7)0.0326 (6)0.0303 (6)0.0145 (5)0.0000 (5)0.0161 (5)
N10.0195 (7)0.0199 (6)0.0185 (6)0.0072 (5)0.0011 (5)0.0064 (5)
N20.0214 (7)0.0199 (6)0.0215 (6)0.0079 (5)0.0020 (5)0.0062 (5)
C10.0284 (9)0.0224 (8)0.0224 (8)0.0100 (6)0.0013 (6)0.0043 (6)
C20.0295 (9)0.0241 (8)0.0351 (9)0.0120 (7)0.0003 (7)0.0054 (7)
C30.0312 (10)0.0253 (8)0.0404 (10)0.0094 (7)0.0115 (7)0.0078 (7)
C40.0472 (11)0.0354 (9)0.0345 (9)0.0191 (8)0.0192 (8)0.0171 (8)
C50.0397 (10)0.0305 (9)0.0287 (9)0.0176 (7)0.0070 (7)0.0123 (7)
C60.0260 (8)0.0199 (7)0.0206 (7)0.0073 (6)0.0005 (6)0.0033 (6)
C70.0247 (8)0.0205 (7)0.0224 (8)0.0084 (6)0.0025 (6)0.0057 (6)
C80.0213 (8)0.0174 (7)0.0211 (7)0.0061 (6)0.0017 (6)0.0051 (6)
C90.0214 (8)0.0198 (7)0.0224 (8)0.0052 (6)0.0009 (6)0.0088 (6)
C100.0181 (8)0.0204 (7)0.0217 (7)0.0065 (6)0.0001 (6)0.0077 (6)
C110.0194 (8)0.0197 (7)0.0207 (7)0.0061 (6)0.0013 (5)0.0075 (6)
C120.0216 (8)0.0206 (7)0.0197 (7)0.0092 (6)0.0012 (6)0.0054 (6)
C130.0215 (8)0.0297 (8)0.0264 (8)0.0074 (6)0.0029 (6)0.0061 (6)
C140.0293 (9)0.0351 (9)0.0309 (9)0.0113 (7)0.0099 (7)0.0119 (7)
C150.0224 (9)0.0306 (9)0.0456 (10)0.0099 (7)0.0082 (7)0.0137 (8)
C160.0209 (9)0.0275 (8)0.0448 (10)0.0048 (6)0.0060 (7)0.0091 (7)
C170.0244 (8)0.0277 (8)0.0314 (8)0.0098 (6)0.0029 (6)0.0090 (7)
C180.0177 (8)0.0236 (8)0.0285 (8)0.0104 (6)0.0022 (6)0.0070 (6)
C190.0209 (8)0.0245 (8)0.0229 (7)0.0094 (6)0.0003 (6)0.0075 (6)
C200.0226 (8)0.0244 (8)0.0277 (8)0.0103 (6)0.0025 (6)0.0080 (6)
C210.0197 (8)0.0193 (7)0.0197 (7)0.0071 (6)0.0007 (6)0.0059 (6)
C220.0262 (8)0.0185 (7)0.0205 (7)0.0073 (6)0.0017 (6)0.0058 (6)
C230.0258 (8)0.0199 (7)0.0195 (7)0.0064 (6)0.0003 (6)0.0060 (6)
C240.0329 (9)0.0269 (8)0.0222 (8)0.0095 (7)0.0035 (6)0.0112 (6)
C250.0340 (9)0.0314 (9)0.0253 (8)0.0090 (7)0.0109 (7)0.0128 (7)
C260.0231 (9)0.0330 (9)0.0310 (9)0.0094 (7)0.0072 (6)0.0114 (7)
C270.0237 (8)0.0274 (8)0.0233 (8)0.0093 (6)0.0023 (6)0.0095 (6)
C280.0213 (8)0.0189 (7)0.0173 (7)0.0056 (6)0.0007 (5)0.0043 (6)
C290.0204 (8)0.0197 (7)0.0169 (7)0.0070 (6)0.0001 (5)0.0060 (6)
C300.0444 (12)0.0444 (11)0.0659 (14)0.0230 (9)0.0275 (10)0.0200 (10)
C310.0335 (11)0.0453 (11)0.0627 (14)0.0031 (9)0.0119 (9)0.0231 (10)
C320.0290 (9)0.0197 (8)0.0251 (8)0.0080 (6)0.0013 (6)0.0067 (6)
Geometric parameters (Å, º) top
O1—C91.2183 (18)C14—C151.388 (2)
O2—C291.4033 (17)C14—H14A0.93
O2—H1O20.85 (3)C15—C161.388 (3)
O3—C221.2211 (18)C15—C311.507 (2)
N1—C121.4703 (18)C16—C171.385 (2)
N1—C111.4738 (19)C16—H16A0.93
N1—C291.4845 (18)C17—C181.393 (2)
N2—C321.4637 (19)C17—H17A0.93
N2—C201.469 (2)C18—C191.515 (2)
N2—C211.4723 (18)C19—C201.547 (2)
C1—C21.386 (2)C19—H19A0.98
C1—C61.403 (2)C20—H20A0.97
C1—H1A0.93C20—H20B0.97
C2—C31.392 (3)C21—C221.536 (2)
C2—H2A0.93C21—C291.572 (2)
C3—C41.390 (3)C22—C231.468 (2)
C3—C301.505 (2)C23—C281.394 (2)
C4—C51.380 (2)C23—C241.396 (2)
C4—H4A0.93C24—C251.376 (2)
C5—C61.399 (2)C24—H24A0.93
C5—H5A0.93C25—C261.400 (2)
C6—C71.462 (2)C25—H25A0.93
C7—C81.344 (2)C26—C271.389 (2)
C7—H7A0.93C26—H26A0.93
C8—C91.498 (2)C27—C281.387 (2)
C8—C121.524 (2)C27—H27A0.93
C9—C101.533 (2)C28—C291.518 (2)
C10—C191.540 (2)C30—H30A0.96
C10—C211.5530 (19)C30—H30B0.96
C10—C111.5569 (19)C30—H30C0.96
C11—H11A0.97C31—H31A0.96
C11—H11B0.97C31—H31B0.96
C12—H12A0.97C31—H31C0.96
C12—H12B0.97C32—H32A0.96
C13—C141.384 (2)C32—H32B0.96
C13—C181.393 (2)C32—H32C0.96
C13—H13A0.93
C29—O2—H1O2112.9 (16)C13—C18—C17117.73 (15)
C12—N1—C11108.58 (11)C13—C18—C19122.55 (14)
C12—N1—C29114.54 (11)C17—C18—C19119.72 (14)
C11—N1—C29104.38 (11)C18—C19—C10114.91 (12)
C32—N2—C20112.70 (12)C18—C19—C20115.93 (13)
C32—N2—C21116.01 (12)C10—C19—C20104.77 (11)
C20—N2—C21107.99 (11)C18—C19—H19A106.9
C2—C1—C6120.88 (15)C10—C19—H19A106.9
C2—C1—H1A119.6C20—C19—H19A106.9
C6—C1—H1A119.6N2—C20—C19106.63 (12)
C1—C2—C3121.48 (16)N2—C20—H20A110.4
C1—C2—H2A119.3C19—C20—H20A110.4
C3—C2—H2A119.3N2—C20—H20B110.4
C4—C3—C2117.59 (16)C19—C20—H20B110.4
C4—C3—C30121.49 (17)H20A—C20—H20B108.6
C2—C3—C30120.92 (18)N2—C21—C22114.83 (11)
C5—C4—C3121.40 (16)N2—C21—C10102.80 (11)
C5—C4—H4A119.3C22—C21—C10114.00 (11)
C3—C4—H4A119.3N2—C21—C29114.35 (11)
C4—C5—C6121.44 (16)C22—C21—C29105.28 (11)
C4—C5—H5A119.3C10—C21—C29105.45 (11)
C6—C5—H5A119.3O3—C22—C23127.68 (14)
C5—C6—C1117.17 (14)O3—C22—C21123.96 (14)
C5—C6—C7117.71 (14)C23—C22—C21108.36 (12)
C1—C6—C7125.12 (14)C28—C23—C24121.26 (15)
C8—C7—C6130.04 (14)C28—C23—C22110.20 (13)
C8—C7—H7A115.0C24—C23—C22128.53 (14)
C6—C7—H7A115.0C25—C24—C23118.28 (15)
C7—C8—C9116.81 (13)C25—C24—H24A120.9
C7—C8—C12124.92 (14)C23—C24—H24A120.9
C9—C8—C12118.11 (12)C24—C25—C26120.64 (15)
O1—C9—C8121.97 (13)C24—C25—H25A119.7
O1—C9—C10121.88 (14)C26—C25—H25A119.7
C8—C9—C10116.16 (12)C27—C26—C25121.11 (15)
C9—C10—C19113.59 (12)C27—C26—H26A119.4
C9—C10—C21112.47 (12)C25—C26—H26A119.4
C19—C10—C21105.14 (11)C28—C27—C26118.36 (14)
C9—C10—C11105.65 (11)C28—C27—H27A120.8
C19—C10—C11119.93 (12)C26—C27—H27A120.8
C21—C10—C1199.28 (11)C27—C28—C23120.35 (14)
N1—C11—C10103.44 (11)C27—C28—C29127.57 (13)
N1—C11—H11A111.1C23—C28—C29112.01 (13)
C10—C11—H11A111.1O2—C29—N1110.03 (11)
N1—C11—H11B111.1O2—C29—C28107.24 (11)
C10—C11—H11B111.1N1—C29—C28116.66 (12)
H11A—C11—H11B109.0O2—C29—C21113.48 (11)
N1—C12—C8114.17 (12)N1—C29—C21105.34 (11)
N1—C12—H12A108.7C28—C29—C21104.15 (11)
C8—C12—H12A108.7C3—C30—H30A109.5
N1—C12—H12B108.7C3—C30—H30B109.5
C8—C12—H12B108.7H30A—C30—H30B109.5
H12A—C12—H12B107.6C3—C30—H30C109.5
C14—C13—C18120.67 (15)H30A—C30—H30C109.5
C14—C13—H13A119.7H30B—C30—H30C109.5
C18—C13—H13A119.7C15—C31—H31A109.5
C13—C14—C15121.66 (16)C15—C31—H31B109.5
C13—C14—H14A119.2H31A—C31—H31B109.5
C15—C14—H14A119.2C15—C31—H31C109.5
C14—C15—C16117.66 (15)H31A—C31—H31C109.5
C14—C15—C31121.37 (17)H31B—C31—H31C109.5
C16—C15—C31120.96 (17)N2—C32—H32A109.5
C17—C16—C15121.05 (15)N2—C32—H32B109.5
C17—C16—H16A119.5H32A—C32—H32B109.5
C15—C16—H16A119.5N2—C32—H32C109.5
C16—C17—C18121.23 (16)H32A—C32—H32C109.5
C16—C17—H17A119.4H32B—C32—H32C109.5
C18—C17—H17A119.4
C6—C1—C2—C30.4 (2)C32—N2—C21—C2239.35 (17)
C1—C2—C3—C41.3 (2)C20—N2—C21—C2288.23 (14)
C1—C2—C3—C30178.91 (16)C32—N2—C21—C10163.73 (12)
C2—C3—C4—C51.4 (3)C20—N2—C21—C1036.15 (14)
C30—C3—C4—C5178.74 (17)C32—N2—C21—C2982.52 (15)
C3—C4—C5—C60.1 (3)C20—N2—C21—C29149.89 (12)
C4—C5—C6—C11.7 (2)C9—C10—C21—N2155.97 (11)
C4—C5—C6—C7178.52 (15)C19—C10—C21—N231.88 (13)
C2—C1—C6—C51.9 (2)C11—C10—C21—N292.73 (12)
C2—C1—C6—C7178.37 (14)C9—C10—C21—C2231.04 (17)
C5—C6—C7—C8156.33 (16)C19—C10—C21—C2293.04 (14)
C1—C6—C7—C823.9 (3)C11—C10—C21—C22142.35 (12)
C6—C7—C8—C9176.56 (14)C9—C10—C21—C2983.93 (13)
C6—C7—C8—C121.3 (3)C19—C10—C21—C29151.98 (11)
C7—C8—C9—O124.1 (2)C11—C10—C21—C2927.37 (13)
C12—C8—C9—O1160.29 (14)N2—C21—C22—O353.63 (19)
C7—C8—C9—C10156.00 (13)C10—C21—C22—O364.61 (19)
C12—C8—C9—C1019.64 (18)C29—C21—C22—O3179.69 (13)
O1—C9—C10—C192.6 (2)N2—C21—C22—C23125.69 (13)
C8—C9—C10—C19177.34 (12)C10—C21—C22—C23116.07 (13)
O1—C9—C10—C21116.68 (15)C29—C21—C22—C230.98 (14)
C8—C9—C10—C2163.39 (16)O3—C22—C23—C28179.97 (14)
O1—C9—C10—C11136.04 (14)C21—C22—C23—C280.75 (16)
C8—C9—C10—C1143.90 (15)O3—C22—C23—C241.6 (3)
C12—N1—C11—C1076.80 (13)C21—C22—C23—C24177.64 (14)
C29—N1—C11—C1045.79 (13)C28—C23—C24—C250.6 (2)
C9—C10—C11—N171.79 (13)C22—C23—C24—C25177.60 (15)
C19—C10—C11—N1158.37 (12)C23—C24—C25—C260.2 (2)
C21—C10—C11—N144.82 (13)C24—C25—C26—C270.5 (3)
C11—N1—C12—C850.37 (15)C25—C26—C27—C280.0 (2)
C29—N1—C12—C865.83 (16)C26—C27—C28—C230.8 (2)
C7—C8—C12—N1154.02 (14)C26—C27—C28—C29177.55 (14)
C9—C8—C12—N121.23 (18)C24—C23—C28—C271.1 (2)
C18—C13—C14—C150.7 (3)C22—C23—C28—C27177.39 (13)
C13—C14—C15—C160.3 (3)C24—C23—C28—C29178.35 (13)
C13—C14—C15—C31178.27 (17)C22—C23—C28—C290.17 (17)
C14—C15—C16—C170.8 (2)C12—N1—C29—O2145.71 (12)
C31—C15—C16—C17177.68 (17)C11—N1—C29—O295.69 (12)
C15—C16—C17—C180.5 (3)C12—N1—C29—C2823.31 (17)
C14—C13—C18—C171.0 (2)C11—N1—C29—C28141.90 (12)
C14—C13—C18—C19178.92 (15)C12—N1—C29—C2191.62 (13)
C16—C17—C18—C130.5 (2)C11—N1—C29—C2126.98 (13)
C16—C17—C18—C19179.51 (14)C27—C28—C29—O255.96 (19)
C13—C18—C19—C1081.59 (18)C23—C28—C29—O2121.01 (13)
C17—C18—C19—C1098.37 (16)C27—C28—C29—N167.89 (19)
C13—C18—C19—C2041.0 (2)C23—C28—C29—N1115.14 (14)
C17—C18—C19—C20139.06 (15)C27—C28—C29—C21176.52 (14)
C9—C10—C19—C1891.75 (15)C23—C28—C29—C210.45 (15)
C21—C10—C19—C18144.87 (12)N2—C21—C29—O29.84 (17)
C11—C10—C19—C1834.47 (18)C22—C21—C29—O2117.13 (12)
C9—C10—C19—C20139.85 (12)C10—C21—C29—O2122.01 (12)
C21—C10—C19—C2016.48 (14)N2—C21—C29—N1110.58 (12)
C11—C10—C19—C2093.92 (15)C22—C21—C29—N1122.45 (11)
C32—N2—C20—C19155.70 (12)C10—C21—C29—N11.59 (14)
C21—N2—C20—C1926.24 (15)N2—C21—C29—C28126.12 (12)
C18—C19—C20—N2122.78 (13)C22—C21—C29—C280.85 (14)
C10—C19—C20—N24.99 (15)C10—C21—C29—C28121.71 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N2i0.85 (2)2.00 (2)2.794 (2)156 (2)
C5—H5A···O3ii0.932.483.206 (2)135
C11—H11B···O2i0.972.363.258 (2)154
C13—H13A···O2i0.932.403.291 (2)161
C30—H30C···Cg1iii0.962.833.563 (3)134
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC32H30N2O3
Mr490.58
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3252 (6), 12.1781 (8), 12.9821 (8)
α, β, γ (°)67.480 (2), 86.093 (2), 69.475 (2)
V3)1271.68 (14)
Z2
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.56 × 0.29 × 0.25
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.713, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
13699, 4121, 4004
Rint0.024
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.134, 1.21
No. of reflections4121
No. of parameters342
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.40

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
O2—H1O2···N2i0.85 (2)2.00 (2)2.794 (2)156 (2)
C5—H5A···O3ii0.932.483.206 (2)135
C11—H11B···O2i0.972.363.258 (2)154
C13—H13A···O2i0.932.403.291 (2)161
C30—H30C···Cg1iii0.962.833.563 (3)134
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: ohasnah@usm.my.

§Thomson Reuters ResearcherID: A-5523-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811016). RSK thanks USM for the award of a postdoctoral fellowship. HKF and CSY thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY also thanks USM for the award of a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCrane, S. N. & Corey, E. J. (2001). Org. Lett. 3, 1395–1397.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEnyedy, I. J., Zaman, W. A., Sakamuri, S., Kozikowski, A. P., Johnson, K. M. & Wang, S. (2001). Bioorg. Med. Chem. Lett. 11, 1113–1118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKagan, H. B. (1975). Asymmetric Synthesis, Vol. 5, ch. 1, edited by J. D. Morrison. Academic Press: New York.  Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1540–o1541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMitchell, R. E. & Teh, K. L. (2005). Org. Biomol. Chem. 3, 3540–3543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOkazaki, Y., Ishihara, A., Nishida, T. & Iwamura, H. (2004). Tetrahedron, 60, 4765–4771.  Web of Science CrossRef CAS Google Scholar
First citationSaravanan, P. & Corey, E. J. (2003). J. Org. Chem. 68, 2760–2764.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXi, N., Arvedson, S., Eisenberg, S., Han, N., Handley, M., Huang, L., Huang, Q., Kiselyov, A., Liu, Q., Lu, Y., Nunez, G., Osslund, T., Powers, D., Tasker, A. S., Wang, L., Xiang, T., Xu, S., Zhang, J., Zhu, J., Kendall, R. & Dominguez, C. (2004). Bioorg. Med. Chem. Lett. 14, 2905–2909.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYee, N. K., Nummy, L. J., Byrne, D. P., Smith, L. L. & Roth, G. P. (1998). J. Org. Chem. 63, 326–330.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds