organic compounds
2-Hydroxy-11-methyl-16-[(E)-4-methylbenzylidene]-13-(4-methylphenyl)-1,11-diazapentacyclo[12.3.1.02,10.03,8.010,14]octadeca-3(8),4,6-triene-9,15-dione
aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Physical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title compound, C32H30N2O3, the piperidin-4-one and the two fused pyrrolidine rings adopt envelope conformations. The two methylphenyl rings are oriented at dihedral angle of 20.36 (7) and 56.24 (7)°, respectively, with respect to the indanone ring system. In the intermolecular O—H⋯N and C—H⋯O hydrogen bonds link the molecules into chains propagating along [001]. Weak C—H⋯π interactions are also observed.
Related literature
For general background and the biological activity of pyrrolidine compounds, see: Mitchell & Teh (2005); Okazaki et al. (2004); Enyedy et al. (2001); Yee et al. (1998); Saravanan & Corey (2003); Crane & Corey (2001); Xi et al. (2004); Kagan (1975). For the synthesis, see: Kumar et al. (2010a,b). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810033064/ci5154sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033064/ci5154Isup2.hkl
The title compound was synthesized according to the procedure described by Kumar et al. (2010a,b), and was recrystallized from ethyl acetate to afford pale yellow crystals.
The hydroxyl H atom was located in a difference Fourier map and was refined freely. The remaining H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for methyl groups.
Substituted pyrrolidine derivatives are widespread structural features of natural and designed biologically active molecules (Mitchell & Teh, 2005; Okazaki et al., 2004; Enyedy et al., 2001). In addition, these heterocycles can be used for pharmaceutical purposes (Yee et al., 1998; Saravanan & Corey, 2003; Crane & Corey, 2001; Xi et al., 2004) and ligands of transition metal catalysts (Kagan, 1975). Consequently, the efficient preparation of these heterocycles has received significant attention. In view of this importance, the
determination of the title compound was carried out and the results are presented here.The molecular structure of the title compound is shown in Fig. 1. The piperidin-4-one ring (N1/C12/C8–C11) adopts a distorted θ = 140.1 (2)° and φ = 237.9 (2)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences N1/C11/C10/C21/C29 and N2/C20/C19/C10/C21 adopt envelope conformations, with atoms C11 and C21, respectively, as flap atoms. The puckering parameters are Q = 0.454 (2) Å, φ = 38.7 (2)° for the N1/C11/C10/C21/C29 pyrrolidine ring and Q = 0.341 (2) Å, φ = 331.2 (3)° for the N2/C20/C19/C10/C21 pyrrolidine ring. The two benzene rings (C1–C6 and C13–C18) make dihedral angle of 20.36 (7) and 56.24 (7)°, respectively with the mean plane of indan-1-one (C21–C29) ring system. The geometric parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b).
(flap atom C11), with puckering parameters Q = 0.625 (2) Å,In the π interactions (Table 1) involving the C13–C18 benzene ring are also observed.
intermolecular O2—H1O2···N2, C11—H11B···O2 and C13—H13A···O2 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). The dimers are interconnected into chains propagating along the [001] direction via intermolecular C5—H5A···O3 hydrogen bonds (Fig. 3 and Table 1). Weak intermolecular C30—H30C···For general background and the biological activity of pyrrolidine compounds, see: Mitchell & Teh (2005); Okazaki et al. (2004); Enyedy et al. (2001); Yee et al. (1998); Saravanan & Corey (2003); Crane & Corey (2001); Xi et al. (2004); Kagan (1975). For the synthesis, see: Kumar et al. (2010a,b). For ring conformations, see Cremer & Pople (1975). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).Fig. 1. The molecular structure of the title compound, showing 50% probability displacment ellipsoids for non-H atoms and atom labels. | |
Fig. 2. A view of a centrosymmtric dimer in the title compound. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 3. The crystal packing of title compound, viewed down the a axis, showing the dimers being linked into chains along the [001] direction. Intermolecular hydrogen bonds are shown as dashed lines. |
C32H30N2O3 | Z = 2 |
Mr = 490.58 | F(000) = 520 |
Triclinic, P1 | Dx = 1.281 Mg m−3 |
Hall symbol: -P 1 | Cu Kα radiation, λ = 1.54178 Å |
a = 9.3252 (6) Å | Cell parameters from 9995 reflections |
b = 12.1781 (8) Å | θ = 5.8–67.8° |
c = 12.9821 (8) Å | µ = 0.65 mm−1 |
α = 67.480 (2)° | T = 100 K |
β = 86.093 (2)° | Plate, yellow |
γ = 69.475 (2)° | 0.56 × 0.29 × 0.25 mm |
V = 1271.68 (14) Å3 |
Bruker APEXII DUO CCD area-detector diffractometer | 4121 independent reflections |
Radiation source: fine-focus sealed tube | 4004 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 65.0°, θmin = 6.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −8→10 |
Tmin = 0.713, Tmax = 0.851 | k = −14→14 |
13699 measured reflections | l = −15→15 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0743P)2 + 0.3694P] where P = (Fo2 + 2Fc2)/3 |
S = 1.21 | (Δ/σ)max = 0.001 |
4121 reflections | Δρmax = 0.32 e Å−3 |
342 parameters | Δρmin = −0.40 e Å−3 |
0 restraints | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.069 (4) |
C32H30N2O3 | γ = 69.475 (2)° |
Mr = 490.58 | V = 1271.68 (14) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.3252 (6) Å | Cu Kα radiation |
b = 12.1781 (8) Å | µ = 0.65 mm−1 |
c = 12.9821 (8) Å | T = 100 K |
α = 67.480 (2)° | 0.56 × 0.29 × 0.25 mm |
β = 86.093 (2)° |
Bruker APEXII DUO CCD area-detector diffractometer | 4121 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4004 reflections with I > 2σ(I) |
Tmin = 0.713, Tmax = 0.851 | Rint = 0.024 |
13699 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.134 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.21 | Δρmax = 0.32 e Å−3 |
4121 reflections | Δρmin = −0.40 e Å−3 |
342 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.69853 (13) | 0.26369 (11) | 0.55957 (9) | 0.0290 (3) | |
O2 | 1.14244 (12) | −0.01927 (10) | 0.92987 (8) | 0.0219 (3) | |
O3 | 0.90572 (13) | −0.06206 (11) | 0.65669 (9) | 0.0296 (3) | |
N1 | 1.02023 (14) | 0.19002 (11) | 0.79859 (10) | 0.0195 (3) | |
N2 | 0.87997 (14) | −0.05467 (11) | 0.88897 (10) | 0.0213 (3) | |
C1 | 1.18437 (18) | 0.39376 (14) | 0.46558 (13) | 0.0255 (4) | |
H1A | 1.1585 | 0.4127 | 0.5288 | 0.031* | |
C2 | 1.30607 (19) | 0.42114 (15) | 0.40771 (14) | 0.0306 (4) | |
H2A | 1.3609 | 0.4577 | 0.4332 | 0.037* | |
C3 | 1.3481 (2) | 0.39515 (16) | 0.31222 (15) | 0.0344 (4) | |
C4 | 1.2616 (2) | 0.34286 (17) | 0.27535 (15) | 0.0374 (4) | |
H4A | 1.2859 | 0.3264 | 0.2108 | 0.045* | |
C5 | 1.1405 (2) | 0.31491 (16) | 0.33248 (14) | 0.0314 (4) | |
H5A | 1.0848 | 0.2800 | 0.3056 | 0.038* | |
C6 | 1.09964 (18) | 0.33786 (14) | 0.42997 (12) | 0.0238 (4) | |
C7 | 0.97216 (17) | 0.30238 (13) | 0.48655 (12) | 0.0230 (4) | |
H7A | 0.9031 | 0.2979 | 0.4412 | 0.028* | |
C8 | 0.93923 (17) | 0.27523 (13) | 0.59393 (12) | 0.0207 (3) | |
C9 | 0.80311 (17) | 0.23458 (13) | 0.62724 (12) | 0.0215 (3) | |
C10 | 0.80285 (17) | 0.15433 (13) | 0.75147 (12) | 0.0202 (3) | |
C11 | 0.85546 (16) | 0.21946 (13) | 0.81648 (12) | 0.0202 (3) | |
H11A | 0.8003 | 0.3104 | 0.7865 | 0.024* | |
H11B | 0.8398 | 0.1847 | 0.8954 | 0.024* | |
C12 | 1.03611 (17) | 0.27348 (14) | 0.68483 (12) | 0.0208 (3) | |
H12A | 1.1432 | 0.2463 | 0.6690 | 0.025* | |
H12B | 1.0074 | 0.3593 | 0.6820 | 0.025* | |
C13 | 0.52758 (18) | 0.21075 (15) | 0.92567 (13) | 0.0279 (4) | |
H13A | 0.6058 | 0.1488 | 0.9792 | 0.033* | |
C14 | 0.4105 (2) | 0.29883 (16) | 0.95461 (14) | 0.0324 (4) | |
H14A | 0.4123 | 0.2955 | 1.0273 | 0.039* | |
C15 | 0.29066 (19) | 0.39205 (16) | 0.87786 (15) | 0.0333 (4) | |
C16 | 0.29137 (19) | 0.39398 (16) | 0.77021 (15) | 0.0333 (4) | |
H16A | 0.2117 | 0.4547 | 0.7174 | 0.040* | |
C17 | 0.40876 (18) | 0.30691 (15) | 0.74029 (14) | 0.0282 (4) | |
H17A | 0.4070 | 0.3106 | 0.6675 | 0.034* | |
C18 | 0.52947 (17) | 0.21387 (14) | 0.81723 (13) | 0.0233 (4) | |
C19 | 0.65657 (17) | 0.12088 (14) | 0.78116 (12) | 0.0227 (4) | |
H19A | 0.6158 | 0.1213 | 0.7133 | 0.027* | |
C20 | 0.71422 (18) | −0.01858 (14) | 0.86592 (13) | 0.0250 (4) | |
H20A | 0.6621 | −0.0261 | 0.9342 | 0.030* | |
H20B | 0.6947 | −0.0732 | 0.8347 | 0.030* | |
C21 | 0.93759 (16) | 0.02464 (13) | 0.79105 (12) | 0.0199 (3) | |
C22 | 0.98737 (18) | −0.02951 (13) | 0.69987 (12) | 0.0223 (3) | |
C23 | 1.14573 (18) | −0.03556 (14) | 0.67710 (12) | 0.0226 (3) | |
C24 | 1.23947 (19) | −0.08211 (15) | 0.60366 (13) | 0.0271 (4) | |
H24A | 1.2029 | −0.1121 | 0.5589 | 0.033* | |
C25 | 1.3875 (2) | −0.08246 (16) | 0.59918 (13) | 0.0308 (4) | |
H25A | 1.4519 | −0.1129 | 0.5507 | 0.037* | |
C26 | 1.44221 (19) | −0.03750 (16) | 0.66696 (13) | 0.0297 (4) | |
H26A | 1.5428 | −0.0391 | 0.6632 | 0.036* | |
C27 | 1.34872 (18) | 0.00941 (15) | 0.73970 (12) | 0.0249 (4) | |
H27A | 1.3855 | 0.0392 | 0.7846 | 0.030* | |
C28 | 1.19917 (17) | 0.01076 (13) | 0.74373 (11) | 0.0204 (3) | |
C29 | 1.07917 (17) | 0.05268 (13) | 0.81917 (11) | 0.0193 (3) | |
C30 | 1.4823 (3) | 0.4233 (2) | 0.25134 (19) | 0.0510 (6) | |
H30A | 1.5176 | 0.3737 | 0.2062 | 0.077* | |
H30B | 1.5639 | 0.4021 | 0.3046 | 0.077* | |
H30C | 1.4510 | 0.5119 | 0.2043 | 0.077* | |
C31 | 0.1659 (2) | 0.4899 (2) | 0.9091 (2) | 0.0500 (5) | |
H31A | 0.0674 | 0.4950 | 0.8860 | 0.075* | |
H31B | 0.1772 | 0.5712 | 0.8725 | 0.075* | |
H31C | 0.1737 | 0.4660 | 0.9886 | 0.075* | |
C32 | 0.96162 (18) | −0.19190 (14) | 0.92734 (13) | 0.0253 (4) | |
H32A | 0.9288 | −0.2336 | 0.9988 | 0.038* | |
H32B | 1.0701 | −0.2098 | 0.9341 | 0.038* | |
H32C | 0.9395 | −0.2223 | 0.8743 | 0.038* | |
H1O2 | 1.115 (3) | 0.022 (2) | 0.972 (2) | 0.053 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0255 (6) | 0.0357 (6) | 0.0235 (6) | −0.0126 (5) | −0.0034 (4) | −0.0066 (5) |
O2 | 0.0243 (6) | 0.0219 (5) | 0.0167 (5) | −0.0056 (4) | −0.0005 (4) | −0.0066 (4) |
O3 | 0.0326 (7) | 0.0326 (6) | 0.0303 (6) | −0.0145 (5) | 0.0000 (5) | −0.0161 (5) |
N1 | 0.0195 (7) | 0.0199 (6) | 0.0185 (6) | −0.0072 (5) | 0.0011 (5) | −0.0064 (5) |
N2 | 0.0214 (7) | 0.0199 (6) | 0.0215 (6) | −0.0079 (5) | 0.0020 (5) | −0.0062 (5) |
C1 | 0.0284 (9) | 0.0224 (8) | 0.0224 (8) | −0.0100 (6) | 0.0013 (6) | −0.0043 (6) |
C2 | 0.0295 (9) | 0.0241 (8) | 0.0351 (9) | −0.0120 (7) | 0.0003 (7) | −0.0054 (7) |
C3 | 0.0312 (10) | 0.0253 (8) | 0.0404 (10) | −0.0094 (7) | 0.0115 (7) | −0.0078 (7) |
C4 | 0.0472 (11) | 0.0354 (9) | 0.0345 (9) | −0.0191 (8) | 0.0192 (8) | −0.0171 (8) |
C5 | 0.0397 (10) | 0.0305 (9) | 0.0287 (9) | −0.0176 (7) | 0.0070 (7) | −0.0123 (7) |
C6 | 0.0260 (8) | 0.0199 (7) | 0.0206 (7) | −0.0073 (6) | 0.0005 (6) | −0.0033 (6) |
C7 | 0.0247 (8) | 0.0205 (7) | 0.0224 (8) | −0.0084 (6) | −0.0025 (6) | −0.0057 (6) |
C8 | 0.0213 (8) | 0.0174 (7) | 0.0211 (7) | −0.0061 (6) | −0.0017 (6) | −0.0051 (6) |
C9 | 0.0214 (8) | 0.0198 (7) | 0.0224 (8) | −0.0052 (6) | −0.0009 (6) | −0.0088 (6) |
C10 | 0.0181 (8) | 0.0204 (7) | 0.0217 (7) | −0.0065 (6) | 0.0001 (6) | −0.0077 (6) |
C11 | 0.0194 (8) | 0.0197 (7) | 0.0207 (7) | −0.0061 (6) | 0.0013 (5) | −0.0075 (6) |
C12 | 0.0216 (8) | 0.0206 (7) | 0.0197 (7) | −0.0092 (6) | 0.0012 (6) | −0.0054 (6) |
C13 | 0.0215 (8) | 0.0297 (8) | 0.0264 (8) | −0.0074 (6) | 0.0029 (6) | −0.0061 (6) |
C14 | 0.0293 (9) | 0.0351 (9) | 0.0309 (9) | −0.0113 (7) | 0.0099 (7) | −0.0119 (7) |
C15 | 0.0224 (9) | 0.0306 (9) | 0.0456 (10) | −0.0099 (7) | 0.0082 (7) | −0.0137 (8) |
C16 | 0.0209 (9) | 0.0275 (8) | 0.0448 (10) | −0.0048 (6) | −0.0060 (7) | −0.0091 (7) |
C17 | 0.0244 (8) | 0.0277 (8) | 0.0314 (8) | −0.0098 (6) | −0.0029 (6) | −0.0090 (7) |
C18 | 0.0177 (8) | 0.0236 (8) | 0.0285 (8) | −0.0104 (6) | 0.0022 (6) | −0.0070 (6) |
C19 | 0.0209 (8) | 0.0245 (8) | 0.0229 (7) | −0.0094 (6) | −0.0003 (6) | −0.0075 (6) |
C20 | 0.0226 (8) | 0.0244 (8) | 0.0277 (8) | −0.0103 (6) | 0.0025 (6) | −0.0080 (6) |
C21 | 0.0197 (8) | 0.0193 (7) | 0.0197 (7) | −0.0071 (6) | 0.0007 (6) | −0.0059 (6) |
C22 | 0.0262 (8) | 0.0185 (7) | 0.0205 (7) | −0.0073 (6) | −0.0017 (6) | −0.0058 (6) |
C23 | 0.0258 (8) | 0.0199 (7) | 0.0195 (7) | −0.0064 (6) | 0.0003 (6) | −0.0060 (6) |
C24 | 0.0329 (9) | 0.0269 (8) | 0.0222 (8) | −0.0095 (7) | 0.0035 (6) | −0.0112 (6) |
C25 | 0.0340 (9) | 0.0314 (9) | 0.0253 (8) | −0.0090 (7) | 0.0109 (7) | −0.0128 (7) |
C26 | 0.0231 (9) | 0.0330 (9) | 0.0310 (9) | −0.0094 (7) | 0.0072 (6) | −0.0114 (7) |
C27 | 0.0237 (8) | 0.0274 (8) | 0.0233 (8) | −0.0093 (6) | 0.0023 (6) | −0.0095 (6) |
C28 | 0.0213 (8) | 0.0189 (7) | 0.0173 (7) | −0.0056 (6) | 0.0007 (5) | −0.0043 (6) |
C29 | 0.0204 (8) | 0.0197 (7) | 0.0169 (7) | −0.0070 (6) | −0.0001 (5) | −0.0060 (6) |
C30 | 0.0444 (12) | 0.0444 (11) | 0.0659 (14) | −0.0230 (9) | 0.0275 (10) | −0.0200 (10) |
C31 | 0.0335 (11) | 0.0453 (11) | 0.0627 (14) | −0.0031 (9) | 0.0119 (9) | −0.0231 (10) |
C32 | 0.0290 (9) | 0.0197 (8) | 0.0251 (8) | −0.0080 (6) | 0.0013 (6) | −0.0067 (6) |
O1—C9 | 1.2183 (18) | C14—C15 | 1.388 (2) |
O2—C29 | 1.4033 (17) | C14—H14A | 0.93 |
O2—H1O2 | 0.85 (3) | C15—C16 | 1.388 (3) |
O3—C22 | 1.2211 (18) | C15—C31 | 1.507 (2) |
N1—C12 | 1.4703 (18) | C16—C17 | 1.385 (2) |
N1—C11 | 1.4738 (19) | C16—H16A | 0.93 |
N1—C29 | 1.4845 (18) | C17—C18 | 1.393 (2) |
N2—C32 | 1.4637 (19) | C17—H17A | 0.93 |
N2—C20 | 1.469 (2) | C18—C19 | 1.515 (2) |
N2—C21 | 1.4723 (18) | C19—C20 | 1.547 (2) |
C1—C2 | 1.386 (2) | C19—H19A | 0.98 |
C1—C6 | 1.403 (2) | C20—H20A | 0.97 |
C1—H1A | 0.93 | C20—H20B | 0.97 |
C2—C3 | 1.392 (3) | C21—C22 | 1.536 (2) |
C2—H2A | 0.93 | C21—C29 | 1.572 (2) |
C3—C4 | 1.390 (3) | C22—C23 | 1.468 (2) |
C3—C30 | 1.505 (2) | C23—C28 | 1.394 (2) |
C4—C5 | 1.380 (2) | C23—C24 | 1.396 (2) |
C4—H4A | 0.93 | C24—C25 | 1.376 (2) |
C5—C6 | 1.399 (2) | C24—H24A | 0.93 |
C5—H5A | 0.93 | C25—C26 | 1.400 (2) |
C6—C7 | 1.462 (2) | C25—H25A | 0.93 |
C7—C8 | 1.344 (2) | C26—C27 | 1.389 (2) |
C7—H7A | 0.93 | C26—H26A | 0.93 |
C8—C9 | 1.498 (2) | C27—C28 | 1.387 (2) |
C8—C12 | 1.524 (2) | C27—H27A | 0.93 |
C9—C10 | 1.533 (2) | C28—C29 | 1.518 (2) |
C10—C19 | 1.540 (2) | C30—H30A | 0.96 |
C10—C21 | 1.5530 (19) | C30—H30B | 0.96 |
C10—C11 | 1.5569 (19) | C30—H30C | 0.96 |
C11—H11A | 0.97 | C31—H31A | 0.96 |
C11—H11B | 0.97 | C31—H31B | 0.96 |
C12—H12A | 0.97 | C31—H31C | 0.96 |
C12—H12B | 0.97 | C32—H32A | 0.96 |
C13—C14 | 1.384 (2) | C32—H32B | 0.96 |
C13—C18 | 1.393 (2) | C32—H32C | 0.96 |
C13—H13A | 0.93 | ||
C29—O2—H1O2 | 112.9 (16) | C13—C18—C17 | 117.73 (15) |
C12—N1—C11 | 108.58 (11) | C13—C18—C19 | 122.55 (14) |
C12—N1—C29 | 114.54 (11) | C17—C18—C19 | 119.72 (14) |
C11—N1—C29 | 104.38 (11) | C18—C19—C10 | 114.91 (12) |
C32—N2—C20 | 112.70 (12) | C18—C19—C20 | 115.93 (13) |
C32—N2—C21 | 116.01 (12) | C10—C19—C20 | 104.77 (11) |
C20—N2—C21 | 107.99 (11) | C18—C19—H19A | 106.9 |
C2—C1—C6 | 120.88 (15) | C10—C19—H19A | 106.9 |
C2—C1—H1A | 119.6 | C20—C19—H19A | 106.9 |
C6—C1—H1A | 119.6 | N2—C20—C19 | 106.63 (12) |
C1—C2—C3 | 121.48 (16) | N2—C20—H20A | 110.4 |
C1—C2—H2A | 119.3 | C19—C20—H20A | 110.4 |
C3—C2—H2A | 119.3 | N2—C20—H20B | 110.4 |
C4—C3—C2 | 117.59 (16) | C19—C20—H20B | 110.4 |
C4—C3—C30 | 121.49 (17) | H20A—C20—H20B | 108.6 |
C2—C3—C30 | 120.92 (18) | N2—C21—C22 | 114.83 (11) |
C5—C4—C3 | 121.40 (16) | N2—C21—C10 | 102.80 (11) |
C5—C4—H4A | 119.3 | C22—C21—C10 | 114.00 (11) |
C3—C4—H4A | 119.3 | N2—C21—C29 | 114.35 (11) |
C4—C5—C6 | 121.44 (16) | C22—C21—C29 | 105.28 (11) |
C4—C5—H5A | 119.3 | C10—C21—C29 | 105.45 (11) |
C6—C5—H5A | 119.3 | O3—C22—C23 | 127.68 (14) |
C5—C6—C1 | 117.17 (14) | O3—C22—C21 | 123.96 (14) |
C5—C6—C7 | 117.71 (14) | C23—C22—C21 | 108.36 (12) |
C1—C6—C7 | 125.12 (14) | C28—C23—C24 | 121.26 (15) |
C8—C7—C6 | 130.04 (14) | C28—C23—C22 | 110.20 (13) |
C8—C7—H7A | 115.0 | C24—C23—C22 | 128.53 (14) |
C6—C7—H7A | 115.0 | C25—C24—C23 | 118.28 (15) |
C7—C8—C9 | 116.81 (13) | C25—C24—H24A | 120.9 |
C7—C8—C12 | 124.92 (14) | C23—C24—H24A | 120.9 |
C9—C8—C12 | 118.11 (12) | C24—C25—C26 | 120.64 (15) |
O1—C9—C8 | 121.97 (13) | C24—C25—H25A | 119.7 |
O1—C9—C10 | 121.88 (14) | C26—C25—H25A | 119.7 |
C8—C9—C10 | 116.16 (12) | C27—C26—C25 | 121.11 (15) |
C9—C10—C19 | 113.59 (12) | C27—C26—H26A | 119.4 |
C9—C10—C21 | 112.47 (12) | C25—C26—H26A | 119.4 |
C19—C10—C21 | 105.14 (11) | C28—C27—C26 | 118.36 (14) |
C9—C10—C11 | 105.65 (11) | C28—C27—H27A | 120.8 |
C19—C10—C11 | 119.93 (12) | C26—C27—H27A | 120.8 |
C21—C10—C11 | 99.28 (11) | C27—C28—C23 | 120.35 (14) |
N1—C11—C10 | 103.44 (11) | C27—C28—C29 | 127.57 (13) |
N1—C11—H11A | 111.1 | C23—C28—C29 | 112.01 (13) |
C10—C11—H11A | 111.1 | O2—C29—N1 | 110.03 (11) |
N1—C11—H11B | 111.1 | O2—C29—C28 | 107.24 (11) |
C10—C11—H11B | 111.1 | N1—C29—C28 | 116.66 (12) |
H11A—C11—H11B | 109.0 | O2—C29—C21 | 113.48 (11) |
N1—C12—C8 | 114.17 (12) | N1—C29—C21 | 105.34 (11) |
N1—C12—H12A | 108.7 | C28—C29—C21 | 104.15 (11) |
C8—C12—H12A | 108.7 | C3—C30—H30A | 109.5 |
N1—C12—H12B | 108.7 | C3—C30—H30B | 109.5 |
C8—C12—H12B | 108.7 | H30A—C30—H30B | 109.5 |
H12A—C12—H12B | 107.6 | C3—C30—H30C | 109.5 |
C14—C13—C18 | 120.67 (15) | H30A—C30—H30C | 109.5 |
C14—C13—H13A | 119.7 | H30B—C30—H30C | 109.5 |
C18—C13—H13A | 119.7 | C15—C31—H31A | 109.5 |
C13—C14—C15 | 121.66 (16) | C15—C31—H31B | 109.5 |
C13—C14—H14A | 119.2 | H31A—C31—H31B | 109.5 |
C15—C14—H14A | 119.2 | C15—C31—H31C | 109.5 |
C14—C15—C16 | 117.66 (15) | H31A—C31—H31C | 109.5 |
C14—C15—C31 | 121.37 (17) | H31B—C31—H31C | 109.5 |
C16—C15—C31 | 120.96 (17) | N2—C32—H32A | 109.5 |
C17—C16—C15 | 121.05 (15) | N2—C32—H32B | 109.5 |
C17—C16—H16A | 119.5 | H32A—C32—H32B | 109.5 |
C15—C16—H16A | 119.5 | N2—C32—H32C | 109.5 |
C16—C17—C18 | 121.23 (16) | H32A—C32—H32C | 109.5 |
C16—C17—H17A | 119.4 | H32B—C32—H32C | 109.5 |
C18—C17—H17A | 119.4 | ||
C6—C1—C2—C3 | 0.4 (2) | C32—N2—C21—C22 | 39.35 (17) |
C1—C2—C3—C4 | 1.3 (2) | C20—N2—C21—C22 | −88.23 (14) |
C1—C2—C3—C30 | −178.91 (16) | C32—N2—C21—C10 | 163.73 (12) |
C2—C3—C4—C5 | −1.4 (3) | C20—N2—C21—C10 | 36.15 (14) |
C30—C3—C4—C5 | 178.74 (17) | C32—N2—C21—C29 | −82.52 (15) |
C3—C4—C5—C6 | −0.1 (3) | C20—N2—C21—C29 | 149.89 (12) |
C4—C5—C6—C1 | 1.7 (2) | C9—C10—C21—N2 | −155.97 (11) |
C4—C5—C6—C7 | −178.52 (15) | C19—C10—C21—N2 | −31.88 (13) |
C2—C1—C6—C5 | −1.9 (2) | C11—C10—C21—N2 | 92.73 (12) |
C2—C1—C6—C7 | 178.37 (14) | C9—C10—C21—C22 | −31.04 (17) |
C5—C6—C7—C8 | 156.33 (16) | C19—C10—C21—C22 | 93.04 (14) |
C1—C6—C7—C8 | −23.9 (3) | C11—C10—C21—C22 | −142.35 (12) |
C6—C7—C8—C9 | −176.56 (14) | C9—C10—C21—C29 | 83.93 (13) |
C6—C7—C8—C12 | −1.3 (3) | C19—C10—C21—C29 | −151.98 (11) |
C7—C8—C9—O1 | −24.1 (2) | C11—C10—C21—C29 | −27.37 (13) |
C12—C8—C9—O1 | 160.29 (14) | N2—C21—C22—O3 | 53.63 (19) |
C7—C8—C9—C10 | 156.00 (13) | C10—C21—C22—O3 | −64.61 (19) |
C12—C8—C9—C10 | −19.64 (18) | C29—C21—C22—O3 | −179.69 (13) |
O1—C9—C10—C19 | −2.6 (2) | N2—C21—C22—C23 | −125.69 (13) |
C8—C9—C10—C19 | 177.34 (12) | C10—C21—C22—C23 | 116.07 (13) |
O1—C9—C10—C21 | 116.68 (15) | C29—C21—C22—C23 | 0.98 (14) |
C8—C9—C10—C21 | −63.39 (16) | O3—C22—C23—C28 | 179.97 (14) |
O1—C9—C10—C11 | −136.04 (14) | C21—C22—C23—C28 | −0.75 (16) |
C8—C9—C10—C11 | 43.90 (15) | O3—C22—C23—C24 | −1.6 (3) |
C12—N1—C11—C10 | 76.80 (13) | C21—C22—C23—C24 | 177.64 (14) |
C29—N1—C11—C10 | −45.79 (13) | C28—C23—C24—C25 | 0.6 (2) |
C9—C10—C11—N1 | −71.79 (13) | C22—C23—C24—C25 | −177.60 (15) |
C19—C10—C11—N1 | 158.37 (12) | C23—C24—C25—C26 | 0.2 (2) |
C21—C10—C11—N1 | 44.82 (13) | C24—C25—C26—C27 | −0.5 (3) |
C11—N1—C12—C8 | −50.37 (15) | C25—C26—C27—C28 | 0.0 (2) |
C29—N1—C12—C8 | 65.83 (16) | C26—C27—C28—C23 | 0.8 (2) |
C7—C8—C12—N1 | −154.02 (14) | C26—C27—C28—C29 | 177.55 (14) |
C9—C8—C12—N1 | 21.23 (18) | C24—C23—C28—C27 | −1.1 (2) |
C18—C13—C14—C15 | 0.7 (3) | C22—C23—C28—C27 | 177.39 (13) |
C13—C14—C15—C16 | 0.3 (3) | C24—C23—C28—C29 | −178.35 (13) |
C13—C14—C15—C31 | −178.27 (17) | C22—C23—C28—C29 | 0.17 (17) |
C14—C15—C16—C17 | −0.8 (2) | C12—N1—C29—O2 | 145.71 (12) |
C31—C15—C16—C17 | 177.68 (17) | C11—N1—C29—O2 | −95.69 (12) |
C15—C16—C17—C18 | 0.5 (3) | C12—N1—C29—C28 | 23.31 (17) |
C14—C13—C18—C17 | −1.0 (2) | C11—N1—C29—C28 | 141.90 (12) |
C14—C13—C18—C19 | 178.92 (15) | C12—N1—C29—C21 | −91.62 (13) |
C16—C17—C18—C13 | 0.5 (2) | C11—N1—C29—C21 | 26.98 (13) |
C16—C17—C18—C19 | −179.51 (14) | C27—C28—C29—O2 | −55.96 (19) |
C13—C18—C19—C10 | −81.59 (18) | C23—C28—C29—O2 | 121.01 (13) |
C17—C18—C19—C10 | 98.37 (16) | C27—C28—C29—N1 | 67.89 (19) |
C13—C18—C19—C20 | 41.0 (2) | C23—C28—C29—N1 | −115.14 (14) |
C17—C18—C19—C20 | −139.06 (15) | C27—C28—C29—C21 | −176.52 (14) |
C9—C10—C19—C18 | −91.75 (15) | C23—C28—C29—C21 | 0.45 (15) |
C21—C10—C19—C18 | 144.87 (12) | N2—C21—C29—O2 | 9.84 (17) |
C11—C10—C19—C18 | 34.47 (18) | C22—C21—C29—O2 | −117.13 (12) |
C9—C10—C19—C20 | 139.85 (12) | C10—C21—C29—O2 | 122.01 (12) |
C21—C10—C19—C20 | 16.48 (14) | N2—C21—C29—N1 | −110.58 (12) |
C11—C10—C19—C20 | −93.92 (15) | C22—C21—C29—N1 | 122.45 (11) |
C32—N2—C20—C19 | −155.70 (12) | C10—C21—C29—N1 | 1.59 (14) |
C21—N2—C20—C19 | −26.24 (15) | N2—C21—C29—C28 | 126.12 (12) |
C18—C19—C20—N2 | −122.78 (13) | C22—C21—C29—C28 | −0.85 (14) |
C10—C19—C20—N2 | 4.99 (15) | C10—C21—C29—C28 | −121.71 (12) |
Cg1 is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N2i | 0.85 (2) | 2.00 (2) | 2.794 (2) | 156 (2) |
C5—H5A···O3ii | 0.93 | 2.48 | 3.206 (2) | 135 |
C11—H11B···O2i | 0.97 | 2.36 | 3.258 (2) | 154 |
C13—H13A···O2i | 0.93 | 2.40 | 3.291 (2) | 161 |
C30—H30C···Cg1iii | 0.96 | 2.83 | 3.563 (3) | 134 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, −y, −z+1; (iii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C32H30N2O3 |
Mr | 490.58 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 9.3252 (6), 12.1781 (8), 12.9821 (8) |
α, β, γ (°) | 67.480 (2), 86.093 (2), 69.475 (2) |
V (Å3) | 1271.68 (14) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.56 × 0.29 × 0.25 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.713, 0.851 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13699, 4121, 4004 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.588 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.134, 1.21 |
No. of reflections | 4121 |
No. of parameters | 342 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.32, −0.40 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of the C13–C18 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H1O2···N2i | 0.85 (2) | 2.00 (2) | 2.794 (2) | 156 (2) |
C5—H5A···O3ii | 0.93 | 2.48 | 3.206 (2) | 135 |
C11—H11B···O2i | 0.97 | 2.36 | 3.258 (2) | 154 |
C13—H13A···O2i | 0.93 | 2.40 | 3.291 (2) | 161 |
C30—H30C···Cg1iii | 0.96 | 2.83 | 3.563 (3) | 134 |
Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, −y, −z+1; (iii) −x+2, −y+1, −z+1. |
Acknowledgements
The synthetic chemistry work was funded by Universiti Sains Malaysia (USM) under the University Research Grant (No. 1001/PKIMIA/811016). RSK thanks USM for the award of a postdoctoral fellowship. HKF and CSY thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY also thanks USM for the award of a USM fellowship.
References
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Crane, S. N. & Corey, E. J. (2001). Org. Lett. 3, 1395–1397. Web of Science CrossRef PubMed CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Enyedy, I. J., Zaman, W. A., Sakamuri, S., Kozikowski, A. P., Johnson, K. M. & Wang, S. (2001). Bioorg. Med. Chem. Lett. 11, 1113–1118. Web of Science CrossRef PubMed CAS Google Scholar
Kagan, H. B. (1975). Asymmetric Synthesis, Vol. 5, ch. 1, edited by J. D. Morrison. Academic Press: New York. Google Scholar
Kumar, R. S., Osman, H., Ali, M. A., Hemamalini, M. & Fun, H.-K. (2010a). Acta Cryst. E66, o1370–o1371. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kumar, R. S., Osman, H., Ali, M. A., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1540–o1541. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mitchell, R. E. & Teh, K. L. (2005). Org. Biomol. Chem. 3, 3540–3543. Web of Science CrossRef PubMed CAS Google Scholar
Okazaki, Y., Ishihara, A., Nishida, T. & Iwamura, H. (2004). Tetrahedron, 60, 4765–4771. Web of Science CrossRef CAS Google Scholar
Saravanan, P. & Corey, E. J. (2003). J. Org. Chem. 68, 2760–2764. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xi, N., Arvedson, S., Eisenberg, S., Han, N., Handley, M., Huang, L., Huang, Q., Kiselyov, A., Liu, Q., Lu, Y., Nunez, G., Osslund, T., Powers, D., Tasker, A. S., Wang, L., Xiang, T., Xu, S., Zhang, J., Zhu, J., Kendall, R. & Dominguez, C. (2004). Bioorg. Med. Chem. Lett. 14, 2905–2909. Web of Science CrossRef PubMed CAS Google Scholar
Yee, N. K., Nummy, L. J., Byrne, D. P., Smith, L. L. & Roth, G. P. (1998). J. Org. Chem. 63, 326–330. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted pyrrolidine derivatives are widespread structural features of natural and designed biologically active molecules (Mitchell & Teh, 2005; Okazaki et al., 2004; Enyedy et al., 2001). In addition, these heterocycles can be used for pharmaceutical purposes (Yee et al., 1998; Saravanan & Corey, 2003; Crane & Corey, 2001; Xi et al., 2004) and ligands of transition metal catalysts (Kagan, 1975). Consequently, the efficient preparation of these heterocycles has received significant attention. In view of this importance, the crystal structure determination of the title compound was carried out and the results are presented here.
The molecular structure of the title compound is shown in Fig. 1. The piperidin-4-one ring (N1/C12/C8–C11) adopts a distorted envelope conformation (flap atom C11), with puckering parameters Q = 0.625 (2) Å, θ = 140.1 (2)° and φ = 237.9 (2)° (Cremer & Pople, 1975). The two fused pyrrolidine rings with atom sequences N1/C11/C10/C21/C29 and N2/C20/C19/C10/C21 adopt envelope conformations, with atoms C11 and C21, respectively, as flap atoms. The puckering parameters are Q = 0.454 (2) Å, φ = 38.7 (2)° for the N1/C11/C10/C21/C29 pyrrolidine ring and Q = 0.341 (2) Å, φ = 331.2 (3)° for the N2/C20/C19/C10/C21 pyrrolidine ring. The two benzene rings (C1–C6 and C13–C18) make dihedral angle of 20.36 (7) and 56.24 (7)°, respectively with the mean plane of indan-1-one (C21–C29) ring system. The geometric parameters are consistent to those observed in closely related structures (Kumar et al., 2010a,b).
In the crystal structure, intermolecular O2—H1O2···N2, C11—H11B···O2 and C13—H13A···O2 hydrogen bonds (Table 1) link the molecules into dimers (Fig. 2). The dimers are interconnected into chains propagating along the [001] direction via intermolecular C5—H5A···O3 hydrogen bonds (Fig. 3 and Table 1). Weak intermolecular C30—H30C···π interactions (Table 1) involving the C13–C18 benzene ring are also observed.