organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-methyl­pyridinium hexa-2,4-dienoate dihydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 14 August 2010; accepted 17 August 2010; online 25 August 2010)

In the title salt, C6H9N2+·C6H7O2·2H2O, the non-H atoms of the 2-amino-4-methyl­pyridinium cation are coplanar, with a maximum deviation of 0.010 (1) Å. In the crystal structure, the pyridinium N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The sorbate anions and water mol­ecules are linked through O—H⋯O hydrogen bonds, forming R1010(28) and R64(12) ring motifs. The motifs form part of a three-dimensional framework.

Related literature

For the role of hydrogen bonding in crystal engineering, see: Goswami & Ghosh (1997[Goswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503-4506.]); Goswami et al. (1998[Goswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301-1302.]); Lehn (1992[Lehn, J. M. (1992). J. Coord. Chem. 27, 3-6.]). For applications of pyridinium derivatives, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776-o778.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C6H7O2·2H2O

  • Mr = 256.30

  • Monoclinic, P 21 /c

  • a = 8.8233 (4) Å

  • b = 12.6783 (6) Å

  • c = 13.1647 (6) Å

  • β = 108.279 (1)°

  • V = 1398.35 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.66 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.978

  • 23001 measured reflections

  • 6087 independent reflections

  • 4840 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.140

  • S = 1.05

  • 6087 reflections

  • 193 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.97 (2) 1.72 (2) 2.6875 (9) 175 (1)
N2—H1N2⋯O1i 0.91 (2) 2.01 (2) 2.9139 (10) 173 (1)
N2—H2N2⋯O1W 0.94 (2) 1.92 (2) 2.8453 (11) 166 (1)
O2W—H1W2⋯O2ii 0.85 (2) 1.91 (2) 2.7510 (10) 167 (2)
O2W—H2W2⋯O1 0.87 (2) 1.96 (2) 2.8140 (9) 168 (2)
O1W—H1W1⋯O1iii 0.84 (2) 2.05 (2) 2.8777 (10) 168 (2)
O1W—H2W1⋯O2W 0.86 (2) 1.88 (2) 2.7425 (11) 173 (2)
Symmetry codes: (i) x+1, y, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrogen bonding plays a key role in molecular recognition (Goswami & Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). The design of highly specific solid-state compounds is of considerable significance in organic chemistry due to important applications of these compounds in the development of new optical, magnetic and electronic systems (Lehn, 1992). Pyridinium derivatives often possess antibacterial and antifungal activities (Akkurt et al., 2005). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). In order to study some hydrogen bonding interactions, the synthesis and structure of the title salt, (I), is presented here.

The asymmetric unit of (I) contains one 2-amino-4-methylpyridinium cation, one sorbate anion and two water molecules (Fig. 1). The non-H atoms of the 2-amino-4-methylpyridinium cation are coplanar, with a maximum deviation of 0.010 (1) Å for atom N1. The protonation of atom N1 has lead to a slight increase in the C1—N1—C5 angle to 121.96 (6)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N1 atom and one of the 2-amino group hydrogen (H1N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2 and N2—H1N2···O1 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The sorbate anion and two water molecules are linked through O2W—H1W2···O2, O2W—H2W2···O1, O1W—H1W1···O1 and O1W—H2W1···O2W (Table 1) hydrogen-bonds, forming R1010(28) and R64(12) ring motifs (Fig. 3).

Related literature top

For the role of hydrogen bonding in crystal engineering, see: Goswami & Ghosh (1997); Goswami et al. (1998); Lehn (1992). For applications of pyridinium derivatives, see: Akkurt et al. (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-4-methylpyridine (54 mg, Aldrich) and sorbic acid (56 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement top

Atoms H1N1, H1N2, H2N2, H1W2, H2W2, H1W1 and H2W1 were located in a difference Fourier map and were refined freely [N–H= 0.911 (18)– 0.967 (17) Å and O–H= 0.84 (18)–0.87 (2) Å]. The remaining H atoms were positioned geometrically [C–H = 0.93 or 0.96 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl group.

Structure description top

Hydrogen bonding plays a key role in molecular recognition (Goswami & Ghosh, 1997) and crystal engineering research (Goswami et al., 1998). The design of highly specific solid-state compounds is of considerable significance in organic chemistry due to important applications of these compounds in the development of new optical, magnetic and electronic systems (Lehn, 1992). Pyridinium derivatives often possess antibacterial and antifungal activities (Akkurt et al., 2005). They are often involved in hydrogen-bonding interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). In order to study some hydrogen bonding interactions, the synthesis and structure of the title salt, (I), is presented here.

The asymmetric unit of (I) contains one 2-amino-4-methylpyridinium cation, one sorbate anion and two water molecules (Fig. 1). The non-H atoms of the 2-amino-4-methylpyridinium cation are coplanar, with a maximum deviation of 0.010 (1) Å for atom N1. The protonation of atom N1 has lead to a slight increase in the C1—N1—C5 angle to 121.96 (6)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

In the crystal packing (Fig. 2), the protonated N1 atom and one of the 2-amino group hydrogen (H1N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O2 and N2—H1N2···O1 hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The sorbate anion and two water molecules are linked through O2W—H1W2···O2, O2W—H2W2···O1, O1W—H1W1···O1 and O1W—H2W1···O2W (Table 1) hydrogen-bonds, forming R1010(28) and R64(12) ring motifs (Fig. 3).

For the role of hydrogen bonding in crystal engineering, see: Goswami & Ghosh (1997); Goswami et al. (1998); Lehn (1992). For applications of pyridinium derivatives, see: Akkurt et al. (2005). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing part of a hydrogen-bonded (dashed lines) three-dimensional network. H atoms not involved in the interactions have been omitted for clarity.
[Figure 3] Fig. 3. Part of a hydrogen-bonded (dashed lines) two-dimensional network made up of anions and water molecules.
2-Amino-4-methylpyridinium hexa-2,4-dienoate dihydrate top
Crystal data top
C6H9N2+·C6H7O2·2H2OF(000) = 552
Mr = 256.30Dx = 1.217 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7645 reflections
a = 8.8233 (4) Åθ = 2.9–34.9°
b = 12.6783 (6) ŵ = 0.09 mm1
c = 13.1647 (6) ÅT = 100 K
β = 108.279 (1)°Needle, brown
V = 1398.35 (11) Å30.66 × 0.28 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6087 independent reflections
Radiation source: fine-focus sealed tube4840 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 35.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.942, Tmax = 0.978k = 2020
23001 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.1516P]
where P = (Fo2 + 2Fc2)/3
6087 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H9N2+·C6H7O2·2H2OV = 1398.35 (11) Å3
Mr = 256.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8233 (4) ŵ = 0.09 mm1
b = 12.6783 (6) ÅT = 100 K
c = 13.1647 (6) Å0.66 × 0.28 × 0.25 mm
β = 108.279 (1)°
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
6087 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4840 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.978Rint = 0.031
23001 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.41 e Å3
6087 reflectionsΔρmin = 0.24 e Å3
193 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.07997 (7)0.26852 (5)0.19290 (5)0.02127 (12)
N21.01177 (8)0.43659 (6)0.12630 (6)0.02585 (14)
C11.04257 (9)0.16859 (7)0.21363 (7)0.02539 (15)
H1A1.12370.12240.24940.030*
C20.88836 (10)0.13495 (7)0.18292 (7)0.02690 (16)
H2A0.86380.06640.19740.032*
C30.76591 (9)0.20597 (7)0.12849 (6)0.02333 (14)
C40.80544 (8)0.30662 (6)0.10894 (6)0.02151 (14)
H4A0.72570.35380.07340.026*
C50.96682 (8)0.33929 (6)0.14240 (6)0.01984 (13)
C60.59508 (10)0.17064 (8)0.09388 (8)0.03179 (18)
H6A0.52840.22580.05350.048*
H6B0.56380.15490.15580.048*
H6C0.58360.10870.05020.048*
O10.35573 (6)0.47026 (5)0.19351 (5)0.02451 (12)
O20.39446 (7)0.30966 (5)0.26595 (6)0.02668 (13)
C70.44389 (8)0.40024 (6)0.25192 (6)0.02007 (13)
C80.61399 (8)0.42857 (6)0.30428 (7)0.02356 (15)
H8A0.64220.49930.30540.028*
C90.72932 (8)0.35883 (6)0.34995 (6)0.02082 (13)
H9A0.70100.28860.35380.025*
C100.89651 (8)0.38771 (7)0.39373 (6)0.02347 (14)
H10A0.92260.45890.39600.028*
C111.01497 (9)0.31857 (7)0.43086 (6)0.02396 (15)
H11A0.98820.24760.43070.029*
C121.18754 (9)0.34726 (8)0.47266 (7)0.02996 (18)
H12A1.23170.32190.54460.045*
H12B1.19860.42260.47190.045*
H12C1.24340.31580.42840.045*
O1W0.75170 (8)0.57495 (6)0.03208 (6)0.03181 (15)
O2W0.51394 (8)0.62847 (5)0.11569 (6)0.03052 (14)
H1N11.192 (2)0.2876 (12)0.2177 (14)0.047 (4)*
H1N21.118 (2)0.4529 (13)0.1473 (14)0.049 (4)*
H2N20.9370 (19)0.4873 (12)0.0898 (13)0.042 (4)*
H1W20.529 (2)0.6833 (14)0.1552 (15)0.051 (4)*
H2W20.468 (2)0.5855 (14)0.1483 (13)0.049 (4)*
H1W10.7068 (19)0.5623 (12)0.0331 (14)0.041 (4)*
H2W10.672 (2)0.5876 (14)0.0553 (16)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0137 (2)0.0268 (3)0.0213 (3)0.0011 (2)0.00269 (19)0.0009 (2)
N20.0161 (3)0.0250 (3)0.0347 (4)0.0000 (2)0.0054 (2)0.0003 (3)
C10.0194 (3)0.0278 (3)0.0252 (3)0.0014 (2)0.0017 (3)0.0030 (3)
C20.0219 (3)0.0289 (4)0.0267 (3)0.0031 (3)0.0031 (3)0.0042 (3)
C30.0158 (3)0.0327 (4)0.0203 (3)0.0031 (2)0.0038 (2)0.0002 (3)
C40.0125 (3)0.0294 (3)0.0216 (3)0.0009 (2)0.0038 (2)0.0002 (2)
C50.0139 (3)0.0252 (3)0.0199 (3)0.0011 (2)0.0046 (2)0.0023 (2)
C60.0178 (3)0.0439 (5)0.0312 (4)0.0086 (3)0.0041 (3)0.0033 (3)
O10.0151 (2)0.0244 (3)0.0303 (3)0.00155 (18)0.00176 (19)0.0031 (2)
O20.0139 (2)0.0262 (3)0.0363 (3)0.00069 (18)0.0026 (2)0.0061 (2)
C70.0130 (2)0.0238 (3)0.0224 (3)0.0010 (2)0.0039 (2)0.0004 (2)
C80.0134 (3)0.0252 (3)0.0292 (3)0.0009 (2)0.0027 (2)0.0005 (3)
C90.0137 (3)0.0264 (3)0.0218 (3)0.0000 (2)0.0047 (2)0.0005 (2)
C100.0134 (3)0.0282 (3)0.0268 (3)0.0005 (2)0.0034 (2)0.0012 (3)
C110.0143 (3)0.0332 (4)0.0230 (3)0.0010 (2)0.0038 (2)0.0006 (3)
C120.0128 (3)0.0450 (5)0.0293 (4)0.0016 (3)0.0026 (3)0.0013 (3)
O1W0.0235 (3)0.0377 (3)0.0302 (3)0.0067 (2)0.0027 (2)0.0046 (3)
O2W0.0328 (3)0.0252 (3)0.0357 (3)0.0037 (2)0.0138 (3)0.0036 (2)
Geometric parameters (Å, º) top
N1—C51.3518 (9)O2—C71.2624 (9)
N1—C11.3583 (11)C7—C81.4859 (10)
N1—H1N10.967 (17)C8—C91.3397 (10)
N2—C51.3329 (10)C8—H8A0.93
N2—H1N20.911 (18)C9—C101.4522 (10)
N2—H2N20.938 (16)C9—H9A0.93
C1—C21.3607 (11)C10—C111.3339 (11)
C1—H1A0.93C10—H10A0.93
C2—C31.4163 (12)C11—C121.4927 (11)
C2—H2A0.93C11—H11A0.93
C3—C41.3684 (11)C12—H12A0.96
C3—C61.4997 (11)C12—H12B0.96
C4—C51.4141 (10)C12—H12C0.96
C4—H4A0.93O1W—H1W10.840 (18)
C6—H6A0.96O1W—H2W10.87 (2)
C6—H6B0.96O2W—H1W20.853 (18)
C6—H6C0.96O2W—H2W20.868 (17)
O1—C71.2686 (9)
C5—N1—C1121.96 (6)H6A—C6—H6C109.5
C5—N1—H1N1121.1 (9)H6B—C6—H6C109.5
C1—N1—H1N1116.9 (9)O2—C7—O1123.44 (6)
C5—N2—H1N2119.3 (11)O2—C7—C8119.81 (6)
C5—N2—H2N2121.3 (9)O1—C7—C8116.75 (7)
H1N2—N2—H2N2119.3 (14)C9—C8—C7124.27 (7)
N1—C1—C2121.07 (7)C9—C8—H8A117.9
N1—C1—H1A119.5C7—C8—H8A117.9
C2—C1—H1A119.5C8—C9—C10123.08 (7)
C1—C2—C3118.95 (8)C8—C9—H9A118.5
C1—C2—H2A120.5C10—C9—H9A118.5
C3—C2—H2A120.5C11—C10—C9124.16 (8)
C4—C3—C2119.28 (7)C11—C10—H10A117.9
C4—C3—C6120.83 (7)C9—C10—H10A117.9
C2—C3—C6119.89 (8)C10—C11—C12124.50 (8)
C3—C4—C5120.38 (7)C10—C11—H11A117.7
C3—C4—H4A119.8C12—C11—H11A117.7
C5—C4—H4A119.8C11—C12—H12A109.5
N2—C5—N1118.80 (6)C11—C12—H12B109.5
N2—C5—C4122.84 (7)H12A—C12—H12B109.5
N1—C5—C4118.35 (7)C11—C12—H12C109.5
C3—C6—H6A109.5H12A—C12—H12C109.5
C3—C6—H6B109.5H12B—C12—H12C109.5
H6A—C6—H6B109.5H1W1—O1W—H2W1102.7 (17)
C3—C6—H6C109.5H1W2—O2W—H2W2102.4 (15)
C5—N1—C1—C20.83 (12)C3—C4—C5—N2179.36 (8)
N1—C1—C2—C30.02 (13)C3—C4—C5—N10.62 (11)
C1—C2—C3—C40.51 (13)O2—C7—C8—C913.47 (12)
C1—C2—C3—C6180.00 (8)O1—C7—C8—C9165.81 (8)
C2—C3—C4—C50.19 (12)C7—C8—C9—C10175.41 (7)
C6—C3—C4—C5179.67 (7)C8—C9—C10—C11173.75 (8)
C1—N1—C5—N2178.84 (8)C9—C10—C11—C12177.89 (8)
C1—N1—C5—C41.14 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.97 (2)1.72 (2)2.6875 (9)175 (1)
N2—H1N2···O1i0.91 (2)2.01 (2)2.9139 (10)173 (1)
N2—H2N2···O1W0.94 (2)1.92 (2)2.8453 (11)166 (1)
O2W—H1W2···O2ii0.85 (2)1.91 (2)2.7510 (10)167 (2)
O2W—H2W2···O10.87 (2)1.96 (2)2.8140 (9)168 (2)
O1W—H1W1···O1iii0.84 (2)2.05 (2)2.8777 (10)168 (2)
O1W—H2W1···O2W0.86 (2)1.88 (2)2.7425 (11)173 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C6H7O2·2H2O
Mr256.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.8233 (4), 12.6783 (6), 13.1647 (6)
β (°) 108.279 (1)
V3)1398.35 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.66 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.942, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
23001, 6087, 4840
Rint0.031
(sin θ/λ)max1)0.808
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.140, 1.05
No. of reflections6087
No. of parameters193
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.97 (2)1.72 (2)2.6875 (9)175 (1)
N2—H1N2···O1i0.91 (2)2.01 (2)2.9139 (10)173 (1)
N2—H2N2···O1W0.94 (2)1.92 (2)2.8453 (11)166 (1)
O2W—H1W2···O2ii0.85 (2)1.91 (2)2.7510 (10)167 (2)
O2W—H2W2···O10.87 (2)1.96 (2)2.8140 (9)168 (2)
O1W—H1W1···O1iii0.84 (2)2.05 (2)2.8777 (10)168 (2)
O1W—H2W1···O2W0.86 (2)1.88 (2)2.7425 (11)173 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGoswami, S. P. & Ghosh, K. (1997). Tetrahedron Lett. 38, 4503–4506.  CrossRef CAS Web of Science Google Scholar
First citationGoswami, S., Mahapatra, A. K., Nigam, G. D., Chinnakali, K. & Fun, H.-K. (1998). Acta Cryst. C54, 1301–1302.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationLehn, J. M. (1992). J. Coord. Chem. 27, 3–6.  CrossRef Web of Science Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds