organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Amino-5-nitro­anilino)-5,5-di­methyl­cyclo­hex-2-en-1-one 0.25-hydrate

aSchool of Industrial Technology, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 18 August 2010; accepted 23 August 2010; online 28 August 2010)

The asymmetric unit of the title compound, C14H17N3O3·0.25H2O, comprises two independent organic mol­ecules and a water mol­ecule lying on a crystallographic twofold rotation axis with 50% site occupancy. In both independent mol­ecules, the cyclo­hexene rings adopt envelope conformations but superposition of the two molecules shows that the flap atoms point in opposite directions. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds inter­connect adjacent mol­ecules into a three-dimensional network. Weak inter­molecular ππ aromatic stacking inter­actions [centroid–centroid distances = 3.4985 (9) and 3.6630 (9) Å] are also observed.

Related literature

For general background to (2-amino­phen­yl)amino­cyclo­hexene derivatives, see: Cortés et al. (2004[Cortés, E. C., Baños, M. A. & de Cortés, O. G.-M. (2004). J. Heterocycl. Chem. 41, 277-280.]); Tonkikh et al. (2004[Tonkikh, N. N., Strakovs, A., Rizhanova, K. V. & Petrova, M. V. (2004). Chem. Heterocycl. Compd, 40, 949-955.]). For ring conformations and puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Ghalib et al. (2010[Ghalib, R. M., Sulaiman, O., Mehdi, S. H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1889-o1890.]); Mehdi et al. (2010[Mehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1832.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H17N3O3·0.25H2O

  • Mr = 279.81

  • Monoclinic, C 2/c

  • a = 18.9043 (1) Å

  • b = 16.7048 (1) Å

  • c = 17.8806 (2) Å

  • β = 102.443 (1)°

  • V = 5513.93 (8) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.36 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.991

  • 58072 measured reflections

  • 8086 independent reflections

  • 5448 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.135

  • S = 1.06

  • 8086 reflections

  • 398 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O1Bi 0.89 (2) 1.99 (2) 2.8678 (17) 172 (2)
N3A—H2NA⋯O1Aii 0.90 (2) 2.09 (2) 2.9874 (19) 176 (2)
N3A—H3NA⋯O2Biii 0.91 (2) 2.40 (2) 3.258 (2) 156 (2)
N1B—H1NB⋯O1Wiv 0.89 (2) 2.45 (2) 3.2651 (15) 152 (2)
N3B—H2NB⋯O1Bv 0.88 (2) 2.05 (2) 2.9161 (19) 169 (2)
N3B—H3NB⋯O1Avi 0.88 (2) 2.06 (2) 2.8963 (18) 159 (2)
C8A—H8AA⋯O2Biii 0.97 2.55 3.280 (2) 132
C8B—H8BA⋯O1Wiv 0.97 2.32 3.247 (2) 160
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) -x, -y+2, -z+2; (iii) x, y+1, z+1; (iv) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (v) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In the recent past many (2-aminophenyl)aminocyclohexene derivatives have been prepared by different methods (Tonkikh et al., 2004; Cortés et al., 2004). Recently we have reported the synthesis of 1,3,3-trimethyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-1-ol by the reaction of dimedone with orthophenylenediamine in acetic acid and ethanol (Mehdi et al., 2010). In this paper we report the synthesis and crystal structure of the title compound by the reaction of dimedone with 4-nitro o-phenylenediamine in the presence of acetic acid and ethanol.

The asymmetric unit of the title compound comprises of two 3-[(2-amino-5-nitrophenyl)amino]-5,5-dimethylcyclohex-2-enone molecules (A and B) and half of a water molecule (Fig. 1). The water molecule lies on a crystallographic twofold rotation axis and the other half of the molecule is generated by the symmetry operation (-x, y, 1/2-z). In both molecules, the cyclohexene rings (C7A-C12A and C7B-C12B) adopt envelope conformations. The puckering parameters are Q = 0.443 (3) Å, θ = 126.3 (2)° and φ = 295.3 (3)° for molecule A and Q = 0.448 (2) Å, θ = 51.6 (2)° and φ = 122.2 (3)° for molecule B. Atoms C9A and C9B are the flap atoms of C7A-C12A and C7B-C12B cyclohexene rings, respectively, deviating from the mean planes formed through the remaining five atoms by -0.6196 (17) and 0.6286 (15) Å, respectively. The superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008) shows that the geometries of the two cyclohexene rings are different, with flap atoms in opposite directions. The bond lengths and angles are comparable to those observed in related structures (Ghalib et al., 2010; Mehdi et al., 2010).

In the crystal structure, adjacent molecules are interconnected into a three-dimensional network through N1A—H1NA···O1B, N3A—H2NA···O1A, N3A—H3NA···O2B, N1B—H1NB···O1W, N3B—H2NB···O1B, N3B—H3NB···O1A, C8A—H8AA···O2B, C8B—H8BA···O1W hydrogen bonds (Table 1). The crystal structure is further stabilized by intermolecular aromatic stacking interactions with Cg1···Cg1* = 3.6630 (19) Å and Cg2···Cg2$ 3.4985 (9) Å [symmetry codes: (*) -x, y, 3/2-z; ($) 1/2-x, 1/2-y, -z] where Cg1 and Cg2 are centroids of the C1A-C6A and C1B-C6B benzene rings, respectively.

Related literature top

For general background to (2-aminophenyl)aminocyclohexene derivatives, see: Cortés et al. (2004); Tonkikh et al. (2004). For ring conformations and puckering analysis, see: Cremer & Pople (1975). For related structures, see: Ghalib et al. (2010); Mehdi et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 4-nitro o-phenylenediamine (0.153 g) and dimedone (0.140 g) in a 1:1 molar ratio was refluxed in a mixture of acetic acid and ethanol (1:1 v/v) for 3 h. The solid settled in the reaction mixture was filtered and crystallized in ethanol to furnish orange-coloured single crystals of the title compound (100 mg, m.p. 481 K). The melting point was taken using the Thermo Fisher digital melting point apparatus of IA9000 series.

Refinement top

H atoms bound to O and N atoms were located in a difference Fourier map and refined freely [O–H = 0.83 (2) Å, range of N–H = 0.88 (2)–0.91 (2) Å]. The remaining H atoms were placed in their calculated positions, with C–H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

In the recent past many (2-aminophenyl)aminocyclohexene derivatives have been prepared by different methods (Tonkikh et al., 2004; Cortés et al., 2004). Recently we have reported the synthesis of 1,3,3-trimethyl-1,2,3,4-tetrahydropyrido[1,2-a]benzimidazol-1-ol by the reaction of dimedone with orthophenylenediamine in acetic acid and ethanol (Mehdi et al., 2010). In this paper we report the synthesis and crystal structure of the title compound by the reaction of dimedone with 4-nitro o-phenylenediamine in the presence of acetic acid and ethanol.

The asymmetric unit of the title compound comprises of two 3-[(2-amino-5-nitrophenyl)amino]-5,5-dimethylcyclohex-2-enone molecules (A and B) and half of a water molecule (Fig. 1). The water molecule lies on a crystallographic twofold rotation axis and the other half of the molecule is generated by the symmetry operation (-x, y, 1/2-z). In both molecules, the cyclohexene rings (C7A-C12A and C7B-C12B) adopt envelope conformations. The puckering parameters are Q = 0.443 (3) Å, θ = 126.3 (2)° and φ = 295.3 (3)° for molecule A and Q = 0.448 (2) Å, θ = 51.6 (2)° and φ = 122.2 (3)° for molecule B. Atoms C9A and C9B are the flap atoms of C7A-C12A and C7B-C12B cyclohexene rings, respectively, deviating from the mean planes formed through the remaining five atoms by -0.6196 (17) and 0.6286 (15) Å, respectively. The superposition of the non-H atoms of molecules A and B (Fig. 2) using XP in SHELXTL (Sheldrick, 2008) shows that the geometries of the two cyclohexene rings are different, with flap atoms in opposite directions. The bond lengths and angles are comparable to those observed in related structures (Ghalib et al., 2010; Mehdi et al., 2010).

In the crystal structure, adjacent molecules are interconnected into a three-dimensional network through N1A—H1NA···O1B, N3A—H2NA···O1A, N3A—H3NA···O2B, N1B—H1NB···O1W, N3B—H2NB···O1B, N3B—H3NB···O1A, C8A—H8AA···O2B, C8B—H8BA···O1W hydrogen bonds (Table 1). The crystal structure is further stabilized by intermolecular aromatic stacking interactions with Cg1···Cg1* = 3.6630 (19) Å and Cg2···Cg2$ 3.4985 (9) Å [symmetry codes: (*) -x, y, 3/2-z; ($) 1/2-x, 1/2-y, -z] where Cg1 and Cg2 are centroids of the C1A-C6A and C1B-C6B benzene rings, respectively.

For general background to (2-aminophenyl)aminocyclohexene derivatives, see: Cortés et al. (2004); Tonkikh et al. (2004). For ring conformations and puckering analysis, see: Cremer & Pople (1975). For related structures, see: Ghalib et al. (2010); Mehdi et al. (2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids for non-H atoms and the atom-numbering scheme.
[Figure 2] Fig. 2. Fit of molecule A (dashed lines) on molecule B (solid lines). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The crystal structure of the title compound, viewed down the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
3-(2-Amino-5-nitroanilino)-5,5-dimethylcyclohex-2-en-1-one 0.25-hydrate top
Crystal data top
C14H17N3O3·0.25H2OF(000) = 2376
Mr = 279.81Dx = 1.348 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6071 reflections
a = 18.9043 (1) Åθ = 2.2–24.2°
b = 16.7048 (1) ŵ = 0.10 mm1
c = 17.8806 (2) ÅT = 100 K
β = 102.443 (1)°Needle, orange
V = 5513.93 (8) Å30.36 × 0.10 × 0.10 mm
Z = 16
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8086 independent reflections
Radiation source: fine-focus sealed tube5448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ and ω scansθmax = 30.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2626
Tmin = 0.966, Tmax = 0.991k = 2323
58072 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0547P)2 + 2.5234P]
where P = (Fo2 + 2Fc2)/3
8086 reflections(Δ/σ)max = 0.001
398 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H17N3O3·0.25H2OV = 5513.93 (8) Å3
Mr = 279.81Z = 16
Monoclinic, C2/cMo Kα radiation
a = 18.9043 (1) ŵ = 0.10 mm1
b = 16.7048 (1) ÅT = 100 K
c = 17.8806 (2) Å0.36 × 0.10 × 0.10 mm
β = 102.443 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8086 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5448 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.991Rint = 0.072
58072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
8086 reflectionsΔρmin = 0.28 e Å3
398 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.10407 (6)0.88026 (7)1.18606 (6)0.0250 (2)
O2A0.00894 (8)0.63989 (8)0.87992 (10)0.0560 (4)
O3A0.10784 (7)0.66814 (8)0.79713 (7)0.0428 (3)
N1A0.12683 (7)0.89926 (8)0.92807 (7)0.0233 (3)
N2A0.04981 (8)0.68814 (9)0.83987 (9)0.0345 (3)
N3A0.02428 (8)1.01243 (9)0.86062 (9)0.0296 (3)
C1A0.03700 (8)0.79493 (10)0.88679 (9)0.0247 (3)
H1AA0.06930.75670.91200.030*
C2A0.03046 (9)0.77211 (10)0.84420 (9)0.0261 (3)
C3A0.07831 (8)0.82840 (10)0.80490 (9)0.0263 (3)
H3AA0.12210.81210.77420.032*
C4A0.06102 (8)0.90791 (10)0.81135 (9)0.0260 (3)
H4AA0.09400.94550.78620.031*
C5A0.00592 (8)0.93374 (9)0.85545 (8)0.0226 (3)
C6A0.05544 (8)0.87464 (9)0.89116 (8)0.0213 (3)
C7A0.15228 (8)0.90426 (9)1.00454 (8)0.0211 (3)
C8A0.22892 (8)0.93365 (10)1.02831 (9)0.0240 (3)
H8AA0.22870.99171.02910.029*
H8AB0.25570.91680.99050.029*
C9A0.26804 (8)0.90297 (10)1.10715 (9)0.0237 (3)
C10A0.21925 (8)0.91886 (10)1.16357 (9)0.0264 (3)
H10A0.23950.89141.21120.032*
H10B0.22010.97581.17450.032*
C11A0.14128 (8)0.89301 (9)1.13669 (9)0.0219 (3)
C12A0.11152 (8)0.88643 (9)1.05722 (8)0.0219 (3)
H12A0.06380.86981.04050.026*
C13A0.33996 (9)0.94785 (11)1.13176 (10)0.0305 (4)
H13A0.33081.00431.13270.046*
H13B0.37010.93701.09600.046*
H13C0.36410.93041.18190.046*
C14A0.28313 (9)0.81308 (10)1.10315 (10)0.0324 (4)
H14A0.31040.79511.15190.049*
H14B0.31040.80341.06450.049*
H14C0.23810.78451.09050.049*
O1B0.23010 (6)0.05262 (7)0.34053 (6)0.0273 (3)
O2B0.12655 (7)0.09396 (7)0.01137 (7)0.0373 (3)
O3B0.06840 (7)0.19146 (8)0.05509 (7)0.0393 (3)
N1B0.34019 (7)0.22183 (8)0.18568 (8)0.0239 (3)
N2B0.11744 (8)0.16604 (9)0.00325 (8)0.0299 (3)
N3B0.31623 (8)0.38637 (9)0.15638 (8)0.0262 (3)
C1B0.22746 (8)0.19536 (10)0.09317 (9)0.0247 (3)
H1BA0.23460.14070.10100.030*
C2B0.16734 (8)0.22303 (10)0.04083 (9)0.0250 (3)
C3B0.15569 (9)0.30448 (10)0.02732 (9)0.0276 (3)
H3BA0.11500.32240.00760.033*
C4B0.20513 (9)0.35776 (10)0.06638 (9)0.0264 (3)
H4BA0.19800.41220.05690.032*
C5B0.26681 (8)0.33224 (9)0.12075 (8)0.0234 (3)
C6B0.27680 (8)0.24929 (9)0.13365 (9)0.0231 (3)
C7B0.34175 (8)0.16652 (9)0.24196 (9)0.0220 (3)
C8B0.41600 (8)0.13787 (9)0.28068 (9)0.0243 (3)
H8BA0.45000.18160.28230.029*
H8BB0.43040.09540.25010.029*
C9B0.42129 (8)0.10673 (9)0.36246 (9)0.0243 (3)
C10B0.35921 (9)0.04699 (9)0.36023 (9)0.0259 (3)
H10C0.36930.00110.33390.031*
H10D0.35780.03210.41230.031*
C11B0.28568 (8)0.07847 (9)0.32102 (9)0.0237 (3)
C12B0.28102 (8)0.13614 (10)0.26177 (9)0.0252 (3)
H12B0.23570.15370.23580.030*
C13B0.41499 (10)0.17608 (11)0.41657 (10)0.0330 (4)
H13D0.41950.15590.46770.049*
H13E0.36870.20160.40020.049*
H13F0.45280.21420.41580.049*
C14B0.49440 (9)0.06534 (11)0.38949 (10)0.0324 (4)
H14D0.49970.04910.44190.049*
H14E0.53260.10180.38530.049*
H14F0.49680.01910.35820.049*
O1W0.00000.80007 (11)0.25000.0446 (5)
H1W10.0200 (13)0.8311 (14)0.2244 (13)0.055 (7)*
H1NA0.1562 (11)0.9117 (12)0.8972 (11)0.037 (5)*
H2NA0.0127 (12)1.0468 (13)0.8460 (12)0.047 (6)*
H3NA0.0637 (11)1.0285 (12)0.8965 (11)0.037 (5)*
H1NB0.3824 (12)0.2453 (13)0.1855 (12)0.047 (6)*
H2NB0.3020 (11)0.4365 (13)0.1504 (11)0.035 (5)*
H3NB0.3455 (10)0.3735 (11)0.1998 (11)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0203 (5)0.0317 (6)0.0243 (5)0.0009 (4)0.0073 (4)0.0030 (4)
O2A0.0471 (9)0.0294 (8)0.0832 (11)0.0007 (7)0.0043 (8)0.0026 (7)
O3A0.0422 (8)0.0446 (8)0.0392 (7)0.0179 (6)0.0038 (6)0.0100 (6)
N1A0.0159 (6)0.0323 (7)0.0212 (6)0.0010 (5)0.0031 (5)0.0040 (5)
N2A0.0322 (8)0.0323 (8)0.0385 (8)0.0055 (6)0.0067 (7)0.0054 (6)
N3A0.0222 (7)0.0276 (8)0.0365 (8)0.0030 (6)0.0010 (6)0.0021 (6)
C1A0.0213 (8)0.0273 (8)0.0256 (8)0.0027 (6)0.0056 (6)0.0010 (6)
C2A0.0235 (8)0.0288 (8)0.0266 (8)0.0029 (6)0.0069 (6)0.0049 (6)
C3A0.0180 (7)0.0374 (9)0.0228 (8)0.0009 (6)0.0026 (6)0.0036 (6)
C4A0.0199 (8)0.0328 (9)0.0242 (8)0.0054 (6)0.0026 (6)0.0026 (6)
C5A0.0190 (7)0.0287 (8)0.0203 (7)0.0017 (6)0.0049 (6)0.0015 (6)
C6A0.0162 (7)0.0292 (8)0.0183 (7)0.0001 (6)0.0031 (5)0.0004 (6)
C7A0.0167 (7)0.0223 (7)0.0234 (7)0.0013 (6)0.0022 (6)0.0017 (6)
C8A0.0169 (7)0.0301 (8)0.0252 (8)0.0026 (6)0.0050 (6)0.0022 (6)
C9A0.0168 (7)0.0306 (8)0.0229 (7)0.0009 (6)0.0025 (6)0.0020 (6)
C10A0.0196 (8)0.0359 (9)0.0234 (8)0.0052 (7)0.0039 (6)0.0014 (6)
C11A0.0183 (7)0.0221 (8)0.0256 (8)0.0019 (6)0.0054 (6)0.0019 (6)
C12A0.0151 (7)0.0243 (8)0.0259 (8)0.0010 (6)0.0035 (6)0.0017 (6)
C13A0.0175 (8)0.0447 (10)0.0277 (8)0.0059 (7)0.0016 (6)0.0023 (7)
C14A0.0227 (8)0.0339 (10)0.0394 (10)0.0035 (7)0.0038 (7)0.0039 (7)
O1B0.0259 (6)0.0278 (6)0.0315 (6)0.0050 (5)0.0136 (5)0.0037 (5)
O2B0.0386 (7)0.0312 (7)0.0390 (7)0.0043 (5)0.0018 (6)0.0000 (5)
O3B0.0266 (7)0.0449 (8)0.0406 (7)0.0076 (6)0.0053 (5)0.0044 (6)
N1B0.0192 (7)0.0240 (7)0.0290 (7)0.0004 (5)0.0064 (5)0.0032 (5)
N2B0.0255 (7)0.0338 (8)0.0303 (7)0.0007 (6)0.0058 (6)0.0026 (6)
N3B0.0298 (8)0.0226 (7)0.0254 (7)0.0016 (6)0.0042 (6)0.0010 (5)
C1B0.0250 (8)0.0233 (8)0.0273 (8)0.0023 (6)0.0090 (6)0.0003 (6)
C2B0.0223 (8)0.0306 (8)0.0228 (8)0.0006 (6)0.0066 (6)0.0023 (6)
C3B0.0264 (8)0.0332 (9)0.0236 (8)0.0072 (7)0.0060 (6)0.0010 (6)
C4B0.0307 (9)0.0249 (8)0.0246 (8)0.0059 (7)0.0081 (7)0.0015 (6)
C5B0.0251 (8)0.0249 (8)0.0219 (7)0.0014 (6)0.0090 (6)0.0011 (6)
C6B0.0211 (7)0.0259 (8)0.0233 (7)0.0026 (6)0.0068 (6)0.0008 (6)
C7B0.0216 (7)0.0196 (7)0.0255 (8)0.0014 (6)0.0066 (6)0.0004 (6)
C8B0.0188 (7)0.0232 (8)0.0319 (8)0.0004 (6)0.0075 (6)0.0021 (6)
C9B0.0218 (8)0.0217 (8)0.0291 (8)0.0004 (6)0.0054 (6)0.0024 (6)
C10B0.0263 (8)0.0224 (8)0.0301 (8)0.0015 (6)0.0082 (7)0.0012 (6)
C11B0.0232 (8)0.0229 (8)0.0266 (8)0.0034 (6)0.0090 (6)0.0058 (6)
C12B0.0189 (7)0.0277 (8)0.0295 (8)0.0015 (6)0.0065 (6)0.0015 (6)
C13B0.0299 (9)0.0326 (9)0.0357 (9)0.0025 (7)0.0055 (7)0.0053 (7)
C14B0.0252 (9)0.0332 (9)0.0382 (10)0.0021 (7)0.0054 (7)0.0070 (7)
O1W0.0529 (12)0.0203 (9)0.0751 (15)0.0000.0454 (12)0.000
Geometric parameters (Å, º) top
O1A—C11A1.2597 (17)O2B—N2B1.2363 (18)
O2A—N2A1.233 (2)O3B—N2B1.2363 (18)
O3A—N2A1.2400 (19)N1B—C7B1.3617 (19)
N1A—C7A1.3507 (19)N1B—C6B1.425 (2)
N1A—C6A1.4290 (19)N1B—H1NB0.89 (2)
N1A—H1NA0.89 (2)N2B—C2B1.448 (2)
N2A—C2A1.448 (2)N3B—C5B1.357 (2)
N3A—C5A1.358 (2)N3B—H2NB0.88 (2)
N3A—H2NA0.90 (2)N3B—H3NB0.88 (2)
N3A—H3NA0.91 (2)C1B—C6B1.384 (2)
C1A—C6A1.374 (2)C1B—C2B1.387 (2)
C1A—C2A1.390 (2)C1B—H1BA0.93
C1A—H1AA0.93C2B—C3B1.391 (2)
C2A—C3A1.387 (2)C3B—C4B1.368 (2)
C3A—C4A1.367 (2)C3B—H3BA0.93
C3A—H3AA0.93C4B—C5B1.413 (2)
C4A—C5A1.407 (2)C4B—H4BA0.93
C4A—H4AA0.93C5B—C6B1.411 (2)
C5A—C6A1.415 (2)C7B—C12B1.370 (2)
C7A—C12A1.372 (2)C7B—C8B1.503 (2)
C7A—C8A1.502 (2)C8B—C9B1.535 (2)
C8A—C9A1.532 (2)C8B—H8BA0.97
C8A—H8AA0.97C8B—H8BB0.97
C8A—H8AB0.97C9B—C14B1.528 (2)
C9A—C10A1.530 (2)C9B—C13B1.530 (2)
C9A—C13A1.532 (2)C9B—C10B1.534 (2)
C9A—C14A1.533 (2)C10B—C11B1.510 (2)
C10A—C11A1.511 (2)C10B—H10C0.97
C10A—H10A0.97C10B—H10D0.97
C10A—H10B0.97C11B—C12B1.420 (2)
C11A—C12A1.415 (2)C12B—H12B0.93
C12A—H12A0.93C13B—H13D0.96
C13A—H13A0.96C13B—H13E0.96
C13A—H13B0.96C13B—H13F0.96
C13A—H13C0.96C14B—H14D0.96
C14A—H14A0.96C14B—H14E0.96
C14A—H14B0.96C14B—H14F0.96
C14A—H14C0.96O1W—H1W10.83 (2)
O1B—C11B1.2531 (18)
C7A—N1A—C6A125.48 (13)C7B—N1B—C6B125.59 (13)
C7A—N1A—H1NA118.7 (13)C7B—N1B—H1NB115.2 (14)
C6A—N1A—H1NA115.8 (13)C6B—N1B—H1NB119.0 (14)
O2A—N2A—O3A122.83 (16)O2B—N2B—O3B122.74 (14)
O2A—N2A—C2A118.86 (15)O2B—N2B—C2B118.71 (14)
O3A—N2A—C2A118.29 (15)O3B—N2B—C2B118.52 (14)
C5A—N3A—H2NA115.3 (14)C5B—N3B—H2NB114.6 (13)
C5A—N3A—H3NA119.4 (12)C5B—N3B—H3NB119.5 (12)
H2NA—N3A—H3NA118.9 (19)H2NB—N3B—H3NB117.3 (18)
C6A—C1A—C2A119.23 (15)C6B—C1B—C2B119.88 (15)
C6A—C1A—H1AA120.4C6B—C1B—H1BA120.1
C2A—C1A—H1AA120.4C2B—C1B—H1BA120.1
C3A—C2A—C1A120.86 (15)C1B—C2B—C3B121.28 (15)
C3A—C2A—N2A120.02 (15)C1B—C2B—N2B119.42 (15)
C1A—C2A—N2A119.11 (15)C3B—C2B—N2B119.23 (14)
C4A—C3A—C2A119.89 (15)C4B—C3B—C2B118.85 (15)
C4A—C3A—H3AA120.1C4B—C3B—H3BA120.6
C2A—C3A—H3AA120.1C2B—C3B—H3BA120.6
C3A—C4A—C5A121.00 (15)C3B—C4B—C5B121.77 (15)
C3A—C4A—H4AA119.5C3B—C4B—H4BA119.1
C5A—C4A—H4AA119.5C5B—C4B—H4BA119.1
N3A—C5A—C4A121.40 (15)N3B—C5B—C6B121.57 (15)
N3A—C5A—C6A120.68 (14)N3B—C5B—C4B120.31 (15)
C4A—C5A—C6A117.83 (14)C6B—C5B—C4B118.05 (14)
C1A—C6A—C5A121.02 (14)C1B—C6B—C5B120.16 (14)
C1A—C6A—N1A120.51 (14)C1B—C6B—N1B120.61 (14)
C5A—C6A—N1A118.36 (14)C5B—C6B—N1B119.14 (14)
N1A—C7A—C12A123.45 (14)N1B—C7B—C12B123.83 (14)
N1A—C7A—C8A114.73 (13)N1B—C7B—C8B115.19 (13)
C12A—C7A—C8A121.79 (13)C12B—C7B—C8B120.95 (14)
C7A—C8A—C9A113.34 (12)C7B—C8B—C9B114.16 (12)
C7A—C8A—H8AA108.9C7B—C8B—H8BA108.7
C9A—C8A—H8AA108.9C9B—C8B—H8BA108.7
C7A—C8A—H8AB108.9C7B—C8B—H8BB108.7
C9A—C8A—H8AB108.9C9B—C8B—H8BB108.7
H8AA—C8A—H8AB107.7H8BA—C8B—H8BB107.6
C10A—C9A—C13A110.46 (13)C14B—C9B—C13B109.32 (14)
C10A—C9A—C8A107.98 (12)C14B—C9B—C10B110.40 (13)
C13A—C9A—C8A108.86 (13)C13B—C9B—C10B110.22 (13)
C10A—C9A—C14A110.21 (13)C14B—C9B—C8B108.88 (13)
C13A—C9A—C14A109.28 (13)C13B—C9B—C8B110.36 (13)
C8A—C9A—C14A110.03 (13)C10B—C9B—C8B107.65 (13)
C11A—C10A—C9A115.21 (13)C11B—C10B—C9B114.07 (13)
C11A—C10A—H10A108.5C11B—C10B—H10C108.7
C9A—C10A—H10A108.5C9B—C10B—H10C108.7
C11A—C10A—H10B108.5C11B—C10B—H10D108.7
C9A—C10A—H10B108.5C9B—C10B—H10D108.7
H10A—C10A—H10B107.5H10C—C10B—H10D107.6
O1A—C11A—C12A121.95 (14)O1B—C11B—C12B121.36 (15)
O1A—C11A—C10A118.62 (13)O1B—C11B—C10B119.60 (14)
C12A—C11A—C10A119.40 (13)C12B—C11B—C10B119.04 (13)
C7A—C12A—C11A120.79 (14)C7B—C12B—C11B121.56 (15)
C7A—C12A—H12A119.6C7B—C12B—H12B119.2
C11A—C12A—H12A119.6C11B—C12B—H12B119.2
C9A—C13A—H13A109.5C9B—C13B—H13D109.5
C9A—C13A—H13B109.5C9B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C9A—C13A—H13C109.5C9B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
C9A—C14A—H14A109.5C9B—C14B—H14D109.5
C9A—C14A—H14B109.5C9B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
C9A—C14A—H14C109.5C9B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
C6A—C1A—C2A—C3A1.5 (2)C6B—C1B—C2B—C3B0.7 (2)
C6A—C1A—C2A—N2A179.83 (14)C6B—C1B—C2B—N2B177.76 (13)
O2A—N2A—C2A—C3A174.43 (16)O2B—N2B—C2B—C1B5.8 (2)
O3A—N2A—C2A—C3A4.0 (2)O3B—N2B—C2B—C1B172.66 (14)
O2A—N2A—C2A—C1A6.9 (2)O2B—N2B—C2B—C3B177.04 (14)
O3A—N2A—C2A—C1A174.71 (14)O3B—N2B—C2B—C3B4.5 (2)
C1A—C2A—C3A—C4A3.8 (2)C1B—C2B—C3B—C4B0.5 (2)
N2A—C2A—C3A—C4A177.60 (14)N2B—C2B—C3B—C4B176.64 (14)
C2A—C3A—C4A—C5A2.1 (2)C2B—C3B—C4B—C5B1.1 (2)
C3A—C4A—C5A—N3A178.34 (15)C3B—C4B—C5B—N3B177.49 (14)
C3A—C4A—C5A—C6A1.7 (2)C3B—C4B—C5B—C6B0.5 (2)
C2A—C1A—C6A—C5A2.4 (2)C2B—C1B—C6B—C5B1.2 (2)
C2A—C1A—C6A—N1A173.81 (13)C2B—C1B—C6B—N1B177.79 (13)
N3A—C5A—C6A—C1A179.38 (14)N3B—C5B—C6B—C1B176.31 (14)
C4A—C5A—C6A—C1A3.9 (2)C4B—C5B—C6B—C1B0.6 (2)
N3A—C5A—C6A—N1A4.4 (2)N3B—C5B—C6B—N1B0.3 (2)
C4A—C5A—C6A—N1A172.33 (13)C4B—C5B—C6B—N1B177.25 (13)
C7A—N1A—C6A—C1A77.9 (2)C7B—N1B—C6B—C1B50.4 (2)
C7A—N1A—C6A—C5A105.78 (17)C7B—N1B—C6B—C5B133.02 (16)
C6A—N1A—C7A—C12A0.5 (2)C6B—N1B—C7B—C12B7.7 (2)
C6A—N1A—C7A—C8A178.66 (14)C6B—N1B—C7B—C8B170.43 (14)
N1A—C7A—C8A—C9A152.68 (14)N1B—C7B—C8B—C9B154.69 (13)
C12A—C7A—C8A—C9A29.1 (2)C12B—C7B—C8B—C9B27.1 (2)
C7A—C8A—C9A—C10A50.05 (18)C7B—C8B—C9B—C14B169.43 (13)
C7A—C8A—C9A—C13A170.00 (13)C7B—C8B—C9B—C13B70.59 (17)
C7A—C8A—C9A—C14A70.27 (17)C7B—C8B—C9B—C10B49.73 (17)
C13A—C9A—C10A—C11A167.20 (14)C14B—C9B—C10B—C11B169.64 (13)
C8A—C9A—C10A—C11A48.27 (18)C13B—C9B—C10B—C11B69.49 (17)
C14A—C9A—C10A—C11A71.94 (18)C8B—C9B—C10B—C11B50.92 (17)
C9A—C10A—C11A—O1A157.90 (14)C9B—C10B—C11B—O1B151.53 (14)
C9A—C10A—C11A—C12A24.2 (2)C9B—C10B—C11B—C12B29.4 (2)
N1A—C7A—C12A—C11A179.87 (14)N1B—C7B—C12B—C11B179.99 (14)
C8A—C7A—C12A—C11A1.8 (2)C8B—C7B—C12B—C11B2.0 (2)
O1A—C11A—C12A—C7A176.94 (14)O1B—C11B—C12B—C7B177.82 (14)
C10A—C11A—C12A—C7A0.9 (2)C10B—C11B—C12B—C7B3.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.89 (2)1.99 (2)2.8678 (17)172 (2)
N3A—H2NA···O1Aii0.90 (2)2.09 (2)2.9874 (19)176 (2)
N3A—H3NA···O2Biii0.91 (2)2.40 (2)3.258 (2)156 (2)
N1B—H1NB···O1Wiv0.89 (2)2.45 (2)3.2651 (15)152 (2)
N3B—H2NB···O1Bv0.88 (2)2.05 (2)2.9161 (19)169 (2)
N3B—H3NB···O1Avi0.88 (2)2.06 (2)2.8963 (18)159 (2)
C8A—H8AA···O2Biii0.972.553.280 (2)132
C8B—H8BA···O1Wiv0.972.323.247 (2)160
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+2; (iii) x, y+1, z+1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC14H17N3O3·0.25H2O
Mr279.81
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.9043 (1), 16.7048 (1), 17.8806 (2)
β (°) 102.443 (1)
V3)5513.93 (8)
Z16
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.36 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
58072, 8086, 5448
Rint0.072
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.135, 1.06
No. of reflections8086
No. of parameters398
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1Bi0.89 (2)1.99 (2)2.8678 (17)172 (2)
N3A—H2NA···O1Aii0.90 (2)2.09 (2)2.9874 (19)176 (2)
N3A—H3NA···O2Biii0.91 (2)2.40 (2)3.258 (2)156 (2)
N1B—H1NB···O1Wiv0.89 (2)2.45 (2)3.2651 (15)152 (2)
N3B—H2NB···O1Bv0.88 (2)2.05 (2)2.9161 (19)169 (2)
N3B—H3NB···O1Avi0.88 (2)2.06 (2)2.8963 (18)159 (2)
C8A—H8AA···O2Biii0.972.553.280 (2)132
C8B—H8BA···O1Wiv0.972.323.247 (2)160
Symmetry codes: (i) x, y+1, z+1/2; (ii) x, y+2, z+2; (iii) x, y+1, z+1; (iv) x+1/2, y1/2, z; (v) x+1/2, y+1/2, z+1/2; (vi) x+1/2, y1/2, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors acknowledge Universiti Sains Malaysia (USM) for the University Grant (No. 1001/PTEKIND/8140152). HKF and JHG thank USM for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). SHM and RMG thank USM for the award of postdoctoral fellowships and JHG thanks USM for a USM fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortés, E. C., Baños, M. A. & de Cortés, O. G.-M. (2004). J. Heterocycl. Chem. 41, 277–280.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGhalib, R. M., Sulaiman, O., Mehdi, S. H., Goh, J. H. & Fun, H.-K. (2010). Acta Cryst. E66, o1889–o1890.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMehdi, S. H., Hashim, R., Ghalib, R. M., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1832.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTonkikh, N. N., Strakovs, A., Rizhanova, K. V. & Petrova, M. V. (2004). Chem. Heterocycl. Compd, 40, 949–955.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds