organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-bromo­pyridinium 3-carb­­oxy-4-hy­dr­oxy­benzene­sulfonate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 19 August 2010; accepted 23 August 2010; online 28 August 2010)

The asymmetric unit of the title salt, C5H6BrN2+·C7H5O6S, contains two independent 2-amino-5-bromo­pyridinium cations and two independent 3-carb­oxy-4-hy­droxy­benzene­sulfonate anions. The hy­droxy and carboxyl groups of the anions are involved in intra­molecular O—H⋯O hydrogen bonds, which generate S(6) ring motifs. In the crystal structure, the ions are linked by N—H⋯O and O—H⋯O hydrogen bonds into a two-dimensional network parallel to (110). Adjacent networks are linked via C—H⋯O hydrogen bonds.

Related literature

For applications of pyridinium compounds, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776-o778.]); Navarro Ranninger et al. (1985[Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21-22.]); Krizanovic et al. (1993[Krizanovic, O., Sabat, M., Beyerle-Pfnur, R. & Lippert, B. (1993). J. Am. Chem. Soc. 115, 5538-5548.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Qin et al. (1999[Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461-3464.]); Yip et al. (1999[Yip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem. 38, 3586-3589.]); Lah et al. (2002[Lah, N., Segedin, P. & Leban, I. (2002). Struct. Chem. 13, 357-360.]); Ren et al. (2002[Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Jiegou Huaxue, 21, 38-41.]); Rivas et al. (2003[Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339-3349.]); Luque et al. (1997[Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847-854.]); Jin et al. (2000[Jin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195-198.]); Albrecht et al. (2003[Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269-276.]). For related structures, see: Hemamalini & Fun (2010[Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o663.]); Quah et al. (2010[Quah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1935-o1936.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6BrN2+·C7H5O6S

  • Mr = 391.20

  • Triclinic, [P \overline 1]

  • a = 7.8425 (2) Å

  • b = 10.8682 (3) Å

  • c = 16.5457 (5) Å

  • α = 85.207 (2)°

  • β = 83.290 (2)°

  • γ = 86.537 (2)°

  • V = 1393.87 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.13 mm−1

  • T = 100 K

  • 0.26 × 0.14 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.498, Tmax = 0.772

  • 34040 measured reflections

  • 9322 independent reflections

  • 7366 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.181

  • S = 1.11

  • 9322 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 1.65 e Å−3

  • Δρmin = −0.83 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1NA⋯O4B 0.99 1.86 2.811 (6) 160
N2A—H2AB⋯O6Bi 0.90 2.23 3.113 (6) 166
N2A—H2NA⋯O5B 0.80 2.22 2.919 (6) 146
N2A—H2NA⋯O2Ai 0.80 2.26 2.807 (6) 126
O1A—H1OA⋯O2A 0.82 1.82 2.596 (5) 158
O3A—H2OA⋯O4B 0.90 2.60 3.250 (5) 130
O3A—H2OA⋯O6B 0.90 1.77 2.649 (5) 165
N1B—H1NB⋯O6Aii 0.84 2.13 2.859 (6) 145
N2B—H2NB⋯O5Aii 0.83 2.34 3.006 (5) 138
N2B—H3NB⋯O4A 0.76 2.27 3.024 (6) 175
O1B—H1OB⋯O2B 0.81 1.89 2.582 (5) 143
O1B—H1OB⋯O5Aiii 0.81 2.42 3.023 (5) 131
O3B—H2OB⋯O4Aiv 0.89 1.79 2.661 (5) 166
C5A—H5AA⋯O1Av 0.93 2.56 3.188 (6) 125
C10A—H10A⋯O1Biii 0.93 2.56 3.406 (6) 151
C10B—H10B⋯O1Ai 0.93 2.53 3.364 (6) 150
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x, y, z+1; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridinium derivatives often exhibit antibacterial and antifungal activities (Akkurt et al., 2005). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Krizanovic et al., 1993; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Lah et al., 2002; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2000; Albrecht et al., 2003). We have been interested in hydrogen-bonded systems formed by 2-aminopyridines and carboxylic acids that generate molecular assemblies (Hemamalini & Fun, 2010; Quah et al., 2010). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridinium cations (A and B) and two 3-carboxy-4-hydroxybenzenesulfonate anions (A and B) (Fig. 1). Each 2-amino-5-bromopyridinium cation is planar, with a maximum deviation of 0.015 (1) Å for atom Br1A in cation A and 0.031 (1) Å for Br1B atom in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.9 (4)°] and C1B—N1B—C5B [123.8 (4)°] angles.

In the crystal structure (Fig. 2), the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-bromopyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Here, sulfonate groups mimic the role of the carboxylate groups. Furthermore, the ionic units are linked by N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds generating a three-dimensional network. The 3-carboxy-4-hydroxybenzenesulfonate anions self-assemble via O—H···O and C—H···O interactions, leading to the formation of a sheet-like structure, as shown in Fig. 3. There are intramolecular hydrogen bonds between the -OH and -COOH groups in sulfosalicylate anions, which generate S(6) ring motifs.

Related literature top

For applications of pyridinium compounds, see: Akkurt et al. (2005); Navarro Ranninger et al. (1985); Krizanovic et al. (1993); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Lah et al. (2002); Ren et al. (2002); Rivas et al. (2003); Luque et al. (1997); Jin et al. (2000); Albrecht et al. (2003). For related structures, see: Hemamalini & Fun (2010); Quah et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-bromopyridine (46 mg, Aldrich) and sulfosalicylic acid (54 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and yellow coloured crystals of the title compound appeared after a few days.

Refinement top

The N- and O-bound H atoms were initially located in a difference map and later allowed to ride on the parent atoms [N–H = 0.76–0.98 Å and O–H = 0.82–0.90 Å], with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O). C-bound H atoms were positioned geometrically [C–H = 0.93 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C). In the final difference Fourier map the highest peak is 0.88 Å from atom Br1A and the deepest hole is 1.55 Å from atom C6A.

Structure description top

Pyridinium derivatives often exhibit antibacterial and antifungal activities (Akkurt et al., 2005). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Krizanovic et al., 1993; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Lah et al., 2002; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2000; Albrecht et al., 2003). We have been interested in hydrogen-bonded systems formed by 2-aminopyridines and carboxylic acids that generate molecular assemblies (Hemamalini & Fun, 2010; Quah et al., 2010). In continuation of our studies of pyridinium derivatives, the crystal structure determination of the title compound has been undertaken.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-bromopyridinium cations (A and B) and two 3-carboxy-4-hydroxybenzenesulfonate anions (A and B) (Fig. 1). Each 2-amino-5-bromopyridinium cation is planar, with a maximum deviation of 0.015 (1) Å for atom Br1A in cation A and 0.031 (1) Å for Br1B atom in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.9 (4)°] and C1B—N1B—C5B [123.8 (4)°] angles.

In the crystal structure (Fig. 2), the sulfonate group of each 3-carboxy-4-hydroxybenzenesulfonate anion interacts with the corresponding 2-amino-5-bromopyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). Here, sulfonate groups mimic the role of the carboxylate groups. Furthermore, the ionic units are linked by N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds generating a three-dimensional network. The 3-carboxy-4-hydroxybenzenesulfonate anions self-assemble via O—H···O and C—H···O interactions, leading to the formation of a sheet-like structure, as shown in Fig. 3. There are intramolecular hydrogen bonds between the -OH and -COOH groups in sulfosalicylate anions, which generate S(6) ring motifs.

For applications of pyridinium compounds, see: Akkurt et al. (2005); Navarro Ranninger et al. (1985); Krizanovic et al. (1993); Luque et al. (1997); Qin et al. (1999); Yip et al. (1999); Lah et al. (2002); Ren et al. (2002); Rivas et al. (2003); Luque et al. (1997); Jin et al. (2000); Albrecht et al. (2003). For related structures, see: Hemamalini & Fun (2010); Quah et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen bonding patterns in compound (I).
[Figure 3] Fig. 3. A view of hydrogen-bonded sheet made up of 3-carboxy-4-hydroxy benzenesulfonate anions.
2-Amino-5-bromopyridinium 3-carboxy-4-hydroxybenzenesulfonate top
Crystal data top
C5H6BrN2+·C7H5O6SZ = 4
Mr = 391.20F(000) = 784
Triclinic, P1Dx = 1.864 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.8425 (2) ÅCell parameters from 9916 reflections
b = 10.8682 (3) Åθ = 3.0–31.4°
c = 16.5457 (5) ŵ = 3.13 mm1
α = 85.207 (2)°T = 100 K
β = 83.290 (2)°Plate, yellow
γ = 86.537 (2)°0.26 × 0.14 × 0.09 mm
V = 1393.87 (7) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9322 independent reflections
Radiation source: fine-focus sealed tube7366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
φ and ω scansθmax = 31.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1111
Tmin = 0.498, Tmax = 0.772k = 1516
34040 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0451P)2 + 14.502P]
where P = (Fo2 + 2Fc2)/3
9322 reflections(Δ/σ)max = 0.001
397 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
C5H6BrN2+·C7H5O6Sγ = 86.537 (2)°
Mr = 391.20V = 1393.87 (7) Å3
Triclinic, P1Z = 4
a = 7.8425 (2) ÅMo Kα radiation
b = 10.8682 (3) ŵ = 3.13 mm1
c = 16.5457 (5) ÅT = 100 K
α = 85.207 (2)°0.26 × 0.14 × 0.09 mm
β = 83.290 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
9322 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
7366 reflections with I > 2σ(I)
Tmin = 0.498, Tmax = 0.772Rint = 0.040
34040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.181H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0451P)2 + 14.502P]
where P = (Fo2 + 2Fc2)/3
9322 reflectionsΔρmax = 1.65 e Å3
397 parametersΔρmin = 0.83 e Å3
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.34842 (7)1.03576 (5)0.09171 (3)0.02290 (13)
N1A0.3053 (5)1.0274 (4)0.3409 (2)0.0164 (7)
H1NA0.37750.97560.37670.020*
N2A0.1288 (6)1.1186 (4)0.4427 (3)0.0220 (9)
H2AB0.03691.17140.45140.026*
H2NA0.16501.09100.48430.026*
C1A0.1717 (6)1.1047 (5)0.3644 (3)0.0179 (9)
C2A0.0822 (6)1.1683 (5)0.3013 (3)0.0181 (9)
H2AA0.01071.22290.31490.022*
C3A0.1326 (6)1.1490 (5)0.2214 (3)0.0180 (9)
H3AA0.07321.18950.18060.022*
C4A0.2754 (6)1.0674 (5)0.2008 (3)0.0161 (8)
C5A0.3601 (6)1.0076 (5)0.2613 (3)0.0163 (8)
H5AA0.45440.95380.24850.020*
S1A0.15205 (14)0.68598 (11)0.03315 (6)0.0126 (2)
O1A0.2400 (5)0.9811 (3)0.2821 (2)0.0180 (7)
H1OA0.20780.94240.32290.027*
O2A0.0584 (5)0.8634 (4)0.3883 (2)0.0227 (8)
O3A0.1606 (5)0.7338 (3)0.3455 (2)0.0178 (7)
H2OA0.19210.74180.39520.027*
O4A0.2922 (4)0.7619 (3)0.0065 (2)0.0169 (7)
O5A0.2150 (5)0.5735 (3)0.0766 (2)0.0196 (7)
O6A0.0315 (5)0.6618 (4)0.0241 (2)0.0194 (7)
C6A0.1432 (6)0.9151 (4)0.2271 (3)0.0134 (8)
C7A0.1724 (6)0.9374 (4)0.1452 (3)0.0162 (8)
H7AA0.25280.99920.13040.019*
C8A0.0827 (6)0.8683 (4)0.0861 (3)0.0150 (8)
H8AA0.10280.88380.03180.018*
C9A0.0377 (6)0.7754 (4)0.1079 (3)0.0134 (8)
C10A0.0740 (6)0.7554 (4)0.1881 (3)0.0130 (8)
H10A0.15760.69540.20180.016*
C11A0.0146 (6)0.8250 (4)0.2484 (3)0.0129 (8)
C12A0.0249 (6)0.8082 (4)0.3339 (3)0.0154 (8)
Br1B0.82103 (7)0.51159 (5)0.36511 (3)0.02183 (12)
N1B0.7997 (5)0.5274 (4)0.1191 (2)0.0151 (7)
H1NB0.85540.50000.07720.018*
N2B0.6286 (6)0.6276 (4)0.0271 (2)0.0185 (8)
H2NB0.69420.60710.01340.022*
H3NB0.54780.66410.01670.022*
C1B0.6675 (6)0.6070 (4)0.1026 (3)0.0148 (8)
C2B0.5735 (6)0.6639 (5)0.1700 (3)0.0181 (9)
H2BA0.48060.71870.16120.022*
C3B0.6179 (7)0.6392 (5)0.2468 (3)0.0190 (9)
H3BA0.55690.67750.29030.023*
C4B0.7588 (6)0.5541 (5)0.2600 (3)0.0157 (8)
C5B0.8482 (6)0.5005 (4)0.1952 (3)0.0151 (8)
H5BA0.94180.44590.20300.018*
S1B0.34815 (15)0.81374 (11)0.51288 (7)0.0149 (2)
O1B0.7530 (5)0.5267 (3)0.7495 (2)0.0182 (7)
H1OB0.71440.53490.79670.027*
O2B0.5619 (5)0.6350 (4)0.8632 (2)0.0196 (7)
O3B0.3442 (5)0.7652 (3)0.8315 (2)0.0176 (7)
H2OB0.32800.77780.88440.026*
O4B0.4611 (5)0.8372 (4)0.4372 (2)0.0239 (8)
O5B0.2794 (6)0.9255 (4)0.5500 (2)0.0269 (9)
O6B0.2102 (5)0.7328 (4)0.5012 (2)0.0201 (7)
C6B0.6577 (6)0.5938 (4)0.6973 (3)0.0133 (8)
C7B0.6953 (7)0.5781 (5)0.6139 (3)0.0183 (9)
H7BA0.78260.52150.59630.022*
C8B0.6037 (6)0.6462 (5)0.5575 (3)0.0186 (9)
H8BA0.62930.63530.50210.022*
C9B0.4723 (6)0.7315 (4)0.5838 (3)0.0144 (8)
C10B0.4318 (6)0.7471 (4)0.6658 (3)0.0131 (8)
H10B0.34300.80310.68280.016*
C11B0.5235 (6)0.6792 (4)0.7235 (3)0.0121 (7)
C12B0.4794 (6)0.6907 (4)0.8116 (3)0.0140 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0219 (2)0.0316 (3)0.0159 (2)0.0003 (2)0.00412 (17)0.00410 (18)
N1A0.0165 (18)0.0151 (19)0.0166 (17)0.0003 (15)0.0026 (14)0.0048 (14)
N2A0.023 (2)0.025 (2)0.0170 (19)0.0012 (17)0.0003 (16)0.0000 (16)
C1A0.018 (2)0.018 (2)0.017 (2)0.0045 (17)0.0005 (16)0.0005 (17)
C2A0.014 (2)0.019 (2)0.021 (2)0.0019 (17)0.0016 (16)0.0014 (17)
C3A0.016 (2)0.018 (2)0.020 (2)0.0010 (17)0.0052 (17)0.0013 (17)
C4A0.015 (2)0.018 (2)0.0162 (19)0.0050 (17)0.0020 (15)0.0011 (16)
C5A0.0122 (19)0.017 (2)0.019 (2)0.0010 (16)0.0019 (16)0.0007 (16)
S1A0.0121 (5)0.0141 (5)0.0114 (4)0.0016 (4)0.0007 (3)0.0027 (4)
O1A0.0182 (16)0.0205 (18)0.0152 (15)0.0078 (13)0.0030 (12)0.0050 (13)
O2A0.0253 (19)0.028 (2)0.0148 (15)0.0126 (15)0.0066 (13)0.0063 (14)
O3A0.0188 (17)0.0184 (17)0.0166 (15)0.0095 (13)0.0067 (12)0.0042 (12)
O4A0.0147 (15)0.0189 (17)0.0164 (15)0.0015 (13)0.0017 (12)0.0024 (12)
O5A0.0242 (18)0.0155 (17)0.0181 (16)0.0067 (14)0.0017 (13)0.0009 (12)
O6A0.0183 (17)0.0240 (19)0.0175 (15)0.0015 (14)0.0032 (13)0.0093 (13)
C6A0.0134 (19)0.013 (2)0.0137 (18)0.0030 (15)0.0025 (15)0.0029 (15)
C7A0.019 (2)0.013 (2)0.0166 (19)0.0025 (17)0.0040 (16)0.0015 (15)
C8A0.016 (2)0.016 (2)0.0127 (18)0.0030 (16)0.0035 (15)0.0017 (15)
C9A0.016 (2)0.0117 (19)0.0124 (18)0.0016 (15)0.0025 (15)0.0038 (14)
C10A0.0132 (19)0.012 (2)0.0141 (18)0.0020 (15)0.0015 (15)0.0038 (15)
C11A0.0135 (19)0.014 (2)0.0121 (17)0.0013 (15)0.0034 (14)0.0021 (14)
C12A0.018 (2)0.014 (2)0.0157 (19)0.0013 (16)0.0043 (16)0.0027 (15)
Br1B0.0238 (3)0.0286 (3)0.0131 (2)0.0010 (2)0.00254 (17)0.00132 (17)
N1B0.0132 (17)0.019 (2)0.0130 (16)0.0017 (14)0.0005 (13)0.0033 (14)
N2B0.0172 (19)0.023 (2)0.0154 (17)0.0027 (16)0.0034 (14)0.0017 (15)
C1B0.014 (2)0.015 (2)0.0155 (19)0.0031 (16)0.0002 (15)0.0008 (15)
C2B0.017 (2)0.016 (2)0.022 (2)0.0019 (17)0.0020 (17)0.0046 (17)
C3B0.022 (2)0.017 (2)0.017 (2)0.0029 (18)0.0031 (17)0.0045 (17)
C4B0.016 (2)0.019 (2)0.0124 (18)0.0048 (17)0.0014 (15)0.0009 (15)
C5B0.016 (2)0.012 (2)0.017 (2)0.0002 (16)0.0024 (16)0.0018 (15)
S1B0.0165 (5)0.0162 (5)0.0123 (4)0.0028 (4)0.0046 (4)0.0005 (4)
O1B0.0190 (17)0.0208 (18)0.0139 (14)0.0071 (13)0.0032 (12)0.0002 (12)
O2B0.0237 (18)0.0205 (18)0.0136 (15)0.0073 (14)0.0040 (13)0.0006 (12)
O3B0.0207 (17)0.0184 (17)0.0126 (14)0.0039 (13)0.0008 (12)0.0001 (12)
O4B0.0250 (19)0.029 (2)0.0166 (16)0.0023 (16)0.0023 (14)0.0037 (14)
O5B0.038 (2)0.0215 (19)0.0210 (17)0.0152 (17)0.0109 (16)0.0052 (14)
O6B0.0193 (17)0.0232 (19)0.0186 (16)0.0028 (14)0.0076 (13)0.0011 (13)
C6B0.0105 (18)0.015 (2)0.0144 (18)0.0015 (15)0.0022 (14)0.0006 (15)
C7B0.018 (2)0.020 (2)0.016 (2)0.0066 (18)0.0025 (16)0.0034 (17)
C8B0.018 (2)0.022 (2)0.015 (2)0.0070 (18)0.0050 (16)0.0044 (17)
C9B0.015 (2)0.016 (2)0.0130 (18)0.0021 (16)0.0048 (15)0.0020 (15)
C10B0.0128 (19)0.013 (2)0.0142 (18)0.0003 (15)0.0031 (14)0.0014 (15)
C11B0.0129 (19)0.0116 (19)0.0121 (17)0.0011 (15)0.0030 (14)0.0021 (14)
C12B0.017 (2)0.013 (2)0.0124 (18)0.0014 (16)0.0020 (15)0.0005 (14)
Geometric parameters (Å, º) top
Br1A—C4A1.883 (5)Br1B—C4B1.874 (5)
N1A—C1A1.344 (7)N1B—C1B1.348 (6)
N1A—C5A1.367 (6)N1B—C5B1.361 (6)
N1A—H1NA0.98N1B—H1NB0.84
N2A—C1A1.320 (6)N2B—C1B1.318 (6)
N2A—H2AB0.90N2B—H2NB0.83
N2A—H2NA0.80N2B—H3NB0.76
C1A—C2A1.433 (7)C1B—C2B1.427 (6)
C2A—C3A1.365 (7)C2B—C3B1.358 (7)
C2A—H2AA0.93C2B—H2BA0.93
C3A—C4A1.413 (7)C3B—C4B1.422 (7)
C3A—H3AA0.93C3B—H3BA0.93
C4A—C5A1.364 (7)C4B—C5B1.364 (6)
C5A—H5AA0.93C5B—H5BA0.93
S1A—O5A1.455 (4)S1B—O5B1.453 (4)
S1A—O6A1.464 (4)S1B—O4B1.461 (4)
S1A—O4A1.473 (4)S1B—O6B1.475 (4)
S1A—C9A1.765 (4)S1B—C9B1.764 (5)
O1A—C6A1.343 (5)O1B—C6B1.347 (6)
O1A—H1OA0.82O1B—H1OB0.82
O2A—C12A1.225 (6)O2B—C12B1.230 (6)
O3A—C12A1.319 (6)O3B—C12B1.322 (6)
O3A—H2OA0.90O3B—H2OB0.89
C6A—C7A1.399 (6)C6B—C7B1.400 (6)
C6A—C11A1.417 (6)C6B—C11B1.414 (6)
C7A—C8A1.384 (6)C7B—C8B1.384 (7)
C7A—H7AA0.93C7B—H7BA0.93
C8A—C9A1.395 (7)C8B—C9B1.399 (7)
C8A—H8AA0.93C8B—H8BA0.93
C9A—C10A1.386 (6)C9B—C10B1.379 (6)
C10A—C11A1.397 (6)C10B—C11B1.397 (6)
C10A—H10A0.93C10B—H10B0.93
C11A—C12A1.478 (6)C11B—C12B1.472 (6)
C1A—N1A—C5A123.9 (4)C1B—N1B—C5B123.8 (4)
C1A—N1A—H1NA126.9C1B—N1B—H1NB113.6
C5A—N1A—H1NA109.2C5B—N1B—H1NB122.5
C1A—N2A—H2AB112.1C1B—N2B—H2NB123.2
C1A—N2A—H2NA135.2C1B—N2B—H3NB122.4
H2AB—N2A—H2NA112.7H2NB—N2B—H3NB114.2
N2A—C1A—N1A119.7 (5)N2B—C1B—N1B119.9 (4)
N2A—C1A—C2A123.3 (5)N2B—C1B—C2B123.1 (5)
N1A—C1A—C2A117.1 (4)N1B—C1B—C2B117.0 (4)
C3A—C2A—C1A120.3 (5)C3B—C2B—C1B121.0 (5)
C3A—C2A—H2AA119.9C3B—C2B—H2BA119.5
C1A—C2A—H2AA119.9C1B—C2B—H2BA119.5
C2A—C3A—C4A119.8 (5)C2B—C3B—C4B119.2 (4)
C2A—C3A—H3AA120.1C2B—C3B—H3BA120.4
C4A—C3A—H3AA120.1C4B—C3B—H3BA120.4
C5A—C4A—C3A119.5 (4)C5B—C4B—C3B119.4 (4)
C5A—C4A—Br1A118.9 (4)C5B—C4B—Br1B119.3 (4)
C3A—C4A—Br1A121.5 (4)C3B—C4B—Br1B121.3 (3)
C4A—C5A—N1A119.5 (5)N1B—C5B—C4B119.7 (5)
C4A—C5A—H5AA120.3N1B—C5B—H5BA120.2
N1A—C5A—H5AA120.3C4B—C5B—H5BA120.2
O5A—S1A—O6A112.6 (2)O5B—S1B—O4B113.7 (3)
O5A—S1A—O4A112.6 (2)O5B—S1B—O6B111.5 (3)
O6A—S1A—O4A111.7 (2)O4B—S1B—O6B111.1 (2)
O5A—S1A—C9A106.2 (2)O5B—S1B—C9B106.3 (2)
O6A—S1A—C9A107.2 (2)O4B—S1B—C9B107.4 (2)
O4A—S1A—C9A106.0 (2)O6B—S1B—C9B106.3 (2)
C6A—O1A—H1OA96.5C6B—O1B—H1OB111.2
C12A—O3A—H2OA109.7C12B—O3B—H2OB113.5
O1A—C6A—C7A117.7 (4)O1B—C6B—C7B118.0 (4)
O1A—C6A—C11A123.0 (4)O1B—C6B—C11B122.7 (4)
C7A—C6A—C11A119.3 (4)C7B—C6B—C11B119.3 (4)
C8A—C7A—C6A120.5 (4)C8B—C7B—C6B120.5 (4)
C8A—C7A—H7AA119.7C8B—C7B—H7BA119.7
C6A—C7A—H7AA119.7C6B—C7B—H7BA119.7
C7A—C8A—C9A120.0 (4)C7B—C8B—C9B119.9 (4)
C7A—C8A—H8AA120.0C7B—C8B—H8BA120.1
C9A—C8A—H8AA120.0C9B—C8B—H8BA120.1
C10A—C9A—C8A120.4 (4)C10B—C9B—C8B120.5 (4)
C10A—C9A—S1A119.1 (4)C10B—C9B—S1B119.2 (4)
C8A—C9A—S1A120.5 (3)C8B—C9B—S1B120.2 (3)
C9A—C10A—C11A120.2 (4)C9B—C10B—C11B120.3 (4)
C9A—C10A—H10A119.9C9B—C10B—H10B119.9
C11A—C10A—H10A119.9C11B—C10B—H10B119.9
C10A—C11A—C6A119.5 (4)C10B—C11B—C6B119.6 (4)
C10A—C11A—C12A121.4 (4)C10B—C11B—C12B121.5 (4)
C6A—C11A—C12A119.1 (4)C6B—C11B—C12B118.9 (4)
O2A—C12A—O3A123.4 (4)O2B—C12B—O3B122.1 (4)
O2A—C12A—C11A122.1 (4)O2B—C12B—C11B122.6 (4)
O3A—C12A—C11A114.4 (4)O3B—C12B—C11B115.3 (4)
C5A—N1A—C1A—N2A179.5 (5)C5B—N1B—C1B—N2B179.8 (4)
C5A—N1A—C1A—C2A0.6 (7)C5B—N1B—C1B—C2B0.9 (7)
N2A—C1A—C2A—C3A179.5 (5)N2B—C1B—C2B—C3B179.6 (5)
N1A—C1A—C2A—C3A0.3 (7)N1B—C1B—C2B—C3B0.7 (7)
C1A—C2A—C3A—C4A0.9 (7)C1B—C2B—C3B—C4B0.8 (7)
C2A—C3A—C4A—C5A0.7 (7)C2B—C3B—C4B—C5B1.0 (7)
C2A—C3A—C4A—Br1A179.1 (4)C2B—C3B—C4B—Br1B177.6 (4)
C3A—C4A—C5A—N1A0.2 (7)C1B—N1B—C5B—C4B1.1 (7)
Br1A—C4A—C5A—N1A178.3 (3)C3B—C4B—C5B—N1B1.1 (7)
C1A—N1A—C5A—C4A0.9 (7)Br1B—C4B—C5B—N1B177.5 (3)
O1A—C6A—C7A—C8A176.8 (4)O1B—C6B—C7B—C8B178.8 (5)
C11A—C6A—C7A—C8A3.1 (7)C11B—C6B—C7B—C8B0.6 (7)
C6A—C7A—C8A—C9A0.1 (7)C6B—C7B—C8B—C9B0.0 (8)
C7A—C8A—C9A—C10A2.9 (7)C7B—C8B—C9B—C10B0.9 (8)
C7A—C8A—C9A—S1A179.6 (4)C7B—C8B—C9B—S1B177.1 (4)
O5A—S1A—C9A—C10A22.9 (4)O5B—S1B—C9B—C10B27.2 (5)
O6A—S1A—C9A—C10A143.5 (4)O4B—S1B—C9B—C10B149.2 (4)
O4A—S1A—C9A—C10A97.1 (4)O6B—S1B—C9B—C10B91.7 (4)
O5A—S1A—C9A—C8A159.7 (4)O5B—S1B—C9B—C8B156.5 (4)
O6A—S1A—C9A—C8A39.1 (4)O4B—S1B—C9B—C8B34.5 (5)
O4A—S1A—C9A—C8A80.4 (4)O6B—S1B—C9B—C8B84.6 (4)
C8A—C9A—C10A—C11A2.5 (7)C8B—C9B—C10B—C11B1.0 (7)
S1A—C9A—C10A—C11A179.9 (3)S1B—C9B—C10B—C11B177.3 (3)
C9A—C10A—C11A—C6A0.8 (7)C9B—C10B—C11B—C6B0.4 (7)
C9A—C10A—C11A—C12A178.2 (4)C9B—C10B—C11B—C12B177.9 (4)
O1A—C6A—C11A—C10A176.4 (4)O1B—C6B—C11B—C10B178.9 (4)
C7A—C6A—C11A—C10A3.5 (7)C7B—C6B—C11B—C10B0.5 (7)
O1A—C6A—C11A—C12A4.6 (7)O1B—C6B—C11B—C12B3.5 (7)
C7A—C6A—C11A—C12A175.5 (4)C7B—C6B—C11B—C12B177.1 (4)
C10A—C11A—C12A—O2A175.6 (5)C10B—C11B—C12B—O2B177.5 (5)
C6A—C11A—C12A—O2A5.4 (7)C6B—C11B—C12B—O2B5.0 (7)
C10A—C11A—C12A—O3A7.2 (7)C10B—C11B—C12B—O3B2.6 (6)
C6A—C11A—C12A—O3A171.8 (4)C6B—C11B—C12B—O3B175.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O4B0.991.862.811 (6)160
N2A—H2AB···O6Bi0.902.233.113 (6)166
N2A—H2NA···O5B0.802.222.919 (6)146
N2A—H2NA···O2Ai0.802.262.807 (6)126
O1A—H1OA···O2A0.821.822.596 (5)158
O3A—H2OA···O4B0.902.603.250 (5)130
O3A—H2OA···O6B0.901.772.649 (5)165
N1B—H1NB···O6Aii0.842.132.859 (6)145
N2B—H2NB···O5Aii0.832.343.006 (5)138
N2B—H3NB···O4A0.762.273.024 (6)175
O1B—H1OB···O2B0.811.892.582 (5)143
O1B—H1OB···O5Aiii0.812.423.023 (5)131
O3B—H2OB···O4Aiv0.891.792.661 (5)166
C5A—H5AA···O1Av0.932.563.188 (6)125
C10A—H10A···O1Biii0.932.563.406 (6)151
C10B—H10B···O1Ai0.932.533.364 (6)150
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC5H6BrN2+·C7H5O6S
Mr391.20
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.8425 (2), 10.8682 (3), 16.5457 (5)
α, β, γ (°)85.207 (2), 83.290 (2), 86.537 (2)
V3)1393.87 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.13
Crystal size (mm)0.26 × 0.14 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.498, 0.772
No. of measured, independent and
observed [I > 2σ(I)] reflections
34040, 9322, 7366
Rint0.040
(sin θ/λ)max1)0.739
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.181, 1.11
No. of reflections9322
No. of parameters397
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0451P)2 + 14.502P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.65, 0.83

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O4B0.991.862.811 (6)160
N2A—H2AB···O6Bi0.902.233.113 (6)166
N2A—H2NA···O5B0.802.222.919 (6)146
N2A—H2NA···O2Ai0.802.262.807 (6)126
O1A—H1OA···O2A0.821.822.596 (5)158
O3A—H2OA···O4B0.902.603.250 (5)130
O3A—H2OA···O6B0.901.772.649 (5)165
N1B—H1NB···O6Aii0.842.132.859 (6)145
N2B—H2NB···O5Aii0.832.343.006 (5)138
N2B—H3NB···O4A0.762.273.024 (6)175
O1B—H1OB···O2B0.811.892.582 (5)143
O1B—H1OB···O5Aiii0.812.423.023 (5)131
O3B—H2OB···O4Aiv0.891.792.661 (5)166
C5A—H5AA···O1Av0.932.563.188 (6)125
C10A—H10A···O1Biii0.932.563.406 (6)151
C10B—H10B···O1Ai0.932.533.364 (6)150
Symmetry codes: (i) x, y+2, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y, z+1; (v) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAkkurt, M., Karaca, S., Jarrahpour, A. A., Zarei, M. & Büyükgüngör, O. (2005). Acta Cryst. E61, o776–o778.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAlbrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr. 33, 269–276.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJin, Z. M., Pan, Y. J., Liu, J. G. & Xu, D. J. (2000). J. Chem. Crystallogr. 30, 195–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrizanovic, O., Sabat, M., Beyerle-Pfnur, R. & Lippert, B. (1993). J. Am. Chem. Soc. 115, 5538–5548.  CSD CrossRef CAS Web of Science Google Scholar
First citationLah, N., Segedin, P. & Leban, I. (2002). Struct. Chem. 13, 357–360.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuque, A., Sertucha, J., Lezama, L., Rojo, T. & Román, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.  CSD CrossRef Web of Science Google Scholar
First citationNavarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationQin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationQuah, C. K., Hemamalini, M. & Fun, H.-K. (2010). Acta Cryst. E66, o1935–o1936.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRen, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Jiegou Huaxue, 21, 38–41.  Google Scholar
First citationRivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem. 38, 3586–3589.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds