organic compounds
2-Hydroxy-7-methoxy-9H-carbazole-3-carbaldehyde
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bNatural Products Research Laboratory, School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my
The title compound, C14H11NO3, was isolated from the roots of Clausena wallichii. The carbazole ring system is approximately planar (r.m.s. deviation = 0.039 Å) and the dihedral angle between the two benzene rings is 4.63 (7)°. An intramolecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked into a zigzag network extending parallel to the ac plane by O—H⋯N and N—H⋯O hydrogen bonds.
Related literature
For compounds isolated from plants of genera Rutaceae and their pharmacological activity, see: Ito et al. (1997); Kongkathip & Kongkathip (2009); Laphookhieo et al. (2009); Li et al. (1991); Maneerat & Laphookhieo (2010); Maneerat et al. (2010); Sripisut & Laphookhieo (2010); Tangyuenyongwatthana et al. (1992); Yenjai et al. 2000). For a related structure, see: Fun et al. (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810033805/ci5167sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033805/ci5167Isup2.hkl
The roots of C. wallichii (1.02 Kg) were successively extracted with CH2Cl2 over the period of 3 days each at room temperature to provide the crude CH2Cl2 extract which subjected to quick
(QCC) over silica gel eluted with a gradient of hexane-EtOAc (100% hexane to 100% EtOAc) to provide nine fractions (A-I). Fraction G (3.12 g) was further separated by QCC with a gradient of 10% EtOAc-hexane to 100% EtOAc to give seven subfractions (G1-G7). Subfraction G4 (118.9 mg) was subjected to repeated using 30% EtOAc-hexane to yield the yellow solid of the title compound (12.8 mg). Yellow plate-shaped single crystals of the title compound suitable for X-ray were recrystallized from CH2Cl2/acetone (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days; m.p. 496.7-498.8 K (decomposition).Atom H1N1 was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with O–H = 0.81, C–H = 0.93 for aromatic and CH, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the
for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.81 Å from C9 and the deepest hole is located at 1.29 Å from C3. 851 Friedel pairs were used to determine the absolute structure.Rutaceae plants are known to be rich sources of
and carbazole Many of them have been isolated from several genera of Rutaceae especially from Clausena genus (Laphookhieo et al., 2009; Maneerat et al., 2010; Sripisut & Laphookhieo 2010; Kongkathip & Kongkathip 2009; Ito et al., 1997; Li et al., 1991; Tangyuenyongwatthana et al., 1992) and some of these compounds show interesting pharmacological activities (Maneerat & Laphookhieo 2010; Yenjai et al. 2000). Although Clausena wallichii is one of the Rutaceae plants, however phytochemical reports on the chemical constituents from this plant are rare. As part of our continuing study of chemical constituents and bioactive compounds from Thai medicinal plants, we report herein the of the title compound, which was isolated from the roots of C. wallichii collected from Phrae province in the northern region of Thailand.The non-hydrogen atoms of the title molecule (Fig. 1) are almost coplanar. The carbazole ring system (C1-C12/N1) is planar with an r.m.s. deviation of 0.039 Å [maximum deviation 0.072 (1) Å for atom C7]. The pyrrole ring makes dihedral angle of 1.66 (7) and 3.12 (8)°, respectively, with the C1–C4/C10–C11 and C5–C9/C12 benzene rings. The dihedral angle between the two benzene rings being 4.63 (7)°. The cabaldehyde and methoxy substituents at atoms C3 and C7, respectively, are coplanar with the benzene ring, as indicated by torsion angles C2–C3–C13–O2 = 0.0 (2)° and C14–O3–C7–C8 = 4.0 (2)°. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances are within normal ranges (Allen et al., 1987) and comparable to a related structure (Fun et al., 2009).
The crystal packing of the title compound is stabilized by intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) which link the molecules into a zigzag network extending parallel to the ac plane.
For compounds isolated from plants of genera Rutaceae and their pharmacological activity, see: Ito et al. (1997); Kongkathip & Kongkathip (2009); Laphookhieo et al. (2009); Li et al. (1991); Maneerat & Laphookhieo (2010); Maneerat et al. (2010); Sripisut & Laphookhieo (2010); Tangyuenyongwatthana et al. (1992); Yenjai et al. 2000). For a related structure, see: Fun et al. (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C14H11NO3 | Dx = 1.435 Mg m−3 |
Mr = 241.24 | Melting point = 496.7–498.8 K |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2c -2n | Cell parameters from 2026 reflections |
a = 12.4352 (4) Å | θ = 4.4–69.9° |
b = 17.6564 (5) Å | µ = 0.84 mm−1 |
c = 5.0839 (1) Å | T = 100 K |
V = 1116.23 (5) Å3 | Plate, yellow |
Z = 4 | 0.23 × 0.19 × 0.10 mm |
F(000) = 504 |
Bruker APEXII DUO CCD area-detector diffractometer | 2026 independent reflections |
Radiation source: sealed tube | 2018 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
φ and ω scans | θmax = 69.9°, θmin = 4.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −14→14 |
Tmin = 0.831, Tmax = 0.918 | k = −21→21 |
25207 measured reflections | l = −5→6 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.030 | w = 1/[σ2(Fo2) + (0.0656P)2 + 0.054P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.097 | (Δ/σ)max = 0.001 |
S = 1.31 | Δρmax = 0.64 e Å−3 |
2026 reflections | Δρmin = −0.63 e Å−3 |
170 parameters | Extinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.053 (3) |
Primary atom site location: structure-invariant direct methods | Absolute structure: Flack (1983), 851 Friedel pairs |
Secondary atom site location: difference Fourier map | Absolute structure parameter: 0.17 (19) |
C14H11NO3 | V = 1116.23 (5) Å3 |
Mr = 241.24 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 12.4352 (4) Å | µ = 0.84 mm−1 |
b = 17.6564 (5) Å | T = 100 K |
c = 5.0839 (1) Å | 0.23 × 0.19 × 0.10 mm |
Bruker APEXII DUO CCD area-detector diffractometer | 2026 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2018 reflections with I > 2σ(I) |
Tmin = 0.831, Tmax = 0.918 | Rint = 0.027 |
25207 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.097 | Δρmax = 0.64 e Å−3 |
S = 1.31 | Δρmin = −0.63 e Å−3 |
2026 reflections | Absolute structure: Flack (1983), 851 Friedel pairs |
170 parameters | Absolute structure parameter: 0.17 (19) |
1 restraint |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.59667 (8) | 0.17861 (6) | 0.4400 (2) | 0.0264 (3) | |
H1O1 | 0.6537 | 0.1796 | 0.5149 | 0.056 (7)* | |
O2 | 0.72058 (8) | 0.20104 (6) | 0.8557 (3) | 0.0294 (3) | |
O3 | 0.12071 (9) | 0.59553 (6) | 0.5822 (3) | 0.0325 (3) | |
N1 | 0.32559 (9) | 0.37021 (7) | 0.3111 (3) | 0.0203 (3) | |
H1N1 | 0.2898 (14) | 0.3514 (10) | 0.185 (5) | 0.029 (5)* | |
C1 | 0.46098 (10) | 0.26763 (8) | 0.3568 (3) | 0.0213 (3) | |
H1A | 0.4366 | 0.2391 | 0.2150 | 0.026* | |
C2 | 0.54764 (10) | 0.24453 (8) | 0.5070 (3) | 0.0212 (3) | |
C3 | 0.58509 (11) | 0.28796 (8) | 0.7249 (3) | 0.0220 (3) | |
C4 | 0.53291 (10) | 0.35607 (8) | 0.7921 (3) | 0.0208 (3) | |
H4A | 0.5569 | 0.3847 | 0.9339 | 0.025* | |
C5 | 0.36091 (11) | 0.50464 (7) | 0.8333 (3) | 0.0226 (3) | |
H5A | 0.4092 | 0.5117 | 0.9708 | 0.027* | |
C6 | 0.27613 (11) | 0.55440 (8) | 0.7967 (3) | 0.0241 (3) | |
H6A | 0.2680 | 0.5955 | 0.9094 | 0.029* | |
C7 | 0.20217 (11) | 0.54348 (8) | 0.5906 (3) | 0.0238 (3) | |
C8 | 0.21259 (10) | 0.48413 (7) | 0.4134 (3) | 0.0222 (4) | |
H8A | 0.1644 | 0.4774 | 0.2756 | 0.027* | |
C9 | 0.29943 (10) | 0.43496 (7) | 0.4528 (3) | 0.0195 (3) | |
C10 | 0.41167 (10) | 0.33567 (7) | 0.4277 (3) | 0.0196 (3) | |
C11 | 0.44591 (10) | 0.37986 (8) | 0.6456 (3) | 0.0194 (3) | |
C12 | 0.37263 (11) | 0.44372 (8) | 0.6603 (3) | 0.0203 (3) | |
C13 | 0.67188 (10) | 0.26163 (8) | 0.8877 (3) | 0.0244 (3) | |
H13A | 0.6930 | 0.2923 | 1.0273 | 0.029* | |
C14 | 0.03861 (12) | 0.58496 (9) | 0.3899 (4) | 0.0354 (4) | |
H14A | −0.0179 | 0.6211 | 0.4184 | 0.053* | |
H14B | 0.0101 | 0.5346 | 0.4043 | 0.053* | |
H14C | 0.0684 | 0.5921 | 0.2174 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0261 (5) | 0.0281 (5) | 0.0251 (6) | 0.0080 (4) | −0.0009 (4) | −0.0024 (5) |
O2 | 0.0282 (5) | 0.0358 (6) | 0.0241 (7) | 0.0098 (4) | −0.0016 (4) | 0.0011 (5) |
O3 | 0.0345 (6) | 0.0291 (6) | 0.0340 (7) | 0.0104 (4) | −0.0052 (5) | −0.0053 (5) |
N1 | 0.0207 (6) | 0.0215 (6) | 0.0187 (6) | 0.0000 (4) | −0.0025 (5) | −0.0007 (5) |
C1 | 0.0224 (6) | 0.0225 (7) | 0.0188 (8) | −0.0013 (5) | 0.0010 (6) | −0.0003 (5) |
C2 | 0.0202 (6) | 0.0226 (6) | 0.0209 (8) | 0.0007 (5) | 0.0047 (5) | 0.0017 (6) |
C3 | 0.0206 (7) | 0.0242 (7) | 0.0212 (8) | −0.0011 (5) | 0.0019 (6) | 0.0032 (6) |
C4 | 0.0207 (6) | 0.0234 (7) | 0.0183 (8) | −0.0035 (5) | 0.0000 (5) | 0.0005 (6) |
C5 | 0.0257 (7) | 0.0221 (7) | 0.0199 (7) | −0.0044 (5) | −0.0007 (6) | 0.0000 (6) |
C6 | 0.0303 (7) | 0.0204 (6) | 0.0217 (8) | −0.0017 (5) | 0.0022 (6) | −0.0028 (6) |
C7 | 0.0258 (7) | 0.0210 (7) | 0.0246 (8) | 0.0016 (5) | 0.0025 (6) | 0.0029 (6) |
C8 | 0.0226 (7) | 0.0224 (7) | 0.0216 (9) | −0.0004 (5) | −0.0014 (5) | 0.0023 (6) |
C9 | 0.0201 (6) | 0.0195 (6) | 0.0191 (8) | −0.0028 (5) | 0.0020 (5) | 0.0005 (6) |
C10 | 0.0179 (6) | 0.0217 (7) | 0.0193 (8) | −0.0026 (4) | 0.0014 (5) | 0.0020 (6) |
C11 | 0.0211 (6) | 0.0191 (6) | 0.0180 (8) | −0.0036 (5) | 0.0023 (5) | 0.0016 (5) |
C12 | 0.0214 (7) | 0.0188 (6) | 0.0206 (8) | −0.0030 (5) | 0.0015 (5) | 0.0031 (6) |
C13 | 0.0238 (6) | 0.0297 (7) | 0.0198 (9) | −0.0003 (5) | −0.0001 (6) | 0.0025 (6) |
C14 | 0.0353 (8) | 0.0360 (9) | 0.0348 (11) | 0.0131 (6) | −0.0077 (7) | −0.0022 (8) |
O1—C2 | 1.3574 (17) | C5—C6 | 1.3850 (19) |
O1—H1O1 | 0.81 | C5—C12 | 1.397 (2) |
O2—C13 | 1.2401 (17) | C5—H5A | 0.93 |
O3—C7 | 1.3685 (16) | C6—C7 | 1.407 (2) |
O3—C14 | 1.426 (2) | C6—H6A | 0.93 |
N1—C10 | 1.3671 (18) | C7—C8 | 1.388 (2) |
N1—C9 | 1.3899 (18) | C8—C9 | 1.4000 (17) |
N1—H1N1 | 0.85 (2) | C8—H8A | 0.93 |
C1—C2 | 1.382 (2) | C9—C12 | 1.402 (2) |
C1—C10 | 1.3960 (18) | C10—C11 | 1.420 (2) |
C1—H1A | 0.93 | C11—C12 | 1.4517 (18) |
C2—C3 | 1.425 (2) | C13—H13A | 0.93 |
C3—C4 | 1.4086 (19) | C14—H14A | 0.96 |
C3—C13 | 1.438 (2) | C14—H14B | 0.96 |
C4—C11 | 1.379 (2) | C14—H14C | 0.96 |
C4—H4A | 0.93 | ||
C2—O1—H1O1 | 104.9 | C8—C7—C6 | 121.71 (13) |
C7—O3—C14 | 117.62 (13) | C7—C8—C9 | 116.58 (13) |
C10—N1—C9 | 109.00 (13) | C7—C8—H8A | 121.7 |
C10—N1—H1N1 | 124.3 (12) | C9—C8—H8A | 121.7 |
C9—N1—H1N1 | 126.2 (12) | N1—C9—C8 | 128.06 (14) |
C2—C1—C10 | 116.99 (14) | N1—C9—C12 | 109.20 (12) |
C2—C1—H1A | 121.5 | C8—C9—C12 | 122.69 (13) |
C10—C1—H1A | 121.5 | N1—C10—C1 | 128.02 (14) |
O1—C2—C1 | 117.68 (14) | N1—C10—C11 | 109.13 (12) |
O1—C2—C3 | 120.64 (13) | C1—C10—C11 | 122.84 (13) |
C1—C2—C3 | 121.67 (13) | C4—C11—C10 | 119.28 (13) |
C4—C3—C2 | 119.83 (13) | C4—C11—C12 | 134.53 (14) |
C4—C3—C13 | 118.83 (14) | C10—C11—C12 | 106.18 (12) |
C2—C3—C13 | 121.25 (13) | C5—C12—C9 | 119.41 (12) |
C11—C4—C3 | 119.36 (14) | C5—C12—C11 | 134.10 (14) |
C11—C4—H4A | 120.3 | C9—C12—C11 | 106.45 (12) |
C3—C4—H4A | 120.3 | O2—C13—C3 | 124.75 (14) |
C6—C5—C12 | 118.88 (14) | O2—C13—H13A | 117.6 |
C6—C5—H5A | 120.6 | C3—C13—H13A | 117.6 |
C12—C5—H5A | 120.6 | O3—C14—H14A | 109.5 |
C5—C6—C7 | 120.71 (14) | O3—C14—H14B | 109.5 |
C5—C6—H6A | 119.6 | H14A—C14—H14B | 109.5 |
C7—C6—H6A | 119.6 | O3—C14—H14C | 109.5 |
O3—C7—C8 | 123.77 (14) | H14A—C14—H14C | 109.5 |
O3—C7—C6 | 114.52 (14) | H14B—C14—H14C | 109.5 |
C10—C1—C2—O1 | −179.79 (13) | C2—C1—C10—N1 | 179.92 (13) |
C10—C1—C2—C3 | 0.13 (19) | C2—C1—C10—C11 | −1.0 (2) |
O1—C2—C3—C4 | −179.74 (12) | C3—C4—C11—C10 | −0.9 (2) |
C1—C2—C3—C4 | 0.3 (2) | C3—C4—C11—C12 | 177.97 (14) |
O1—C2—C3—C13 | −3.2 (2) | N1—C10—C11—C4 | −179.38 (12) |
C1—C2—C3—C13 | 176.88 (12) | C1—C10—C11—C4 | 1.4 (2) |
C2—C3—C4—C11 | 0.0 (2) | N1—C10—C11—C12 | 1.49 (15) |
C13—C3—C4—C11 | −176.59 (13) | C1—C10—C11—C12 | −177.74 (12) |
C12—C5—C6—C7 | 0.7 (2) | C6—C5—C12—C9 | 0.8 (2) |
C14—O3—C7—C8 | 4.0 (2) | C6—C5—C12—C11 | −176.30 (14) |
C14—O3—C7—C6 | −175.73 (14) | N1—C9—C12—C5 | −178.86 (12) |
C5—C6—C7—O3 | 178.13 (13) | C8—C9—C12—C5 | −1.4 (2) |
C5—C6—C7—C8 | −1.7 (2) | N1—C9—C12—C11 | −1.06 (15) |
O3—C7—C8—C9 | −178.74 (13) | C8—C9—C12—C11 | 176.40 (12) |
C6—C7—C8—C9 | 1.0 (2) | C4—C11—C12—C5 | −1.9 (3) |
C10—N1—C9—C8 | −175.26 (13) | C10—C11—C12—C5 | 177.08 (15) |
C10—N1—C9—C12 | 2.04 (15) | C4—C11—C12—C9 | −179.18 (15) |
C7—C8—C9—N1 | 177.45 (14) | C10—C11—C12—C9 | −0.25 (15) |
C7—C8—C9—C12 | 0.49 (19) | C4—C3—C13—O2 | 176.58 (13) |
C9—N1—C10—C1 | 176.99 (13) | C2—C3—C13—O2 | 0.0 (2) |
C9—N1—C10—C11 | −2.19 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2 | 0.81 | 1.96 | 2.6453 (17) | 143 |
O1—H1O1···N1i | 0.81 | 2.53 | 3.0457 (15) | 123 |
N1—H1N1···O2ii | 0.85 (2) | 2.10 (2) | 2.941 (2) | 172 (2) |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) x−1/2, −y+1/2, z−1. |
Experimental details
Crystal data | |
Chemical formula | C14H11NO3 |
Mr | 241.24 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 100 |
a, b, c (Å) | 12.4352 (4), 17.6564 (5), 5.0839 (1) |
V (Å3) | 1116.23 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.23 × 0.19 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.831, 0.918 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25207, 2026, 2018 |
Rint | 0.027 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.097, 1.31 |
No. of reflections | 2026 |
No. of parameters | 170 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.64, −0.63 |
Absolute structure | Flack (1983), 851 Friedel pairs |
Absolute structure parameter | 0.17 (19) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1O1···O2 | 0.81 | 1.96 | 2.6453 (17) | 143 |
O1—H1O1···N1i | 0.81 | 2.53 | 3.0457 (15) | 123 |
N1—H1N1···O2ii | 0.85 (2) | 2.10 (2) | 2.941 (2) | 172 (2) |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) x−1/2, −y+1/2, z−1. |
Acknowledgements
SL and WM are grateful to the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0006/2552) and Mae Fah Luang University for financial support. SC thanks Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fun, H.-K., Maneerat, W., Laphookhieo, S. & Chantrapromma, S. (2009). Acta Cryst. E65, o2497–o2498. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ito, C., Katsuno, S., Ohta, H., Omura, M., Kajirua, I. & Furukawa, H. (1997). Chem. Pharm. Bull. 45, 48–52. CrossRef CAS Google Scholar
Kongkathip, N. & Kongkathip, B. (2009). Heterocycles, 79, 121–144. Web of Science CrossRef CAS Google Scholar
Laphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115–2119. Web of Science CrossRef CAS Google Scholar
Li, W. S., McChesney, J. D. & El-Feraly, F. S. (1991). Phytochemistry. 30, 343–346. CAS Google Scholar
Maneerat, W. & Laphookhieo, S. (2010). Heterocycles. 81, 1261–1269. CAS Google Scholar
Maneerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc. 21, 665–668. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sripisut, T. & Laphookhieo, S. (2010). J. Asian Nat. Prod. Res. 12, 612–617. Web of Science CrossRef Google Scholar
Tangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157–162. Google Scholar
Yenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med. 66, 277–279. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rutaceae plants are known to be rich sources of coumarins and carbazole alkaloids. Many of them have been isolated from several genera of Rutaceae especially from Clausena genus (Laphookhieo et al., 2009; Maneerat et al., 2010; Sripisut & Laphookhieo 2010; Kongkathip & Kongkathip 2009; Ito et al., 1997; Li et al., 1991; Tangyuenyongwatthana et al., 1992) and some of these compounds show interesting pharmacological activities (Maneerat & Laphookhieo 2010; Yenjai et al. 2000). Although Clausena wallichii is one of the Rutaceae plants, however phytochemical reports on the chemical constituents from this plant are rare. As part of our continuing study of chemical constituents and bioactive compounds from Thai medicinal plants, we report herein the crystal structure of the title compound, which was isolated from the roots of C. wallichii collected from Phrae province in the northern region of Thailand.
The non-hydrogen atoms of the title molecule (Fig. 1) are almost coplanar. The carbazole ring system (C1-C12/N1) is planar with an r.m.s. deviation of 0.039 Å [maximum deviation 0.072 (1) Å for atom C7]. The pyrrole ring makes dihedral angle of 1.66 (7) and 3.12 (8)°, respectively, with the C1–C4/C10–C11 and C5–C9/C12 benzene rings. The dihedral angle between the two benzene rings being 4.63 (7)°. The cabaldehyde and methoxy substituents at atoms C3 and C7, respectively, are coplanar with the benzene ring, as indicated by torsion angles C2–C3–C13–O2 = 0.0 (2)° and C14–O3–C7–C8 = 4.0 (2)°. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances are within normal ranges (Allen et al., 1987) and comparable to a related structure (Fun et al., 2009).
The crystal packing of the title compound is stabilized by intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) which link the molecules into a zigzag network extending parallel to the ac plane.