organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-7-meth­­oxy-9H-carbazole-3-carbaldehyde

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bNatural Products Research Laboratory, School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand, and cCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 20 August 2010; accepted 21 August 2010; online 28 August 2010)

The title compound, C14H11NO3, was isolated from the roots of Clausena wallichii. The carbazole ring system is approx­imately planar (r.m.s. deviation = 0.039 Å) and the dihedral angle between the two benzene rings is 4.63 (7)°. An intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into a zigzag network extending parallel to the ac plane by O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For compounds isolated from plants of genera Rutaceae and their pharmacological activity, see: Ito et al. (1997[Ito, C., Katsuno, S., Ohta, H., Omura, M., Kajirua, I. & Furukawa, H. (1997). Chem. Pharm. Bull. 45, 48-52.]); Kongkathip & Kongkathip (2009[Kongkathip, N. & Kongkathip, B. (2009). Heterocycles, 79, 121-144.]); Laphookhieo et al. (2009[Laphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115-2119.]); Li et al. (1991[Li, W. S., McChesney, J. D. & El-Feraly, F. S. (1991). Phytochemistry. 30, 343-346.]); Maneerat & Laphookhieo (2010[Maneerat, W. & Laphookhieo, S. (2010). Heterocycles. 81, 1261-1269.]); Maneerat et al. (2010[Maneerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc. 21, 665-668.]); Sripisut & Laphookhieo (2010[Sripisut, T. & Laphookhieo, S. (2010). J. Asian Nat. Prod. Res. 12, 612-617.]); Tangyuenyongwatthana et al. (1992[Tangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157-162.]); Yenjai et al. 2000[Yenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med. 66, 277-279.]). For a related structure, see: Fun et al. (2009[Fun, H.-K., Maneerat, W., Laphookhieo, S. & Chantrapromma, S. (2009). Acta Cryst. E65, o2497-o2498.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11NO3

  • Mr = 241.24

  • Orthorhombic, P n a 21

  • a = 12.4352 (4) Å

  • b = 17.6564 (5) Å

  • c = 5.0839 (1) Å

  • V = 1116.23 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.23 × 0.19 × 0.10 mm

Data collection
  • Bruker APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.831, Tmax = 0.918

  • 25207 measured reflections

  • 2026 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.097

  • S = 1.31

  • 2026 reflections

  • 170 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.63 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 851 Friedel pairs

  • Flack parameter: 0.17 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2 0.81 1.96 2.6453 (17) 143
O1—H1O1⋯N1i 0.81 2.53 3.0457 (15) 123
N1—H1N1⋯O2ii 0.85 (2) 2.10 (2) 2.941 (2) 172 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Rutaceae plants are known to be rich sources of coumarins and carbazole alkaloids. Many of them have been isolated from several genera of Rutaceae especially from Clausena genus (Laphookhieo et al., 2009; Maneerat et al., 2010; Sripisut & Laphookhieo 2010; Kongkathip & Kongkathip 2009; Ito et al., 1997; Li et al., 1991; Tangyuenyongwatthana et al., 1992) and some of these compounds show interesting pharmacological activities (Maneerat & Laphookhieo 2010; Yenjai et al. 2000). Although Clausena wallichii is one of the Rutaceae plants, however phytochemical reports on the chemical constituents from this plant are rare. As part of our continuing study of chemical constituents and bioactive compounds from Thai medicinal plants, we report herein the crystal structure of the title compound, which was isolated from the roots of C. wallichii collected from Phrae province in the northern region of Thailand.

The non-hydrogen atoms of the title molecule (Fig. 1) are almost coplanar. The carbazole ring system (C1-C12/N1) is planar with an r.m.s. deviation of 0.039 Å [maximum deviation 0.072 (1) Å for atom C7]. The pyrrole ring makes dihedral angle of 1.66 (7) and 3.12 (8)°, respectively, with the C1–C4/C10–C11 and C5–C9/C12 benzene rings. The dihedral angle between the two benzene rings being 4.63 (7)°. The cabaldehyde and methoxy substituents at atoms C3 and C7, respectively, are coplanar with the benzene ring, as indicated by torsion angles C2–C3–C13–O2 = 0.0 (2)° and C14–O3–C7–C8 = 4.0 (2)°. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances are within normal ranges (Allen et al., 1987) and comparable to a related structure (Fun et al., 2009).

The crystal packing of the title compound is stabilized by intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) which link the molecules into a zigzag network extending parallel to the ac plane.

Related literature top

For compounds isolated from plants of genera Rutaceae and their pharmacological activity, see: Ito et al. (1997); Kongkathip & Kongkathip (2009); Laphookhieo et al. (2009); Li et al. (1991); Maneerat & Laphookhieo (2010); Maneerat et al. (2010); Sripisut & Laphookhieo (2010); Tangyuenyongwatthana et al. (1992); Yenjai et al. 2000). For a related structure, see: Fun et al. (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Experimental top

The roots of C. wallichii (1.02 Kg) were successively extracted with CH2Cl2 over the period of 3 days each at room temperature to provide the crude CH2Cl2 extract which subjected to quick column chromatography (QCC) over silica gel eluted with a gradient of hexane-EtOAc (100% hexane to 100% EtOAc) to provide nine fractions (A-I). Fraction G (3.12 g) was further separated by QCC with a gradient of 10% EtOAc-hexane to 100% EtOAc to give seven subfractions (G1-G7). Subfraction G4 (118.9 mg) was subjected to repeated column chromatography using 30% EtOAc-hexane to yield the yellow solid of the title compound (12.8 mg). Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from CH2Cl2/acetone (1:1 v/v) by the slow evaporation of the solvent at room temperature after several days; m.p. 496.7-498.8 K (decomposition).

Refinement top

Atom H1N1 was located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions with O–H = 0.81, C–H = 0.93 for aromatic and CH, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.81 Å from C9 and the deepest hole is located at 1.29 Å from C3. 851 Friedel pairs were used to determine the absolute structure.

Structure description top

Rutaceae plants are known to be rich sources of coumarins and carbazole alkaloids. Many of them have been isolated from several genera of Rutaceae especially from Clausena genus (Laphookhieo et al., 2009; Maneerat et al., 2010; Sripisut & Laphookhieo 2010; Kongkathip & Kongkathip 2009; Ito et al., 1997; Li et al., 1991; Tangyuenyongwatthana et al., 1992) and some of these compounds show interesting pharmacological activities (Maneerat & Laphookhieo 2010; Yenjai et al. 2000). Although Clausena wallichii is one of the Rutaceae plants, however phytochemical reports on the chemical constituents from this plant are rare. As part of our continuing study of chemical constituents and bioactive compounds from Thai medicinal plants, we report herein the crystal structure of the title compound, which was isolated from the roots of C. wallichii collected from Phrae province in the northern region of Thailand.

The non-hydrogen atoms of the title molecule (Fig. 1) are almost coplanar. The carbazole ring system (C1-C12/N1) is planar with an r.m.s. deviation of 0.039 Å [maximum deviation 0.072 (1) Å for atom C7]. The pyrrole ring makes dihedral angle of 1.66 (7) and 3.12 (8)°, respectively, with the C1–C4/C10–C11 and C5–C9/C12 benzene rings. The dihedral angle between the two benzene rings being 4.63 (7)°. The cabaldehyde and methoxy substituents at atoms C3 and C7, respectively, are coplanar with the benzene ring, as indicated by torsion angles C2–C3–C13–O2 = 0.0 (2)° and C14–O3–C7–C8 = 4.0 (2)°. An intramolecular O1—H1O1···O2 hydrogen bond (Table 1) generates an S(6) ring motif (Fig. 1 and Table 1) (Bernstein et al., 1995). The bond distances are within normal ranges (Allen et al., 1987) and comparable to a related structure (Fun et al., 2009).

The crystal packing of the title compound is stabilized by intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) which link the molecules into a zigzag network extending parallel to the ac plane.

For compounds isolated from plants of genera Rutaceae and their pharmacological activity, see: Ito et al. (1997); Kongkathip & Kongkathip (2009); Laphookhieo et al. (2009); Li et al. (1991); Maneerat & Laphookhieo (2010); Maneerat et al. (2010); Sripisut & Laphookhieo (2010); Tangyuenyongwatthana et al. (1992); Yenjai et al. 2000). For a related structure, see: Fun et al. (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see Cosier & Glazer, (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The O—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
2-Hydroxy-7-methoxy-9H-carbazole-3-carbaldehyde top
Crystal data top
C14H11NO3Dx = 1.435 Mg m3
Mr = 241.24Melting point = 496.7–498.8 K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 2026 reflections
a = 12.4352 (4) Åθ = 4.4–69.9°
b = 17.6564 (5) ŵ = 0.84 mm1
c = 5.0839 (1) ÅT = 100 K
V = 1116.23 (5) Å3Plate, yellow
Z = 40.23 × 0.19 × 0.10 mm
F(000) = 504
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2026 independent reflections
Radiation source: sealed tube2018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 69.9°, θmin = 4.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.831, Tmax = 0.918k = 2121
25207 measured reflectionsl = 56
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.030 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.054P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.001
S = 1.31Δρmax = 0.64 e Å3
2026 reflectionsΔρmin = 0.63 e Å3
170 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.053 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 851 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.17 (19)
Crystal data top
C14H11NO3V = 1116.23 (5) Å3
Mr = 241.24Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 12.4352 (4) ŵ = 0.84 mm1
b = 17.6564 (5) ÅT = 100 K
c = 5.0839 (1) Å0.23 × 0.19 × 0.10 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
2026 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2018 reflections with I > 2σ(I)
Tmin = 0.831, Tmax = 0.918Rint = 0.027
25207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.64 e Å3
S = 1.31Δρmin = 0.63 e Å3
2026 reflectionsAbsolute structure: Flack (1983), 851 Friedel pairs
170 parametersAbsolute structure parameter: 0.17 (19)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59667 (8)0.17861 (6)0.4400 (2)0.0264 (3)
H1O10.65370.17960.51490.056 (7)*
O20.72058 (8)0.20104 (6)0.8557 (3)0.0294 (3)
O30.12071 (9)0.59553 (6)0.5822 (3)0.0325 (3)
N10.32559 (9)0.37021 (7)0.3111 (3)0.0203 (3)
H1N10.2898 (14)0.3514 (10)0.185 (5)0.029 (5)*
C10.46098 (10)0.26763 (8)0.3568 (3)0.0213 (3)
H1A0.43660.23910.21500.026*
C20.54764 (10)0.24453 (8)0.5070 (3)0.0212 (3)
C30.58509 (11)0.28796 (8)0.7249 (3)0.0220 (3)
C40.53291 (10)0.35607 (8)0.7921 (3)0.0208 (3)
H4A0.55690.38470.93390.025*
C50.36091 (11)0.50464 (7)0.8333 (3)0.0226 (3)
H5A0.40920.51170.97080.027*
C60.27613 (11)0.55440 (8)0.7967 (3)0.0241 (3)
H6A0.26800.59550.90940.029*
C70.20217 (11)0.54348 (8)0.5906 (3)0.0238 (3)
C80.21259 (10)0.48413 (7)0.4134 (3)0.0222 (4)
H8A0.16440.47740.27560.027*
C90.29943 (10)0.43496 (7)0.4528 (3)0.0195 (3)
C100.41167 (10)0.33567 (7)0.4277 (3)0.0196 (3)
C110.44591 (10)0.37986 (8)0.6456 (3)0.0194 (3)
C120.37263 (11)0.44372 (8)0.6603 (3)0.0203 (3)
C130.67188 (10)0.26163 (8)0.8877 (3)0.0244 (3)
H13A0.69300.29231.02730.029*
C140.03861 (12)0.58496 (9)0.3899 (4)0.0354 (4)
H14A0.01790.62110.41840.053*
H14B0.01010.53460.40430.053*
H14C0.06840.59210.21740.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0261 (5)0.0281 (5)0.0251 (6)0.0080 (4)0.0009 (4)0.0024 (5)
O20.0282 (5)0.0358 (6)0.0241 (7)0.0098 (4)0.0016 (4)0.0011 (5)
O30.0345 (6)0.0291 (6)0.0340 (7)0.0104 (4)0.0052 (5)0.0053 (5)
N10.0207 (6)0.0215 (6)0.0187 (6)0.0000 (4)0.0025 (5)0.0007 (5)
C10.0224 (6)0.0225 (7)0.0188 (8)0.0013 (5)0.0010 (6)0.0003 (5)
C20.0202 (6)0.0226 (6)0.0209 (8)0.0007 (5)0.0047 (5)0.0017 (6)
C30.0206 (7)0.0242 (7)0.0212 (8)0.0011 (5)0.0019 (6)0.0032 (6)
C40.0207 (6)0.0234 (7)0.0183 (8)0.0035 (5)0.0000 (5)0.0005 (6)
C50.0257 (7)0.0221 (7)0.0199 (7)0.0044 (5)0.0007 (6)0.0000 (6)
C60.0303 (7)0.0204 (6)0.0217 (8)0.0017 (5)0.0022 (6)0.0028 (6)
C70.0258 (7)0.0210 (7)0.0246 (8)0.0016 (5)0.0025 (6)0.0029 (6)
C80.0226 (7)0.0224 (7)0.0216 (9)0.0004 (5)0.0014 (5)0.0023 (6)
C90.0201 (6)0.0195 (6)0.0191 (8)0.0028 (5)0.0020 (5)0.0005 (6)
C100.0179 (6)0.0217 (7)0.0193 (8)0.0026 (4)0.0014 (5)0.0020 (6)
C110.0211 (6)0.0191 (6)0.0180 (8)0.0036 (5)0.0023 (5)0.0016 (5)
C120.0214 (7)0.0188 (6)0.0206 (8)0.0030 (5)0.0015 (5)0.0031 (6)
C130.0238 (6)0.0297 (7)0.0198 (9)0.0003 (5)0.0001 (6)0.0025 (6)
C140.0353 (8)0.0360 (9)0.0348 (11)0.0131 (6)0.0077 (7)0.0022 (8)
Geometric parameters (Å, º) top
O1—C21.3574 (17)C5—C61.3850 (19)
O1—H1O10.81C5—C121.397 (2)
O2—C131.2401 (17)C5—H5A0.93
O3—C71.3685 (16)C6—C71.407 (2)
O3—C141.426 (2)C6—H6A0.93
N1—C101.3671 (18)C7—C81.388 (2)
N1—C91.3899 (18)C8—C91.4000 (17)
N1—H1N10.85 (2)C8—H8A0.93
C1—C21.382 (2)C9—C121.402 (2)
C1—C101.3960 (18)C10—C111.420 (2)
C1—H1A0.93C11—C121.4517 (18)
C2—C31.425 (2)C13—H13A0.93
C3—C41.4086 (19)C14—H14A0.96
C3—C131.438 (2)C14—H14B0.96
C4—C111.379 (2)C14—H14C0.96
C4—H4A0.93
C2—O1—H1O1104.9C8—C7—C6121.71 (13)
C7—O3—C14117.62 (13)C7—C8—C9116.58 (13)
C10—N1—C9109.00 (13)C7—C8—H8A121.7
C10—N1—H1N1124.3 (12)C9—C8—H8A121.7
C9—N1—H1N1126.2 (12)N1—C9—C8128.06 (14)
C2—C1—C10116.99 (14)N1—C9—C12109.20 (12)
C2—C1—H1A121.5C8—C9—C12122.69 (13)
C10—C1—H1A121.5N1—C10—C1128.02 (14)
O1—C2—C1117.68 (14)N1—C10—C11109.13 (12)
O1—C2—C3120.64 (13)C1—C10—C11122.84 (13)
C1—C2—C3121.67 (13)C4—C11—C10119.28 (13)
C4—C3—C2119.83 (13)C4—C11—C12134.53 (14)
C4—C3—C13118.83 (14)C10—C11—C12106.18 (12)
C2—C3—C13121.25 (13)C5—C12—C9119.41 (12)
C11—C4—C3119.36 (14)C5—C12—C11134.10 (14)
C11—C4—H4A120.3C9—C12—C11106.45 (12)
C3—C4—H4A120.3O2—C13—C3124.75 (14)
C6—C5—C12118.88 (14)O2—C13—H13A117.6
C6—C5—H5A120.6C3—C13—H13A117.6
C12—C5—H5A120.6O3—C14—H14A109.5
C5—C6—C7120.71 (14)O3—C14—H14B109.5
C5—C6—H6A119.6H14A—C14—H14B109.5
C7—C6—H6A119.6O3—C14—H14C109.5
O3—C7—C8123.77 (14)H14A—C14—H14C109.5
O3—C7—C6114.52 (14)H14B—C14—H14C109.5
C10—C1—C2—O1179.79 (13)C2—C1—C10—N1179.92 (13)
C10—C1—C2—C30.13 (19)C2—C1—C10—C111.0 (2)
O1—C2—C3—C4179.74 (12)C3—C4—C11—C100.9 (2)
C1—C2—C3—C40.3 (2)C3—C4—C11—C12177.97 (14)
O1—C2—C3—C133.2 (2)N1—C10—C11—C4179.38 (12)
C1—C2—C3—C13176.88 (12)C1—C10—C11—C41.4 (2)
C2—C3—C4—C110.0 (2)N1—C10—C11—C121.49 (15)
C13—C3—C4—C11176.59 (13)C1—C10—C11—C12177.74 (12)
C12—C5—C6—C70.7 (2)C6—C5—C12—C90.8 (2)
C14—O3—C7—C84.0 (2)C6—C5—C12—C11176.30 (14)
C14—O3—C7—C6175.73 (14)N1—C9—C12—C5178.86 (12)
C5—C6—C7—O3178.13 (13)C8—C9—C12—C51.4 (2)
C5—C6—C7—C81.7 (2)N1—C9—C12—C111.06 (15)
O3—C7—C8—C9178.74 (13)C8—C9—C12—C11176.40 (12)
C6—C7—C8—C91.0 (2)C4—C11—C12—C51.9 (3)
C10—N1—C9—C8175.26 (13)C10—C11—C12—C5177.08 (15)
C10—N1—C9—C122.04 (15)C4—C11—C12—C9179.18 (15)
C7—C8—C9—N1177.45 (14)C10—C11—C12—C90.25 (15)
C7—C8—C9—C120.49 (19)C4—C3—C13—O2176.58 (13)
C9—N1—C10—C1176.99 (13)C2—C3—C13—O20.0 (2)
C9—N1—C10—C112.19 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.811.962.6453 (17)143
O1—H1O1···N1i0.812.533.0457 (15)123
N1—H1N1···O2ii0.85 (2)2.10 (2)2.941 (2)172 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z1.

Experimental details

Crystal data
Chemical formulaC14H11NO3
Mr241.24
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)12.4352 (4), 17.6564 (5), 5.0839 (1)
V3)1116.23 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.84
Crystal size (mm)0.23 × 0.19 × 0.10
Data collection
DiffractometerBruker APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.831, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
25207, 2026, 2018
Rint0.027
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.097, 1.31
No. of reflections2026
No. of parameters170
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.63
Absolute structureFlack (1983), 851 Friedel pairs
Absolute structure parameter0.17 (19)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O20.811.962.6453 (17)143
O1—H1O1···N1i0.812.533.0457 (15)123
N1—H1N1···O2ii0.85 (2)2.10 (2)2.941 (2)172 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x1/2, y+1/2, z1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

SL and WM are grateful to the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0006/2552) and Mae Fah Luang University for financial support. SC thanks Prince of Songkla University for generous support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Maneerat, W., Laphookhieo, S. & Chantrapromma, S. (2009). Acta Cryst. E65, o2497–o2498.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIto, C., Katsuno, S., Ohta, H., Omura, M., Kajirua, I. & Furukawa, H. (1997). Chem. Pharm. Bull. 45, 48–52.  CrossRef CAS Google Scholar
First citationKongkathip, N. & Kongkathip, B. (2009). Heterocycles, 79, 121–144.  Web of Science CrossRef CAS Google Scholar
First citationLaphookhieo, S., Sripisut, T., Prawat, U. & Karalai, C. (2009). Heterocycles, 78, 2115–2119.  Web of Science CrossRef CAS Google Scholar
First citationLi, W. S., McChesney, J. D. & El-Feraly, F. S. (1991). Phytochemistry. 30, 343–346.  CAS Google Scholar
First citationManeerat, W. & Laphookhieo, S. (2010). Heterocycles. 81, 1261–1269.  CAS Google Scholar
First citationManeerat, W., Prawat, U., Saewan, N. & Laphookhieo, S. (2010). J. Braz. Chem. Soc. 21, 665–668.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSripisut, T. & Laphookhieo, S. (2010). J. Asian Nat. Prod. Res. 12, 612–617.  Web of Science CrossRef Google Scholar
First citationTangyuenyongwatthana, P., Pummangura, S. & Thanyavuthi, D. (1992). Songklanakarin J. Sci. Technol. 14, 157–162.  Google Scholar
First citationYenjai, C., Sripontan, S., Sriprajun, P., Kittakoop, P., Jintasirikul, A., Tanticharoen, M. & Thebtaranonth, Y. (2000). Planta Med. 66, 277–279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds