organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Methyl 3-(3,5-di­bromo-2-hy­dr­oxy­benzyl­­idene)carbazate

aLinjiang College, Hangzhou Vocational and Technical College, Hangzhou 310018, People's Republic of China
*Correspondence e-mail: mailofllp@126.com

(Received 21 August 2010; accepted 21 August 2010; online 28 August 2010)

The title compound, C9H8Br2N2O3, crystallizes with two very similar independent mol­ecules in the asymmetric unit, each of which adopts a trans configuration with respect to the C=N bond. Intra­molecular O—H⋯N hydrogen bonds are observed in each independent mol­ecule. In the crystal structure, mol­ecules are linked into chains propagating along [010] by N—H⋯O and C—H⋯O hydrogen bonds. In addition, C—H⋯π inter­actions stabilize the structure.

Related literature

For general background to benzaldehyde­hydrazone derivatives, see: Parashar et al. (1988[Parashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201-208.]); Hadjoudis et al. (1987[Hadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345-1360.]); Borg et al. (1999[Borg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331-4342.]); Kahwa et al. (1986[Kahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201-208.]); Santos et al. (2001[Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.]). For a related structure, see: Shang et al. (2007[Shang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8Br2N2O3

  • Mr = 351.99

  • Triclinic, [P \overline 1]

  • a = 7.6907 (11) Å

  • b = 9.9886 (14) Å

  • c = 15.503 (2) Å

  • α = 92.254 (6)°

  • β = 95.647 (6)°

  • γ = 91.394 (6)°

  • V = 1183.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.84 mm−1

  • T = 223 K

  • 0.22 × 0.21 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.977, Tmax = 0.989

  • 12305 measured reflections

  • 4109 independent reflections

  • 2425 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.175

  • S = 1.01

  • 4109 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.88 2.604 (7) 146
N2—H2⋯O6 0.86 2.01 2.845 (6) 163
N4—H4⋯O2i 0.86 2.00 2.828 (6) 161
O4—H4A⋯N3 0.82 1.89 2.609 (7) 145
C7—H7⋯O6 0.93 2.56 3.312 (8) 139
C16—H16⋯O2i 0.93 2.52 3.282 (8) 139
C9—H9BCg1ii 0.97 2.89 3.594 (8) 131
C18—H18CCg2iii 0.97 2.89 3.561 (8) 128
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+2, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but almost identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O2/O3/C7-C9 and N3/N4/O5/O6/C16-C18 planes form dihedral angles of 8.18 (6)° and 7.28 (7)°, respectively, with the C1—C6 and C10—C15 planes. The bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007). Intramolecular O—H···N hydrogen bonds are observed in each independent molecule.

In the crystal structure, the molecules are linked into chains running along the [010] by N—H···O and C—H···O hydrogen bonds. In addition, intermolecular C—H···π interactions are observed, which further stabilize the structure (Table 1).

Related literature top

For general background to benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999); Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007).

Experimental top

3,5-Dibromo-2-hydroxybenzaldehyde (2.79 g, 0.01 mol) and methyl hydrazinecarboxylate (0.90 g, 0.01 mol) were dissolved in stirred methanol (15 ml) and left for 5.5 h at room temperature. The resulting solid was filtered off and recrystallized from ethanol to give the title compound in 96% yield. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ispropanol solution at room temperature (m.p. 415–417 K).

Refinement top

H atoms were positioned geometrically (O–H = 0.83 Å, N-H = 0.87 Å and C–H = 0.94 or 0.97 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C,N) and 1.5Ueq(Cmethyl).

Structure description top

Benzaldehydehydrazone derivatives have attracted much attention due to their pharmacological activity (Parashar et al., 1988) and their photochromic properties (Hadjoudis et al., 1987). They are important intermediates of 1,3,4-oxadiazoles, which have been reported to be versatile compounds with many interesting properties (Borg et al., 1999). Metal complexes based on Schiff bases have received considerable attention because they can be utilized as model compounds of active centres in various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). We report here the crystal structure of the title compound (Fig. 1).

The title compound contains two independent, but almost identical molecules in the asymmetric unit. Each independent molecule adopts a trans configuration with respect to the CN bond. The N1/N2/O2/O3/C7-C9 and N3/N4/O5/O6/C16-C18 planes form dihedral angles of 8.18 (6)° and 7.28 (7)°, respectively, with the C1—C6 and C10—C15 planes. The bond lengths and angles are comparable to those observed for methylN'-[(E)-4-methoxybenzylidene]hydrazinecarboxylate (Shang et al., 2007). Intramolecular O—H···N hydrogen bonds are observed in each independent molecule.

In the crystal structure, the molecules are linked into chains running along the [010] by N—H···O and C—H···O hydrogen bonds. In addition, intermolecular C—H···π interactions are observed, which further stabilize the structure (Table 1).

For general background to benzaldehydehydrazone derivatives, see: Parashar et al. (1988); Hadjoudis et al. (1987); Borg et al. (1999); Kahwa et al. (1986); Santos et al. (2001). For a related structure, see: Shang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound. Hydrogen bonds are shown as dashed lines.
(E)-Methyl 3-(3,5-dibromo-2-hydroxybenzylidene)carbazate top
Crystal data top
C9H8Br2N2O3Z = 4
Mr = 351.99F(000) = 680
Triclinic, P1Dx = 1.975 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6907 (11) ÅCell parameters from 4109 reflections
b = 9.9886 (14) Åθ = 1.3–25.0°
c = 15.503 (2) ŵ = 6.84 mm1
α = 92.254 (6)°T = 223 K
β = 95.647 (6)°Block, colourless
γ = 91.394 (6)°0.22 × 0.21 × 0.18 mm
V = 1183.8 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4109 independent reflections
Radiation source: fine-focus sealed tube2425 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 98
Tmin = 0.977, Tmax = 0.989k = 1111
12305 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0947P)2]
where P = (Fo2 + 2Fc2)/3
4109 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C9H8Br2N2O3γ = 91.394 (6)°
Mr = 351.99V = 1183.8 (3) Å3
Triclinic, P1Z = 4
a = 7.6907 (11) ÅMo Kα radiation
b = 9.9886 (14) ŵ = 6.84 mm1
c = 15.503 (2) ÅT = 223 K
α = 92.254 (6)°0.22 × 0.21 × 0.18 mm
β = 95.647 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4109 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2425 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.989Rint = 0.059
12305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 0.63 e Å3
4109 reflectionsΔρmin = 0.62 e Å3
289 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0209 (8)0.9946 (6)0.2567 (4)0.0463 (16)
C20.0373 (9)1.0058 (7)0.1701 (5)0.0551 (18)
C30.0724 (9)0.8941 (7)0.1156 (5)0.0578 (19)
H30.11080.90370.05680.069*
C40.0513 (9)0.7688 (7)0.1474 (5)0.0568 (19)
C50.0050 (8)0.7525 (7)0.2340 (5)0.0529 (18)
H50.01670.66610.25540.063*
C60.0441 (8)0.8656 (6)0.2893 (4)0.0428 (15)
C70.1087 (8)0.8455 (6)0.3787 (4)0.0485 (16)
H70.11290.75860.39990.058*
C80.2901 (8)1.0311 (6)0.5634 (4)0.0454 (16)
C90.4215 (10)1.0965 (7)0.7025 (5)0.064 (2)
H9A0.46481.05660.75620.096*
H9B0.32951.15780.71350.096*
H9C0.51621.14510.67950.096*
C100.3833 (8)0.4911 (6)0.2572 (4)0.0436 (15)
C110.4111 (8)0.4998 (7)0.1704 (5)0.0522 (17)
C120.4301 (8)0.3882 (7)0.1186 (5)0.0582 (19)
H120.44820.39550.05990.070*
C130.4218 (9)0.2622 (7)0.1556 (5)0.0528 (18)
C140.3968 (8)0.2485 (6)0.2395 (4)0.0495 (17)
H140.39280.16270.26230.059*
C150.3769 (8)0.3617 (6)0.2927 (4)0.0436 (15)
C160.3449 (8)0.3454 (6)0.3820 (4)0.0465 (16)
H160.34940.25960.40480.056*
C170.2301 (8)0.5304 (6)0.5620 (4)0.0427 (15)
C180.1545 (10)0.5951 (7)0.7015 (5)0.063 (2)
H18A0.13560.55520.75590.094*
H18B0.04920.63880.67900.094*
H18C0.25030.66070.71100.094*
N10.1604 (7)0.9473 (5)0.4288 (4)0.0483 (14)
N20.2264 (7)0.9247 (5)0.5120 (4)0.0542 (15)
H20.22740.84420.53130.065*
N30.3108 (7)0.4455 (5)0.4302 (3)0.0452 (13)
N40.2761 (7)0.4238 (5)0.5131 (4)0.0508 (14)
H40.28320.34430.53400.061*
O10.0559 (6)1.1076 (4)0.3070 (3)0.0547 (12)
H10.09341.08750.35670.082*
O20.2888 (7)1.1459 (4)0.5407 (3)0.0688 (15)
O30.3523 (6)0.9915 (4)0.6398 (3)0.0557 (12)
O40.3642 (6)0.6050 (4)0.3056 (3)0.0547 (12)
H4A0.34910.58570.35590.082*
O50.1974 (6)0.4908 (4)0.6391 (3)0.0569 (12)
O60.2219 (7)0.6444 (4)0.5383 (3)0.0630 (14)
Br10.06212 (11)1.17836 (8)0.12394 (5)0.0693 (3)
Br20.09610 (12)0.61188 (8)0.07391 (6)0.0806 (3)
Br30.41876 (12)0.67238 (8)0.12264 (6)0.0735 (3)
Br40.43692 (12)0.10563 (8)0.08150 (6)0.0764 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.043 (4)0.051 (4)0.046 (5)0.004 (3)0.010 (3)0.005 (3)
C20.053 (4)0.060 (4)0.054 (5)0.003 (3)0.009 (4)0.007 (4)
C30.062 (4)0.076 (5)0.035 (4)0.004 (4)0.010 (3)0.001 (4)
C40.063 (4)0.057 (4)0.047 (5)0.007 (3)0.000 (4)0.014 (4)
C50.053 (4)0.053 (4)0.052 (5)0.007 (3)0.009 (3)0.009 (3)
C60.052 (4)0.042 (4)0.035 (4)0.000 (3)0.013 (3)0.003 (3)
C70.061 (4)0.039 (3)0.047 (5)0.004 (3)0.011 (3)0.002 (3)
C80.061 (4)0.042 (4)0.034 (4)0.003 (3)0.012 (3)0.000 (3)
C90.076 (5)0.076 (5)0.038 (5)0.003 (4)0.000 (4)0.008 (4)
C100.040 (3)0.051 (4)0.040 (4)0.005 (3)0.007 (3)0.002 (3)
C110.050 (4)0.061 (4)0.049 (5)0.003 (3)0.013 (3)0.011 (4)
C120.053 (4)0.078 (5)0.043 (5)0.001 (4)0.006 (3)0.002 (4)
C130.054 (4)0.063 (5)0.040 (5)0.004 (3)0.008 (3)0.018 (3)
C140.061 (4)0.049 (4)0.039 (4)0.001 (3)0.010 (3)0.008 (3)
C150.046 (4)0.047 (4)0.038 (4)0.003 (3)0.005 (3)0.002 (3)
C160.053 (4)0.039 (3)0.048 (5)0.001 (3)0.008 (3)0.003 (3)
C170.058 (4)0.036 (4)0.034 (4)0.000 (3)0.004 (3)0.002 (3)
C180.079 (5)0.070 (5)0.040 (5)0.000 (4)0.015 (4)0.009 (4)
N10.067 (4)0.042 (3)0.036 (4)0.002 (3)0.002 (3)0.003 (3)
N20.083 (4)0.028 (3)0.050 (4)0.002 (3)0.001 (3)0.006 (3)
N30.066 (4)0.037 (3)0.034 (3)0.003 (2)0.013 (3)0.001 (2)
N40.083 (4)0.029 (3)0.041 (4)0.003 (3)0.010 (3)0.003 (3)
O10.079 (3)0.048 (3)0.037 (3)0.005 (2)0.004 (2)0.004 (2)
O20.114 (4)0.025 (2)0.067 (4)0.003 (2)0.004 (3)0.013 (2)
O30.091 (3)0.041 (2)0.032 (3)0.003 (2)0.005 (2)0.005 (2)
O40.078 (3)0.047 (3)0.041 (3)0.008 (2)0.014 (2)0.004 (2)
O50.087 (3)0.049 (3)0.037 (3)0.008 (2)0.016 (2)0.002 (2)
O60.110 (4)0.030 (2)0.053 (3)0.010 (2)0.021 (3)0.011 (2)
Br10.0837 (6)0.0719 (5)0.0532 (6)0.0081 (4)0.0047 (4)0.0159 (4)
Br20.0933 (7)0.0793 (6)0.0647 (6)0.0018 (5)0.0013 (5)0.0291 (5)
Br30.0975 (7)0.0730 (6)0.0543 (6)0.0022 (4)0.0234 (5)0.0158 (4)
Br40.0873 (6)0.0814 (6)0.0595 (6)0.0082 (4)0.0131 (4)0.0301 (4)
Geometric parameters (Å, º) top
C1—O11.353 (7)C11—C121.367 (9)
C1—C21.383 (9)C11—Br31.905 (7)
C1—C61.412 (8)C12—C131.406 (10)
C2—C31.378 (9)C12—H120.94
C2—Br11.899 (7)C13—C141.346 (9)
C3—C41.370 (9)C13—Br41.917 (6)
C3—H30.94C14—C151.393 (8)
C4—C51.387 (10)C14—H140.94
C4—Br21.906 (7)C15—C161.445 (9)
C5—C61.400 (8)C16—N31.272 (7)
C5—H50.94C16—H160.94
C6—C71.448 (9)C17—O61.211 (7)
C7—N11.286 (7)C17—O51.319 (7)
C7—H70.94C17—N41.357 (7)
C8—O21.212 (7)C18—O51.460 (7)
C8—O31.312 (8)C18—H18A0.97
C8—N21.355 (8)C18—H18B0.97
C9—O31.456 (7)C18—H18C0.97
C9—H9A0.97N1—N21.368 (7)
C9—H9B0.97N2—H20.87
C9—H9C0.97N3—N41.364 (7)
C10—O41.357 (7)N4—H40.87
C10—C111.388 (9)O1—H10.83
C10—C151.426 (8)O4—H4A0.83
O1—C1—C2118.9 (6)C11—C12—C13118.1 (7)
O1—C1—C6122.2 (6)C11—C12—H12120.9
C2—C1—C6118.9 (6)C13—C12—H12120.9
C3—C2—C1121.3 (7)C14—C13—C12122.3 (6)
C3—C2—Br1119.1 (6)C14—C13—Br4119.6 (6)
C1—C2—Br1119.6 (5)C12—C13—Br4118.0 (5)
C4—C3—C2119.8 (7)C13—C14—C15119.8 (6)
C4—C3—H3120.1C13—C14—H14120.1
C2—C3—H3120.1C15—C14—H14120.1
C3—C4—C5121.0 (6)C14—C15—C10119.4 (6)
C3—C4—Br2121.1 (6)C14—C15—C16119.3 (6)
C5—C4—Br2117.9 (5)C10—C15—C16121.3 (6)
C4—C5—C6119.5 (6)N3—C16—C15120.9 (6)
C4—C5—H5120.3N3—C16—H16119.5
C6—C5—H5120.3C15—C16—H16119.5
C5—C6—C1119.5 (6)O6—C17—O5125.5 (6)
C5—C6—C7118.3 (6)O6—C17—N4125.0 (6)
C1—C6—C7122.2 (6)O5—C17—N4109.5 (5)
N1—C7—C6119.5 (6)O5—C18—H18A109.5
N1—C7—H7120.2O5—C18—H18B109.5
C6—C7—H7120.2H18A—C18—H18B109.5
O2—C8—O3125.8 (6)O5—C18—H18C109.5
O2—C8—N2123.9 (6)H18A—C18—H18C109.5
O3—C8—N2110.4 (5)H18B—C18—H18C109.5
O3—C9—H9A109.5C7—N1—N2118.2 (5)
O3—C9—H9B109.5C8—N2—N1118.3 (5)
H9A—C9—H9B109.5C8—N2—H2120.9
O3—C9—H9C109.5N1—N2—H2120.9
H9A—C9—H9C109.5C16—N3—N4118.5 (5)
H9B—C9—H9C109.5C17—N4—N3117.7 (5)
O4—C10—C11119.4 (6)C17—N4—H4121.2
O4—C10—C15122.1 (6)N3—N4—H4121.2
C11—C10—C15118.5 (6)C1—O1—H1109.5
C12—C11—C10121.8 (6)C8—O3—C9116.1 (5)
C12—C11—Br3119.5 (6)C10—O4—H4A109.5
C10—C11—Br3118.6 (5)C17—O5—C18116.5 (5)
O1—C1—C2—C3179.0 (6)C11—C12—C13—C140.3 (11)
C6—C1—C2—C30.1 (10)C11—C12—C13—Br4177.0 (5)
O1—C1—C2—Br11.2 (8)C12—C13—C14—C150.5 (10)
C6—C1—C2—Br1177.9 (4)Br4—C13—C14—C15176.8 (5)
C1—C2—C3—C40.6 (11)C13—C14—C15—C100.0 (10)
Br1—C2—C3—C4178.5 (5)C13—C14—C15—C16178.2 (6)
C2—C3—C4—C50.1 (11)O4—C10—C15—C14179.8 (5)
C2—C3—C4—Br2179.3 (5)C11—C10—C15—C140.6 (9)
C3—C4—C5—C61.3 (10)O4—C10—C15—C161.7 (9)
Br2—C4—C5—C6178.1 (5)C11—C10—C15—C16178.7 (6)
C4—C5—C6—C11.8 (9)C14—C15—C16—N3173.7 (6)
C4—C5—C6—C7177.7 (6)C10—C15—C16—N34.4 (9)
O1—C1—C6—C5179.8 (6)C6—C7—N1—N2177.8 (5)
C2—C1—C6—C51.1 (9)O2—C8—N2—N11.6 (10)
O1—C1—C6—C70.7 (9)O3—C8—N2—N1178.3 (5)
C2—C1—C6—C7178.4 (6)C7—N1—N2—C8176.3 (6)
C5—C6—C7—N1173.9 (6)C15—C16—N3—N4177.9 (5)
C1—C6—C7—N15.7 (9)O6—C17—N4—N32.1 (10)
O4—C10—C11—C12179.6 (6)O5—C17—N4—N3178.5 (5)
C15—C10—C11—C120.8 (10)C16—N3—N4—C17176.3 (6)
O4—C10—C11—Br30.7 (8)O2—C8—O3—C91.5 (10)
C15—C10—C11—Br3179.7 (4)N2—C8—O3—C9178.6 (6)
C10—C11—C12—C130.4 (10)O6—C17—O5—C182.5 (10)
Br3—C11—C12—C13179.3 (5)N4—C17—O5—C18176.9 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.604 (7)146
N2—H2···O60.862.012.845 (6)163
N4—H4···O2i0.862.002.828 (6)161
O4—H4A···N30.821.892.609 (7)145
C7—H7···O60.932.563.312 (8)139
C16—H16···O2i0.932.523.282 (8)139
C9—H9B···Cg1ii0.972.893.594 (8)131
C18—H18C···Cg2iii0.972.893.561 (8)128
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC9H8Br2N2O3
Mr351.99
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)7.6907 (11), 9.9886 (14), 15.503 (2)
α, β, γ (°)92.254 (6), 95.647 (6), 91.394 (6)
V3)1183.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)6.84
Crystal size (mm)0.22 × 0.21 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.977, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
12305, 4109, 2425
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.175, 1.01
No. of reflections4109
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.62

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.604 (7)146
N2—H2···O60.862.012.845 (6)163
N4—H4···O2i0.862.002.828 (6)161
O4—H4A···N30.821.892.609 (7)145
C7—H7···O60.932.563.312 (8)139
C16—H16···O2i0.932.523.282 (8)139
C9—H9B···Cg1ii0.972.893.594 (8)131
C18—H18C···Cg2iii0.972.893.561 (8)128
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Hangzhou Vocational and Technical College for financial support.

References

First citationBorg, S., Vollinga, R. C., Labarre, M., Payza, K., Terenius, L. & Luthman, K. (1999). J. Med. Chem. 42, 4331–4342.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHadjoudis, E., Vittorakis, M. & Moustakali-Mavridis, J. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKahwa, I. A., Selbin, J., Hsieh, T. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 151, 201–208.  Google Scholar
First citationParashar, R. K., Sharma, R. C., Kumar, A. & Mohanm, G. (1988). Inorg. Chim. Acta, 151, 201–208.  CrossRef CAS Web of Science Google Scholar
First citationSantos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.  Web of Science CrossRef Google Scholar
First citationShang, Z.-H., Zhang, H.-L. & Ding, Y. (2007). Acta Cryst. E63, o3394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds