organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­pyrimidinium 4-hy­dr­oxy­pyridinium-2,6-di­carboxyl­ate monohydrate

aDepartment of Chemistry, School of Sciences, Ferdowsi University of Mashhad, Mashhad 917791436, Iran
*Correspondence e-mail: mirzaei487@yahoo.com

(Received 11 July 2010; accepted 24 July 2010; online 4 August 2010)

In the crystal structure of the title compound, C4H6N3+·C7H4NO5·H2O, inter­molecular N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds link the cations and anions into almost planar sheets parallel to (102). These hydrogen-bonded sheets are packed into the crystal with the formation of centrosymmetric voids of 68 Å3, which are filled by the water mol­ecules, each of which is disordered over four positions.

Related literature

For related structures, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]); Moghimi et al. (2005[Moghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005). Acta Cryst. E61, o442-o444.]); Hall et al. (2000[Hall, A. K., Harrowfield, J. M., Skelton, B. W. & White, A. H. (2000). Acta Cryst. C56, 448-450.]); Lynch & Jones (2004[Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748-754.]); Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010). Acta Cryst. E66, o1368-o1369.]); Smith et al. (2006a[Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). Acta Cryst. E62, o5089-o5091.],b[Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006b). Acta Cryst. E62, o3912-o3914.]). For hydrogen bonding, see: Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3+·C7H4NO5·H2O

  • Mr = 296.25

  • Monoclinic, C 2/c

  • a = 17.822 (2) Å

  • b = 12.2233 (14) Å

  • c = 12.0676 (14) Å

  • β = 103.345 (2)°

  • V = 2557.8 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.983

  • 14881 measured reflections

  • 3383 independent reflections

  • 2703 reflections with I > 2/s(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.134

  • S = 0.90

  • 3383 reflections

  • 203 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4NA⋯O2 0.91 1.90 2.795 (2) 172
N4—H4NB⋯N2i 0.89 2.11 2.990 (2) 171
N3—H3N⋯O1 0.93 1.76 2.683 (2) 171
O3—H3O⋯O4ii 0.95 1.55 2.4910 (19) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

A number of cases were reported in which a proton transferred from a carboxylic acid to an amine to form some novel proton transfer compounds (Aghabozorg et al., 2008). There have been several attempts to prepare proton transfer compounds involving carboxylic acids and amines, for example, ion pairs have been reported between H2pyzdc and various organic bases such as 8-hydroxy quinoline (Smith et al., 2006a), guanidine (Smith et al., 2006b) and 2,4,6-triamine-1,3,5-triazin (Eshtiagh-Hosseini et al., 2010). However, there are few papers only concerning the 4-hydroxypyridine-2,6-dicarboxylic acid (hereafter hypydcH3). For example, ion pair including guanidine (Moghimi et al., 2005) and hydrated form of hypydcH3 (Hall et al., 2000) have been reported. In this paper, we have chosen hypydcH3 and 2-aminopyromidine (hearafter 2-apym) to obtain an ionic molecular crystal.

The crystal structure of the title proton transfer compound shows that a single proton from one of the carboxyl groups was transferred to the N-ring atom of the 2-apym molecule (Fig. 1). On the other hand, an interesting feature exhibited by the crystal structure is that an intramolecular proton transfer has occurred from the other carboxyl group to the N atom of the aromatic ring of hypydcH3. The cation is hydrogen bonded to the anion with a cyclic R22(8) pattern (Fig. 1) in similar manner as reported by Lynch (Lynch & Jones, 2004). In the crystal structure, intermolecular N—H···N, N—H···O and O—H···O hydrogen bonds (Table 1) link cations and anions into almost planar sheets parallel to the (102) plane. These hydrogen-bonded sheets are further packed into crystal with the formation of centrosymmetric voids of 68 Å3, which are filled by the water molecules disordered between four positions each.

Related literature top

For related structures, see: Aghabozorg et al. (2008); Moghimi et al. (2005); Hall et al. (2000); Lynch & Jones (2004); Eshtiagh-Hosseini et al. (2010); Smith et al. (2006a,b). For hydrogen bonding, see: Desiraju (1989).

Experimental top

The title proton transfer compound was synthesized via the reaction of hypydcH3 (0.01 g, 0.5 mmol) with 2-apym (0.01 g, 0.1 mmol) in a aqueous solution (25 ml). The solution was stirred for 3 h in 358 K, and finally a colourless solution was obtained. Prism colourless crystals were obtained after slow evaporation of the solvent at RT.

Refinement top

The solvate water molecule was disordered over four positions near the inversion center with the occupancies refined to 0.292 (3), 0.249 (3), 0.236 (3) and 0.224 (3), respectively. The O(water)-bound hydrogen atoms were positioned manually with O—H 0.85-0.88 Å. The hydroxy and amino H atoms were found in a difference Fourier map. C-bound H atoms were positioned geometrically. All hydrogen atoms were refined as riding, with Uiso(H) = 1.2 - 1.5 Ueq of the parent atom.

Structure description top

A number of cases were reported in which a proton transferred from a carboxylic acid to an amine to form some novel proton transfer compounds (Aghabozorg et al., 2008). There have been several attempts to prepare proton transfer compounds involving carboxylic acids and amines, for example, ion pairs have been reported between H2pyzdc and various organic bases such as 8-hydroxy quinoline (Smith et al., 2006a), guanidine (Smith et al., 2006b) and 2,4,6-triamine-1,3,5-triazin (Eshtiagh-Hosseini et al., 2010). However, there are few papers only concerning the 4-hydroxypyridine-2,6-dicarboxylic acid (hereafter hypydcH3). For example, ion pair including guanidine (Moghimi et al., 2005) and hydrated form of hypydcH3 (Hall et al., 2000) have been reported. In this paper, we have chosen hypydcH3 and 2-aminopyromidine (hearafter 2-apym) to obtain an ionic molecular crystal.

The crystal structure of the title proton transfer compound shows that a single proton from one of the carboxyl groups was transferred to the N-ring atom of the 2-apym molecule (Fig. 1). On the other hand, an interesting feature exhibited by the crystal structure is that an intramolecular proton transfer has occurred from the other carboxyl group to the N atom of the aromatic ring of hypydcH3. The cation is hydrogen bonded to the anion with a cyclic R22(8) pattern (Fig. 1) in similar manner as reported by Lynch (Lynch & Jones, 2004). In the crystal structure, intermolecular N—H···N, N—H···O and O—H···O hydrogen bonds (Table 1) link cations and anions into almost planar sheets parallel to the (102) plane. These hydrogen-bonded sheets are further packed into crystal with the formation of centrosymmetric voids of 68 Å3, which are filled by the water molecules disordered between four positions each.

For related structures, see: Aghabozorg et al. (2008); Moghimi et al. (2005); Hall et al. (2000); Lynch & Jones (2004); Eshtiagh-Hosseini et al. (2010); Smith et al. (2006a,b). For hydrogen bonding, see: Desiraju (1989).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atomic numbering and 50% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. The disordered water molecules were omitted for clarity.
2-Aminopyrimidinium 4-hydroxypyridinium-2,6-dicarboxylate monohydrate top
Crystal data top
C4H6N3+·C7H4NO5·H2OF(000) = 1232
Mr = 296.25Dx = 1.539 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2135 reflections
a = 17.822 (2) Åθ = 3–30°
b = 12.2233 (14) ŵ = 0.13 mm1
c = 12.0676 (14) ÅT = 100 K
β = 103.345 (2)°Prism, colourless
V = 2557.8 (5) Å30.20 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
3383 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2/s(I)
Graphite monochromatorRint = 0.031
phi and ω scansθmax = 29.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2424
Tmin = 0.970, Tmax = 0.983k = 1616
14881 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.134H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0847P)2 + 2.9446P]
where P = (Fo2 + 2Fc2)/3
3383 reflections(Δ/σ)max = 0.002
203 parametersΔρmax = 0.45 e Å3
13 restraintsΔρmin = 0.33 e Å3
Crystal data top
C4H6N3+·C7H4NO5·H2OV = 2557.8 (5) Å3
Mr = 296.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.822 (2) ŵ = 0.13 mm1
b = 12.2233 (14) ÅT = 100 K
c = 12.0676 (14) Å0.20 × 0.20 × 0.15 mm
β = 103.345 (2)°
Data collection top
Bruker SMART APEXII CCD area detector
diffractometer
3383 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2703 reflections with I > 2/s(I)
Tmin = 0.970, Tmax = 0.983Rint = 0.031
14881 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04613 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 0.90Δρmax = 0.45 e Å3
3383 reflectionsΔρmin = 0.33 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N11.14962 (8)0.04289 (11)0.20255 (13)0.0224 (3)
H1N1.16180.03080.20200.027*
O11.04750 (7)0.11863 (10)0.14699 (12)0.0282 (3)
O20.94910 (7)0.00108 (11)0.09859 (11)0.0285 (3)
O31.08809 (7)0.36262 (10)0.17357 (11)0.0255 (3)
H3O1.13100.41040.19040.031*
O41.29127 (7)0.02724 (11)0.27479 (14)0.0350 (4)
O51.33747 (7)0.14137 (11)0.32416 (14)0.0373 (4)
C11.01849 (10)0.02443 (14)0.13234 (15)0.0239 (3)
C21.07491 (9)0.06993 (14)0.16221 (14)0.0208 (3)
C31.05349 (9)0.17748 (14)0.15300 (13)0.0197 (3)
H3A1.00090.19670.12440.024*
C41.10958 (9)0.25973 (13)0.18601 (14)0.0197 (3)
C51.18672 (9)0.22748 (13)0.23042 (14)0.0207 (3)
H5A1.22570.28100.25510.025*
C61.20497 (9)0.11862 (13)0.23764 (15)0.0222 (3)
C71.28608 (10)0.07533 (15)0.28376 (17)0.0290 (4)
N20.82237 (8)0.35778 (12)0.04751 (13)0.0223 (3)
N30.94887 (8)0.28765 (12)0.10759 (12)0.0206 (3)
H3N0.98070.22730.12740.025*
N40.84352 (8)0.17156 (12)0.06968 (13)0.0233 (3)
H4NA0.87550.11310.08430.028*
H4NB0.79310.16390.04250.028*
C80.87116 (9)0.27213 (13)0.07514 (14)0.0194 (3)
C90.85244 (10)0.45737 (14)0.05743 (15)0.0244 (4)
H9A0.81840.51800.03960.029*
C100.93171 (10)0.47828 (14)0.09281 (15)0.0247 (4)
H10A0.95150.55080.10040.030*
C110.97917 (9)0.38928 (15)0.11582 (14)0.0227 (3)
H11A1.03350.39900.13760.027*
O1W0.8160 (2)0.8577 (4)0.0224 (4)0.0257 (5)0.292 (3)
H1WA0.84680.81150.01980.031*0.292 (3)
H1WB0.80550.90960.02230.031*0.292 (3)
O2W0.8104 (3)0.9291 (4)0.0129 (4)0.0257 (5)0.249 (3)
H2WA0.85440.94960.05130.031*0.249 (3)
H2WB0.81780.87570.02860.031*0.249 (3)
O3W0.8024 (3)0.7046 (4)0.0112 (5)0.0257 (5)0.236 (3)
H3WA0.81880.70580.04960.031*0.236 (3)
H3WB0.75710.67810.00540.031*0.236 (3)
O4W0.8561 (3)0.7918 (5)0.0081 (5)0.0257 (5)0.224 (3)
H4WA0.81320.80990.03540.031*0.224 (3)
H4WB0.88530.84780.01570.031*0.224 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0147 (6)0.0179 (6)0.0343 (8)0.0014 (5)0.0046 (5)0.0010 (5)
O10.0217 (6)0.0226 (6)0.0404 (7)0.0071 (5)0.0073 (5)0.0056 (5)
O20.0163 (6)0.0317 (7)0.0376 (7)0.0079 (5)0.0064 (5)0.0096 (5)
O30.0164 (5)0.0187 (6)0.0386 (7)0.0016 (4)0.0010 (5)0.0032 (5)
O40.0188 (6)0.0212 (6)0.0616 (9)0.0020 (5)0.0024 (6)0.0111 (6)
O50.0145 (6)0.0261 (7)0.0649 (10)0.0030 (5)0.0041 (6)0.0122 (6)
C10.0192 (8)0.0243 (8)0.0292 (8)0.0072 (6)0.0077 (6)0.0066 (6)
C20.0144 (7)0.0233 (8)0.0245 (8)0.0042 (6)0.0041 (6)0.0023 (6)
C30.0127 (7)0.0233 (8)0.0223 (7)0.0006 (6)0.0027 (5)0.0014 (6)
C40.0156 (7)0.0211 (7)0.0218 (7)0.0011 (6)0.0031 (6)0.0014 (6)
C50.0139 (7)0.0195 (7)0.0270 (8)0.0024 (5)0.0010 (6)0.0010 (6)
C60.0132 (7)0.0208 (7)0.0311 (8)0.0021 (6)0.0018 (6)0.0039 (6)
C70.0151 (7)0.0234 (8)0.0460 (11)0.0010 (6)0.0020 (7)0.0125 (7)
N20.0139 (6)0.0213 (7)0.0301 (7)0.0010 (5)0.0018 (5)0.0020 (5)
N30.0112 (6)0.0252 (7)0.0235 (7)0.0014 (5)0.0001 (5)0.0016 (5)
N40.0119 (6)0.0206 (7)0.0351 (8)0.0015 (5)0.0008 (5)0.0035 (6)
C80.0128 (7)0.0220 (7)0.0220 (7)0.0010 (5)0.0015 (6)0.0017 (6)
C90.0179 (8)0.0225 (8)0.0314 (9)0.0018 (6)0.0025 (6)0.0023 (6)
C100.0189 (8)0.0244 (8)0.0297 (8)0.0034 (6)0.0031 (6)0.0002 (6)
C110.0139 (7)0.0298 (8)0.0231 (8)0.0037 (6)0.0015 (6)0.0003 (6)
O1W0.0201 (11)0.0265 (12)0.0296 (13)0.0109 (9)0.0042 (9)0.0058 (10)
O2W0.0201 (11)0.0265 (12)0.0296 (13)0.0109 (9)0.0042 (9)0.0058 (10)
O3W0.0201 (11)0.0265 (12)0.0296 (13)0.0109 (9)0.0042 (9)0.0058 (10)
O4W0.0201 (11)0.0265 (12)0.0296 (13)0.0109 (9)0.0042 (9)0.0058 (10)
Geometric parameters (Å, º) top
N1—C61.348 (2)N3—C111.349 (2)
N1—C21.349 (2)N3—C81.363 (2)
N1—H1N0.9263N3—H3N0.9273
O1—C11.258 (2)N4—C81.320 (2)
O2—C11.249 (2)N4—H4NA0.9056
O3—C41.3131 (19)N4—H4NB0.8882
O3—H3O0.9466C9—C101.402 (2)
O4—C71.264 (2)C9—H9A0.9500
O5—C71.234 (2)C10—C111.367 (2)
C1—C21.518 (2)C10—H10A0.9500
C2—C31.366 (2)C11—H11A0.9500
C3—C41.409 (2)O1W—H1WA0.8664
C3—H3A0.9500O1W—H1WB0.8805
C4—C51.411 (2)O2W—H2WA0.8508
C5—C61.368 (2)O2W—H2WB0.8509
C5—H5A0.9500O3W—H3WA0.8500
C6—C71.519 (2)O3W—H3WB0.8501
N2—C91.324 (2)O4W—H4WA0.8501
N2—C81.353 (2)O4W—H4WB0.8523
C6—N1—C2122.33 (15)O4—C7—C6113.36 (15)
C6—N1—H1N121.0C9—N2—C8117.74 (14)
C2—N1—H1N116.7C11—N3—C8120.82 (14)
C4—O3—H3O111.5C11—N3—H3N120.2
O2—C1—O1128.19 (15)C8—N3—H3N119.0
O2—C1—C2116.07 (15)C8—N4—H4NA121.0
O1—C1—C2115.72 (15)C8—N4—H4NB116.8
N1—C2—C3119.94 (14)H4NA—N4—H4NB121.7
N1—C2—C1116.36 (15)N4—C8—N2119.81 (14)
C3—C2—C1123.68 (14)N4—C8—N3119.12 (14)
C2—C3—C4119.80 (14)N2—C8—N3121.07 (15)
C2—C3—H3A120.1N2—C9—C10123.61 (15)
C4—C3—H3A120.1N2—C9—H9A118.2
O3—C4—C3118.81 (14)C10—C9—H9A118.2
O3—C4—C5122.94 (14)C11—C10—C9116.72 (16)
C3—C4—C5118.25 (15)C11—C10—H10A121.6
C6—C5—C4119.49 (14)C9—C10—H10A121.6
C6—C5—H5A120.3N3—C11—C10119.98 (15)
C4—C5—H5A120.3N3—C11—H11A120.0
N1—C6—C5120.14 (15)C10—C11—H11A120.0
N1—C6—C7116.19 (15)H1WA—O1W—H1WB107.7
C5—C6—C7123.67 (14)H2WA—O2W—H2WB107.3
O5—C7—O4128.37 (16)H3WA—O3W—H3WB107.4
O5—C7—C6118.28 (16)H4WA—O4W—H4WB107.2
C6—N1—C2—C31.8 (3)C4—C5—C6—N10.0 (3)
C6—N1—C2—C1176.57 (15)C4—C5—C6—C7179.86 (16)
O2—C1—C2—N1177.73 (15)N1—C6—C7—O5175.00 (18)
O1—C1—C2—N10.9 (2)C5—C6—C7—O55.1 (3)
O2—C1—C2—C30.5 (2)N1—C6—C7—O45.0 (2)
O1—C1—C2—C3179.14 (16)C5—C6—C7—O4174.86 (17)
N1—C2—C3—C40.2 (2)C9—N2—C8—N4178.06 (16)
C1—C2—C3—C4178.04 (15)C9—N2—C8—N32.6 (2)
C2—C3—C4—O3178.17 (15)C11—N3—C8—N4178.99 (15)
C2—C3—C4—C51.4 (2)C11—N3—C8—N21.7 (2)
O3—C4—C5—C6178.07 (16)C8—N2—C9—C101.2 (3)
C3—C4—C5—C61.5 (2)N2—C9—C10—C111.2 (3)
C2—N1—C6—C51.7 (3)C8—N3—C11—C100.8 (2)
C2—N1—C6—C7178.45 (16)C9—C10—C11—N32.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4NA···O20.911.902.795 (2)172
N1—H1N···O10.932.262.6639 (19)105
N1—H1N···O40.932.272.618 (2)101
N4—H4NB···N2i0.892.112.990 (2)171
N3—H3N···O10.931.762.683 (2)171
O3—H3O···O4ii0.951.552.4910 (19)171
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+5/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H6N3+·C7H4NO5·H2O
Mr296.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)17.822 (2), 12.2233 (14), 12.0676 (14)
β (°) 103.345 (2)
V3)2557.8 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.970, 0.983
No. of measured, independent and
observed [I > 2/s(I)] reflections
14881, 3383, 2703
Rint0.031
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.134, 0.90
No. of reflections3383
No. of parameters203
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4NA···O20.911.902.795 (2)172
N4—H4NB···N2i0.892.112.990 (2)171
N3—H3N···O10.931.762.683 (2)171
O3—H3O···O4ii0.951.552.4910 (19)171
Symmetry codes: (i) x+3/2, y+1/2, z; (ii) x+5/2, y1/2, z+1/2.
 

Acknowledgements

The Ferdowsi University of Mashhad is gratefully acknowledged by the authors for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationEshtiagh-Hosseini, H., Hassanpoor, A., Canadillas-Delgado, L. & Mirzaei, M. (2010). Acta Cryst. E66, o1368–o1369.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHall, A. K., Harrowfield, J. M., Skelton, B. W. & White, A. H. (2000). Acta Cryst. C56, 448–450.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationLynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoghimi, A., Aghabozorg, H., Soleimannejad, J. & Ramezanipour, F. (2005). Acta Cryst. E61, o442–o444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2006a). Acta Cryst. E62, o5089–o5091.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006b). Acta Cryst. E62, o3912–o3914.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds