organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E)-3-[4-(Di­methyl­amino)­phen­yl]-1-(2,5-di­methyl-3-thien­yl)prop-2-en-1-one

aThe Center of Excellence for Advanced Materials Research, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, bDepartment of Chemistry, Faculty of Science, King Abdul Aziz University, Jeddah 21589, PO Box 80203, Saudi Arabia, and cDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 14 August 2010; accepted 20 August 2010; online 25 August 2010)

The asymmetric unit of the title compound, C17H19NOS, contains two independent mol­ecules which differ in the dihedral angles between the five- and six-membered rings [12.52 (10) and 4.63 (11)°]. Weak inter­molecular C—H⋯O hydrogen bonds link the two independent mol­ecules into pseudocentrosymmetric dimers. In one mol­ecule, the O atom of the carbonyl group is disordered over two positions in a 0.699 (4):0.301 (4) ratio.

Related literature

For background and related crystal structures, see: Asiri et al. (2010a[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099.],b[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2133.],c[Asiri, A. M., Khan, S. A. & Tahir, M. N. (2010c). Acta Cryst. E66, o2259-o2260.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19NOS

  • Mr = 285.40

  • Triclinic, [P \overline 1]

  • a = 7.7665 (2) Å

  • b = 12.8624 (4) Å

  • c = 16.0318 (4) Å

  • α = 79.917 (1)°

  • β = 80.029 (2)°

  • γ = 79.300 (1)°

  • V = 1532.90 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.32 × 0.23 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.962

  • 22632 measured reflections

  • 5536 independent reflections

  • 3543 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.156

  • S = 1.02

  • 5536 reflections

  • 373 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O2 0.93 2.48 3.275 (3) 143
C19—H19⋯O1A 0.93 2.52 3.317 (9) 144
C19—H19⋯O1B 0.93 2.48 3.264 (3) 142

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of our structural studies of 2,5-dimethylthiophen-3-yl derivatives (Asiri et al., 2010a, b, c), we present here the crystal structure of the title compound, (I) (Fig. 1).

The asymmetric unit of (I) contains two independent molecules having different configurations. In one molecule, the phenyl ring A (C1—C6) of 4-(dimethylamino)phenyl, the central group B (C9—C11/O1A) and group C (C12—C17/S1) of 2,5-dimethylthiophen are planar with r. m. s. deviation of 0.0070, 0.0455 and 0.0255 Å, respectively. The dimethylamino group D (C7/N1/C8) is of course planar. The dihedral angle between A/B, A/C, A/D and B/C is 16.29 (39), 12.52 (10), 4.53 (27) and 12.80 (40) (15)°, respectively. In the second molecule, the phenyl ring E (C18—C23) of 4-(dimethylamino)phenyl, the central group F (C26—C28/O2) and group G (C29—C34/S2) of 2,5-dimethylthiophen are planar with r. m. s. deviation of 0.0028, 0.0015 and 0.0317 Å, respectively. The dihedral angle between E/F, E/G and F/G is 8.01 (20), 4.63 (11), and 11.94 (18)°, respectively. The dimethylamino group H (C24/N2/C25) of this molecule is oriented at a dihedral angle of 2.88 (29) ° with its parent phenyl ring. The title compound essentially consists of dimers which are formed due to C—H···O type of intermolecular H-bonding (Table 1, Fig. 1) and complete R22(14) ring motif (Bernstein et al., 1995).

Related literature top

For background and related crystal structures, see: Asiri et al. (2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 3-acetyl-2,5-dimethythiophene (0.38 g, 2.5 mmol) and N, N-dimethylbenzaldehyde (0.37 g, 2.5 mmol) in ethanolic solution of NaOH (3.0 g in 10 ml of methanol) was stirred for 16 h at room temperature. The solution was poured into ice cold water of pH = 2 (pH adjusted by HCl). The solid was separated and dissolved in CH2Cl2, washed with saturated solution of NaHCO3 and evaporated to dryness. The residual was recrystallized from methanol/chloroform to afford light yellow prisms of (I).

Yield: 86%; m.p. 375–376 K.

IR (KBr) \vmax cm-1: 2979 (C—Haliphatic), 1638 (Cδb=O), 1612 (CδbC), 1167 (C—N).

Refinement top

In one independent molecule, the O-atom of carbonyl group is disordered over two set of sites with occupancy ratio of 0.699 (4):0.301 (4). The disordered O-atoms were refined anisotropically with constrained displacement ellipsoids.

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C), where x = 1.5 for methyl and x = 1.2 for aryl H-atoms.

Structure description top

In continuation of our structural studies of 2,5-dimethylthiophen-3-yl derivatives (Asiri et al., 2010a, b, c), we present here the crystal structure of the title compound, (I) (Fig. 1).

The asymmetric unit of (I) contains two independent molecules having different configurations. In one molecule, the phenyl ring A (C1—C6) of 4-(dimethylamino)phenyl, the central group B (C9—C11/O1A) and group C (C12—C17/S1) of 2,5-dimethylthiophen are planar with r. m. s. deviation of 0.0070, 0.0455 and 0.0255 Å, respectively. The dimethylamino group D (C7/N1/C8) is of course planar. The dihedral angle between A/B, A/C, A/D and B/C is 16.29 (39), 12.52 (10), 4.53 (27) and 12.80 (40) (15)°, respectively. In the second molecule, the phenyl ring E (C18—C23) of 4-(dimethylamino)phenyl, the central group F (C26—C28/O2) and group G (C29—C34/S2) of 2,5-dimethylthiophen are planar with r. m. s. deviation of 0.0028, 0.0015 and 0.0317 Å, respectively. The dihedral angle between E/F, E/G and F/G is 8.01 (20), 4.63 (11), and 11.94 (18)°, respectively. The dimethylamino group H (C24/N2/C25) of this molecule is oriented at a dihedral angle of 2.88 (29) ° with its parent phenyl ring. The title compound essentially consists of dimers which are formed due to C—H···O type of intermolecular H-bonding (Table 1, Fig. 1) and complete R22(14) ring motif (Bernstein et al., 1995).

For background and related crystal structures, see: Asiri et al. (2010a,b,c). For graph-set notation, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Two independent molecules of (I) with the atomic numbering and 50% probability displacement ellipsoids. Dashed lines denote intermolecular hydrogen bonds. Only major part of the disordered atom (O1A) is shown.
(2E)-3-[4-(Dimethylamino)phenyl]-1-(2,5-dimethyl-3- thienyl)prop-2-en-1-one top
Crystal data top
C17H19NOSZ = 4
Mr = 285.40F(000) = 608
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7665 (2) ÅCell parameters from 3543 reflections
b = 12.8624 (4) Åθ = 1.6–25.3°
c = 16.0318 (4) ŵ = 0.21 mm1
α = 79.917 (1)°T = 296 K
β = 80.029 (2)°Prism, yellow
γ = 79.300 (1)°0.32 × 0.23 × 0.20 mm
V = 1532.90 (7) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5536 independent reflections
Radiation source: fine-focus sealed tube3543 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.10 pixels mm-1θmax = 25.3°, θmin = 1.6°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1515
Tmin = 0.947, Tmax = 0.962l = 1919
22632 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0809P)2 + 0.1945P]
where P = (Fo2 + 2Fc2)/3
5536 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C17H19NOSγ = 79.300 (1)°
Mr = 285.40V = 1532.90 (7) Å3
Triclinic, P1Z = 4
a = 7.7665 (2) ÅMo Kα radiation
b = 12.8624 (4) ŵ = 0.21 mm1
c = 16.0318 (4) ÅT = 296 K
α = 79.917 (1)°0.32 × 0.23 × 0.20 mm
β = 80.029 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5536 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3543 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.962Rint = 0.039
22632 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
5536 reflectionsΔρmin = 0.23 e Å3
373 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S20.67761 (9)0.59564 (5)0.72204 (4)0.0656 (2)
O20.4763 (3)0.71665 (15)0.46717 (12)0.0919 (7)
N20.8597 (3)0.3931 (2)0.04152 (14)0.0836 (7)
C180.6929 (3)0.54644 (19)0.25944 (15)0.0533 (6)
C190.6399 (3)0.5910 (2)0.18057 (15)0.0594 (6)
H190.56620.65690.17600.071*
C200.6922 (3)0.5417 (2)0.10983 (16)0.0634 (7)
H200.65270.57420.05850.076*
C210.8042 (3)0.4429 (2)0.11278 (15)0.0609 (6)
C220.8576 (3)0.3967 (2)0.19221 (16)0.0665 (7)
H220.93060.33060.19710.080*
C230.8036 (3)0.4480 (2)0.26256 (16)0.0628 (7)
H230.84220.41580.31410.075*
C240.9775 (4)0.2907 (3)0.0452 (2)0.0990 (10)
H24A0.91870.23710.08270.149*
H24B1.08280.29660.06660.149*
H24C1.00860.27090.01110.149*
C250.7976 (4)0.4364 (3)0.03922 (18)0.0934 (10)
H25A0.84500.50080.06280.140*
H25B0.67060.45200.03040.140*
H25C0.83600.38510.07820.140*
C260.6300 (3)0.60139 (19)0.33348 (15)0.0569 (6)
H260.54750.66320.32480.068*
C270.6737 (3)0.57594 (19)0.41143 (15)0.0583 (6)
H270.76010.51690.42290.070*
C280.5897 (3)0.6381 (2)0.48031 (16)0.0600 (6)
C290.6421 (3)0.60325 (18)0.56638 (15)0.0523 (6)
C300.5930 (3)0.66231 (19)0.63207 (15)0.0551 (6)
C310.4827 (3)0.7713 (2)0.63494 (18)0.0718 (7)
H31A0.36090.76390.65410.108*
H31B0.49390.81240.57880.108*
H31C0.52310.80710.67380.108*
C320.7473 (3)0.50189 (19)0.59204 (15)0.0546 (6)
H320.79160.45180.55510.066*
C330.7761 (3)0.48573 (19)0.67384 (15)0.0569 (6)
C340.86743 (13)0.38708 (5)0.72324 (4)0.0717 (7)
H34A0.92080.33650.68510.108*
H34B0.78260.35600.76670.108*
H34C0.95730.40570.74950.108*
S10.33038 (9)0.95464 (5)0.19233 (3)0.0728 (2)
O1A0.37293 (9)0.78720 (5)0.08108 (4)0.0854 (10)0.699 (4)
O1B0.44871 (9)0.80552 (5)0.06963 (3)0.0854 (10)0.301 (4)
N10.1145 (2)1.14648 (8)0.49058 (4)0.0711 (6)
C10.23647 (9)0.97971 (5)0.27862 (4)0.0537 (6)
C20.12944 (9)1.08011 (5)0.27559 (4)0.0605 (6)
H20.08581.11120.22500.073*
C30.0866 (3)1.1342 (2)0.34461 (15)0.0620 (6)
H30.01431.20060.34000.074*
C40.1505 (3)1.0908 (2)0.42243 (15)0.0565 (6)
C50.2551 (3)0.9896 (2)0.42629 (15)0.0598 (6)
H50.29800.95780.47700.072*
C60.2954 (3)0.9364 (2)0.35693 (15)0.0604 (6)
H60.36460.86890.36200.072*
C70.0074 (4)1.2468 (2)0.48868 (19)0.0850 (9)
H7A0.12181.23520.48080.127*
H7B0.03591.29780.44220.127*
H7C0.01701.27370.54180.127*
C80.1848 (4)1.1031 (3)0.56916 (17)0.0845 (9)
H8A0.31091.08300.55690.127*
H8B0.13251.04130.59600.127*
H8C0.15781.15600.60690.127*
C90.2893 (3)0.9220 (2)0.20630 (15)0.0630 (7)
H90.34810.85250.21820.076*
C100.2657 (3)0.9544 (2)0.12541 (15)0.0634 (7)
H100.20761.02340.11010.076*
C110.3278 (4)0.8854 (2)0.05931 (17)0.0710 (7)
C120.3116 (3)0.93130 (19)0.03056 (15)0.0577 (6)
C130.3820 (3)0.8784 (2)0.09877 (16)0.0618 (6)
C140.4959 (4)0.7703 (2)0.1008 (2)0.0947 (10)
H14A0.42810.72070.11250.142*
H14B0.53610.74540.04630.142*
H14C0.59620.77580.14470.142*
C150.2189 (4)1.0352 (2)0.05812 (16)0.0682 (7)
H150.16341.08240.02020.082*
C160.2183 (3)1.0591 (2)0.14266 (15)0.0633 (7)
C170.1387 (4)1.1611 (2)0.19338 (18)0.0881 (9)
H17A0.07531.20930.15490.132*
H17B0.05871.14540.22720.132*
H17C0.23121.19370.23040.132*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0735 (4)0.0660 (5)0.0564 (4)0.0018 (3)0.0110 (3)0.0153 (3)
O20.1119 (15)0.0755 (13)0.0746 (13)0.0380 (12)0.0323 (11)0.0120 (10)
N20.1085 (19)0.0809 (18)0.0615 (15)0.0004 (14)0.0194 (13)0.0201 (13)
C180.0545 (13)0.0483 (14)0.0575 (14)0.0085 (11)0.0171 (11)0.0000 (11)
C190.0623 (14)0.0565 (16)0.0566 (15)0.0038 (12)0.0178 (12)0.0018 (12)
C200.0667 (15)0.0723 (18)0.0515 (15)0.0091 (13)0.0226 (12)0.0017 (13)
C210.0693 (15)0.0609 (17)0.0547 (15)0.0110 (13)0.0162 (12)0.0065 (13)
C220.0795 (17)0.0541 (16)0.0639 (16)0.0043 (13)0.0222 (13)0.0079 (13)
C230.0762 (16)0.0575 (16)0.0538 (15)0.0021 (13)0.0244 (12)0.0003 (12)
C240.114 (3)0.091 (2)0.092 (2)0.001 (2)0.0127 (19)0.0354 (19)
C250.115 (2)0.111 (3)0.0604 (18)0.020 (2)0.0224 (17)0.0192 (17)
C260.0607 (14)0.0495 (15)0.0594 (15)0.0054 (11)0.0147 (11)0.0022 (12)
C270.0600 (14)0.0530 (15)0.0590 (15)0.0012 (12)0.0146 (12)0.0053 (12)
C280.0616 (14)0.0522 (15)0.0640 (16)0.0001 (12)0.0138 (12)0.0073 (13)
C290.0525 (12)0.0469 (14)0.0553 (14)0.0026 (11)0.0091 (10)0.0066 (11)
C300.0529 (13)0.0506 (15)0.0595 (15)0.0050 (11)0.0042 (11)0.0099 (12)
C310.0766 (17)0.0560 (16)0.0794 (18)0.0037 (13)0.0093 (14)0.0180 (14)
C320.0576 (13)0.0484 (14)0.0547 (14)0.0027 (11)0.0101 (11)0.0090 (11)
C330.0580 (13)0.0548 (15)0.0550 (15)0.0013 (11)0.0107 (11)0.0057 (12)
C340.0770 (17)0.0696 (18)0.0632 (16)0.0029 (14)0.0205 (13)0.0012 (14)
S10.0879 (5)0.0797 (5)0.0505 (4)0.0107 (4)0.0075 (3)0.0141 (3)
O1A0.139 (3)0.0468 (13)0.0649 (14)0.0062 (15)0.0284 (15)0.0026 (11)
O1B0.139 (3)0.0468 (13)0.0649 (14)0.0062 (15)0.0284 (15)0.0026 (11)
N10.0802 (14)0.0799 (16)0.0510 (13)0.0014 (12)0.0086 (10)0.0166 (12)
C10.0614 (14)0.0501 (14)0.0468 (13)0.0070 (11)0.0121 (11)0.0026 (11)
C20.0676 (15)0.0631 (17)0.0454 (14)0.0004 (12)0.0156 (11)0.0024 (12)
C30.0669 (15)0.0568 (16)0.0552 (15)0.0049 (12)0.0113 (12)0.0026 (12)
C40.0552 (13)0.0636 (16)0.0480 (14)0.0098 (12)0.0060 (11)0.0022 (12)
C50.0658 (15)0.0645 (17)0.0453 (14)0.0044 (12)0.0150 (11)0.0024 (12)
C60.0683 (15)0.0557 (16)0.0518 (15)0.0004 (12)0.0131 (12)0.0001 (12)
C70.0855 (19)0.085 (2)0.081 (2)0.0012 (16)0.0016 (15)0.0302 (17)
C80.095 (2)0.104 (2)0.0560 (17)0.0147 (18)0.0109 (15)0.0182 (16)
C90.0800 (17)0.0522 (15)0.0543 (15)0.0032 (13)0.0164 (12)0.0021 (12)
C100.0822 (17)0.0533 (16)0.0525 (15)0.0024 (13)0.0155 (12)0.0055 (12)
C110.096 (2)0.0540 (17)0.0631 (17)0.0001 (14)0.0238 (14)0.0093 (13)
C120.0728 (15)0.0477 (14)0.0536 (15)0.0027 (12)0.0170 (12)0.0097 (12)
C130.0642 (14)0.0595 (16)0.0622 (16)0.0053 (12)0.0105 (12)0.0138 (13)
C140.104 (2)0.083 (2)0.085 (2)0.0179 (18)0.0061 (17)0.0237 (17)
C150.0938 (19)0.0575 (17)0.0518 (15)0.0045 (14)0.0202 (13)0.0123 (12)
C160.0753 (16)0.0615 (17)0.0524 (15)0.0063 (13)0.0158 (12)0.0046 (12)
C170.120 (2)0.076 (2)0.0632 (18)0.0048 (18)0.0308 (17)0.0076 (15)
Geometric parameters (Å, º) top
S2—C301.713 (2)S1—C131.709 (3)
S2—C331.720 (2)O1A—C111.250 (3)
O2—C281.225 (3)O1B—C111.265 (3)
N2—C211.373 (3)N1—C41.371 (2)
N2—C251.443 (3)N1—C81.441 (3)
N2—C241.455 (3)N1—C71.451 (3)
C18—C231.391 (3)C1—C21.3980 (9)
C18—C191.391 (3)C1—C61.398 (2)
C18—C261.453 (3)C1—C91.444 (2)
C19—C201.361 (3)C2—C31.369 (3)
C19—H190.9300C2—H20.9300
C20—C211.399 (3)C3—C41.408 (3)
C20—H200.9300C3—H30.9300
C21—C221.404 (3)C4—C51.398 (3)
C22—C231.370 (3)C5—C61.367 (3)
C22—H220.9300C5—H50.9300
C23—H230.9300C6—H60.9300
C24—H24A0.9600C7—H7A0.9600
C24—H24B0.9600C7—H7B0.9600
C24—H24C0.9600C7—H7C0.9600
C25—H25A0.9600C8—H8A0.9600
C25—H25B0.9600C8—H8B0.9600
C25—H25C0.9600C8—H8C0.9600
C26—C271.321 (3)C9—C101.324 (3)
C26—H260.9300C9—H90.9300
C27—C281.466 (3)C10—C111.462 (3)
C27—H270.9300C10—H100.9300
C28—C291.477 (3)C11—C121.476 (3)
C29—C301.366 (3)C12—C131.369 (3)
C29—C321.439 (3)C12—C151.430 (3)
C30—C311.505 (3)C13—C141.505 (4)
C31—H31A0.9600C14—H14A0.9600
C31—H31B0.9600C14—H14B0.9600
C31—H31C0.9600C14—H14C0.9600
C32—C331.342 (3)C15—C161.337 (3)
C32—H320.9300C15—H150.9300
C33—C341.499 (2)C16—C171.505 (3)
C34—H34A0.9600C17—H17A0.9600
C34—H34B0.9600C17—H17B0.9600
C34—H34C0.9600C17—H17C0.9600
S1—C161.702 (3)
C30—S2—C3393.28 (11)C4—N1—C8121.07 (17)
C21—N2—C25122.0 (2)C4—N1—C7121.12 (16)
C21—N2—C24121.2 (2)C8—N1—C7117.61 (17)
C25—N2—C24116.7 (2)C2—C1—C6116.15 (11)
C23—C18—C19116.4 (2)C2—C1—C9123.76 (10)
C23—C18—C26123.4 (2)C6—C1—C9120.08 (15)
C19—C18—C26120.1 (2)C3—C2—C1122.24 (10)
C20—C19—C18122.4 (2)C3—C2—H2118.9
C20—C19—H19118.8C1—C2—H2118.9
C18—C19—H19118.8C2—C3—C4121.0 (2)
C19—C20—C21121.3 (2)C2—C3—H3119.5
C19—C20—H20119.4C4—C3—H3119.5
C21—C20—H20119.4N1—C4—C5121.7 (2)
N2—C21—C20121.7 (2)N1—C4—C3121.3 (2)
N2—C21—C22121.4 (2)C5—C4—C3117.0 (2)
C20—C21—C22116.9 (2)C6—C5—C4121.2 (2)
C23—C22—C21120.9 (2)C6—C5—H5119.4
C23—C22—H22119.6C4—C5—H5119.4
C21—C22—H22119.6C5—C6—C1122.4 (2)
C22—C23—C18122.2 (2)C5—C6—H6118.8
C22—C23—H23118.9C1—C6—H6118.8
C18—C23—H23118.9N1—C7—H7A109.5
N2—C24—H24A109.5N1—C7—H7B109.5
N2—C24—H24B109.5H7A—C7—H7B109.5
H24A—C24—H24B109.5N1—C7—H7C109.5
N2—C24—H24C109.5H7A—C7—H7C109.5
H24A—C24—H24C109.5H7B—C7—H7C109.5
H24B—C24—H24C109.5N1—C8—H8A109.5
N2—C25—H25A109.5N1—C8—H8B109.5
N2—C25—H25B109.5H8A—C8—H8B109.5
H25A—C25—H25B109.5N1—C8—H8C109.5
N2—C25—H25C109.5H8A—C8—H8C109.5
H25A—C25—H25C109.5H8B—C8—H8C109.5
H25B—C25—H25C109.5C10—C9—C1129.1 (2)
C27—C26—C18129.1 (2)C10—C9—H9115.5
C27—C26—H26115.4C1—C9—H9115.5
C18—C26—H26115.4C9—C10—C11122.3 (2)
C26—C27—C28121.9 (2)C9—C10—H10118.9
C26—C27—H27119.1C11—C10—H10118.9
C28—C27—H27119.1O1A—C11—C10119.3 (2)
O2—C28—C27120.7 (2)O1B—C11—C10120.9 (2)
O2—C28—C29120.5 (2)O1A—C11—C12121.6 (2)
C27—C28—C29118.8 (2)O1B—C11—C12115.3 (2)
C30—C29—C32111.6 (2)C10—C11—C12118.6 (2)
C30—C29—C28124.1 (2)C13—C12—C15111.0 (2)
C32—C29—C28124.2 (2)C13—C12—C11123.9 (2)
C29—C30—C31130.2 (2)C15—C12—C11125.1 (2)
C29—C30—S2110.76 (17)C12—C13—C14129.6 (2)
C31—C30—S2119.09 (18)C12—C13—S1110.73 (18)
C30—C31—H31A109.5C14—C13—S1119.7 (2)
C30—C31—H31B109.5C13—C14—H14A109.5
H31A—C31—H31B109.5C13—C14—H14B109.5
C30—C31—H31C109.5H14A—C14—H14B109.5
H31A—C31—H31C109.5C13—C14—H14C109.5
H31B—C31—H31C109.5H14A—C14—H14C109.5
C33—C32—C29114.3 (2)H14B—C14—H14C109.5
C33—C32—H32122.8C16—C15—C12114.7 (2)
C29—C32—H32122.8C16—C15—H15122.7
C32—C33—C34128.5 (2)C12—C15—H15122.7
C32—C33—S2109.98 (18)C15—C16—C17128.8 (2)
C34—C33—S2121.41 (15)C15—C16—S1110.20 (19)
C33—C34—H34A109.5C17—C16—S1120.93 (19)
C33—C34—H34B109.5C16—C17—H17A109.5
H34A—C34—H34B109.5C16—C17—H17B109.5
C33—C34—H34C109.5H17A—C17—H17B109.5
H34A—C34—H34C109.5C16—C17—H17C109.5
H34B—C34—H34C109.5H17A—C17—H17C109.5
C16—S1—C1393.33 (12)H17B—C17—H17C109.5
C23—C18—C19—C200.2 (4)C1—C2—C3—C40.5 (3)
C26—C18—C19—C20178.6 (2)C8—N1—C4—C50.5 (4)
C18—C19—C20—C210.5 (4)C7—N1—C4—C5174.2 (2)
C25—N2—C21—C203.8 (4)C8—N1—C4—C3178.1 (2)
C24—N2—C21—C20179.5 (3)C7—N1—C4—C37.2 (4)
C25—N2—C21—C22176.3 (3)C2—C3—C4—N1177.12 (19)
C24—N2—C21—C220.5 (4)C2—C3—C4—C51.5 (3)
C19—C20—C21—N2179.1 (2)N1—C4—C5—C6177.6 (2)
C19—C20—C21—C220.9 (4)C3—C4—C5—C61.1 (4)
N2—C21—C22—C23179.0 (2)C4—C5—C6—C10.5 (4)
C20—C21—C22—C231.0 (4)C2—C1—C6—C51.5 (3)
C21—C22—C23—C180.7 (4)C9—C1—C6—C5177.3 (2)
C19—C18—C23—C220.3 (4)C2—C1—C9—C107.7 (3)
C26—C18—C23—C22178.4 (2)C6—C1—C9—C10171.1 (3)
C23—C18—C26—C276.1 (4)C1—C9—C10—C11180.0 (2)
C19—C18—C26—C27175.2 (2)C9—C10—C11—O1A14.4 (4)
C18—C26—C27—C28176.8 (2)C9—C10—C11—O1B20.8 (4)
C26—C27—C28—O20.5 (4)C9—C10—C11—C12174.1 (2)
C26—C27—C28—C29178.5 (2)O1A—C11—C12—C1316.1 (4)
O2—C28—C29—C3010.8 (4)O1B—C11—C12—C1317.9 (4)
C27—C28—C29—C30170.2 (2)C10—C11—C12—C13172.6 (2)
O2—C28—C29—C32167.6 (2)O1A—C11—C12—C15162.9 (2)
C27—C28—C29—C3211.4 (4)O1B—C11—C12—C15163.2 (2)
C32—C29—C30—C31179.4 (2)C10—C11—C12—C158.4 (4)
C28—C29—C30—C310.8 (4)C15—C12—C13—C14176.9 (3)
C32—C29—C30—S21.0 (3)C11—C12—C13—C144.0 (4)
C28—C29—C30—S2179.60 (19)C15—C12—C13—S11.1 (3)
C33—S2—C30—C291.35 (19)C11—C12—C13—S1178.0 (2)
C33—S2—C30—C31179.03 (19)C16—S1—C13—C121.2 (2)
C30—C29—C32—C330.1 (3)C16—S1—C13—C14177.1 (2)
C28—C29—C32—C33178.6 (2)C13—C12—C15—C160.5 (3)
C29—C32—C33—C34175.0 (2)C11—C12—C15—C16178.6 (3)
C29—C32—C33—S20.9 (3)C12—C15—C16—C17178.2 (3)
C30—S2—C33—C321.29 (19)C12—C15—C16—S10.4 (3)
C30—S2—C33—C34174.97 (18)C13—S1—C16—C150.9 (2)
C6—C1—C2—C31.04 (17)C13—S1—C16—C17177.8 (2)
C9—C1—C2—C3177.80 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.483.275 (3)143
C19—H19···O1A0.932.523.317 (9)144
C19—H19···O1B0.932.483.264 (3)142

Experimental details

Crystal data
Chemical formulaC17H19NOS
Mr285.40
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7665 (2), 12.8624 (4), 16.0318 (4)
α, β, γ (°)79.917 (1), 80.029 (2), 79.300 (1)
V3)1532.90 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.32 × 0.23 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.947, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
22632, 5536, 3543
Rint0.039
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.156, 1.02
No. of reflections5536
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O20.932.483.275 (3)143
C19—H19···O1A0.932.523.317 (9)144
C19—H19···O1B0.932.483.264 (3)142
 

Acknowledgements

The authors thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia for providing research facilities and for the financial support of this work (grant No. 3–045/430).

References

First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010a). Acta Cryst. E66, o2099.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010b). Acta Cryst. E66, o2133.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Khan, S. A. & Tahir, M. N. (2010c). Acta Cryst. E66, o2259–o2260.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds