organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Salicyl­aldehyde–4-(di­methyl­amino)­pyridine (1/1)

aResearch Centre of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 21 August 2010; accepted 24 August 2010; online 28 August 2010)

In the title compound, C7H10N2·C7H6O2, the components are linked by an O—H⋯N hydrogen bond. The mean planes of two mol­ecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H⋯O contacts.

Related literature

For background to hydrogen bonding in crystal engineering, see: Bosch (2010[Bosch, E. (2010). Cryst. Growth Des. 10, 3808-3813.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Lehn (1995[Lehn, J. M. (1995). Supramolecular Chemistry. New York: VCH.]). For related structures, see: Bosch (2010[Bosch, E. (2010). Cryst. Growth Des. 10, 3808-3813.]); Vembu et al. (2003[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913-o916.]); Lo & Ng (2009[Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m958-m959.]).

[Scheme 1]

Experimental

Crystal data
  • C7H10N2·C7H6O2

  • Mr = 244.29

  • Triclinic, [P \overline 1]

  • a = 7.540 (3) Å

  • b = 8.473 (3) Å

  • c = 10.413 (4) Å

  • α = 85.370 (11)°

  • β = 77.371 (10)°

  • γ = 87.203 (10)°

  • V = 646.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.4 × 0.4 × 0.38 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.968

  • 4199 measured reflections

  • 2913 independent reflections

  • 1882 reflections with I > 2σ(I)

  • Rint = 0.02

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.163

  • S = 1.01

  • 2913 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯N1 0.82 1.82 2.637 (2) 174
C9—H9⋯O1i 0.93 2.69 3.456 (3) 140
C5—H5⋯O1ii 0.93 2.7 3.583 (3) 158
Symmetry codes: (i) -x+2, -y-1, -z; (ii) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrogen bonding is the most important and the essential tool for both crystal engineering and supramolecular chemistry (Bosch, 2010; Desiraju, 1989 & Lehn, 1995). The non-classical C—H···N hydrogen bonds in pyridine and pyrimidine derivatives have remarkable potentials and patterns (Bosch, 2010; Desiraju, 1989; Lehn, 1995; Lo & Ng, 2009 & Vembu et al., 2003;). In order to investigate the hydrogen bonding patterns of 4-(dimethylamino)pyridine, the co-crystals with various derivatives of benzaldehyde were prepared.

We report here the structure of the title co-crystal compound (Fig.1), formed from salicylaldehyde and 4-(dimethylamino)pyridine. The asymmetric unit contains one molecule of salicylaldehyde and one molecule of 4-(dimethylamino)pyridine linked by O—H···N hydrogen bond (Table 1). The mean planes of two molecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H···O contacts (Table 1).

Related literature top

For background to hydrogen bonding in crystal engineering, see: Bosch (2010); Desiraju (1989); Lehn (1995). For related structures, see: Bosch (2010); Vembu et al. (2003); Lo & Ng (2009).

Experimental top

The title cocrystal was crystallized by slow evaporation from the refluxed mixture of an equimolar solution of salicylaldehyde and 4-(dimethylamino)pyridine in a solution of methanol.

Refinement top

All H-atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å (aromatic), 0.98 Å (CH3) and O–H = 0.82 Å, and Uiso(H) = 1.2Ueq (C) for aromatic and 1.5Ueq for O and Cmethyl.

Structure description top

Hydrogen bonding is the most important and the essential tool for both crystal engineering and supramolecular chemistry (Bosch, 2010; Desiraju, 1989 & Lehn, 1995). The non-classical C—H···N hydrogen bonds in pyridine and pyrimidine derivatives have remarkable potentials and patterns (Bosch, 2010; Desiraju, 1989; Lehn, 1995; Lo & Ng, 2009 & Vembu et al., 2003;). In order to investigate the hydrogen bonding patterns of 4-(dimethylamino)pyridine, the co-crystals with various derivatives of benzaldehyde were prepared.

We report here the structure of the title co-crystal compound (Fig.1), formed from salicylaldehyde and 4-(dimethylamino)pyridine. The asymmetric unit contains one molecule of salicylaldehyde and one molecule of 4-(dimethylamino)pyridine linked by O—H···N hydrogen bond (Table 1). The mean planes of two molecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H···O contacts (Table 1).

For background to hydrogen bonding in crystal engineering, see: Bosch (2010); Desiraju (1989); Lehn (1995). For related structures, see: Bosch (2010); Vembu et al. (2003); Lo & Ng (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as a dashed line.
2-Hydroxybenzaldehyde–4-(dimethylamino)pyridine (1/1) top
Crystal data top
C7H10N2·C7H6O2Z = 2
Mr = 244.29F(000) = 260
Triclinic, P1Dx = 1.255 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.540 (3) ÅCell parameters from 1563 reflections
b = 8.473 (3) Åθ = 2.8–27.8°
c = 10.413 (4) ŵ = 0.09 mm1
α = 85.370 (11)°T = 296 K
β = 77.371 (10)°Prism, yellow
γ = 87.203 (10)°0.4 × 0.4 × 0.38 mm
V = 646.7 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2913 independent reflections
Radiation source: Mo Kα1882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.02
φ and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.967, Tmax = 0.968k = 511
4199 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0815P)2 + 0.0644P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.20 e Å3
2913 reflectionsΔρmin = 0.15 e Å3
166 parameters
Crystal data top
C7H10N2·C7H6O2γ = 87.203 (10)°
Mr = 244.29V = 646.7 (4) Å3
Triclinic, P1Z = 2
a = 7.540 (3) ÅMo Kα radiation
b = 8.473 (3) ŵ = 0.09 mm1
c = 10.413 (4) ÅT = 296 K
α = 85.370 (11)°0.4 × 0.4 × 0.38 mm
β = 77.371 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1882 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.968Rint = 0.02
4199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2913 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8429 (3)0.2372 (2)0.5097 (2)0.0720 (5)
H10.8680.14010.55130.086*
C20.7810 (3)0.3587 (2)0.58701 (17)0.0638 (5)
H20.76350.34220.67820.077*
C30.7433 (2)0.5084 (2)0.52993 (15)0.0521 (4)
C40.7680 (2)0.5182 (2)0.39168 (16)0.0604 (4)
H40.74260.61320.34690.072*
C50.8288 (3)0.3893 (3)0.32350 (18)0.0693 (5)
H50.84280.40030.23230.083*
C60.6562 (3)0.6217 (3)0.74452 (19)0.0879 (7)
H6A0.55480.55520.77950.132*
H6B0.62980.7250.7770.132*
H6C0.76240.57620.77170.132*
C70.6590 (3)0.7888 (3)0.5390 (2)0.0798 (6)
H7A0.76160.81310.46860.12*
H7B0.64450.86720.60240.12*
H7C0.55130.78850.50410.12*
C80.9510 (2)0.18638 (19)0.10290 (14)0.0500 (4)
C90.8248 (3)0.2663 (2)0.05460 (16)0.0603 (5)
H90.86410.35110.00290.072*
C100.6437 (3)0.2223 (3)0.08184 (19)0.0724 (5)
H100.56040.27640.04930.087*
C110.5875 (3)0.0964 (3)0.1584 (2)0.0754 (6)
H110.46520.0650.17630.09*
C120.7082 (2)0.0158 (2)0.20895 (18)0.0654 (5)
H120.66690.06870.26050.078*
C130.8914 (2)0.06070 (19)0.18288 (14)0.0515 (4)
C141.1435 (3)0.2309 (2)0.06846 (17)0.0631 (5)
H141.22350.16690.09510.076*
N10.8703 (2)0.2475 (2)0.37777 (17)0.0724 (5)
N20.6887 (2)0.63491 (19)0.60206 (13)0.0636 (4)
O11.2084 (2)0.34318 (19)0.00855 (16)0.0891 (5)
O21.01269 (17)0.01257 (16)0.23295 (13)0.0670 (4)
H2A0.9610.08440.27650.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0818 (13)0.0592 (12)0.0816 (13)0.0101 (9)0.0299 (10)0.0061 (9)
C20.0763 (12)0.0654 (12)0.0532 (9)0.0126 (9)0.0203 (8)0.0007 (8)
C30.0488 (8)0.0622 (11)0.0477 (8)0.0119 (7)0.0121 (7)0.0073 (7)
C40.0678 (10)0.0654 (11)0.0503 (9)0.0068 (8)0.0163 (8)0.0055 (8)
C50.0764 (12)0.0813 (15)0.0542 (10)0.0080 (10)0.0162 (9)0.0188 (9)
C60.1038 (16)0.1054 (19)0.0546 (11)0.0003 (13)0.0119 (10)0.0232 (11)
C70.0877 (14)0.0677 (14)0.0813 (13)0.0053 (10)0.0114 (11)0.0126 (10)
C80.0633 (10)0.0484 (9)0.0393 (7)0.0072 (7)0.0137 (7)0.0023 (6)
C90.0776 (12)0.0578 (11)0.0483 (9)0.0128 (8)0.0154 (8)0.0085 (7)
C100.0688 (12)0.0883 (15)0.0667 (11)0.0241 (10)0.0209 (9)0.0136 (10)
C110.0588 (11)0.0952 (16)0.0755 (12)0.0095 (10)0.0163 (9)0.0173 (11)
C120.0636 (11)0.0681 (12)0.0668 (11)0.0022 (9)0.0141 (8)0.0187 (9)
C130.0615 (10)0.0502 (9)0.0455 (8)0.0089 (7)0.0170 (7)0.0008 (7)
C140.0698 (11)0.0637 (12)0.0600 (10)0.0001 (9)0.0218 (8)0.0105 (8)
N10.0745 (10)0.0704 (12)0.0794 (11)0.0065 (8)0.0232 (8)0.0264 (8)
N20.0734 (9)0.0667 (10)0.0507 (8)0.0049 (7)0.0103 (7)0.0114 (7)
O10.0889 (10)0.0822 (11)0.1002 (11)0.0161 (8)0.0239 (8)0.0325 (8)
O20.0665 (8)0.0665 (9)0.0756 (8)0.0047 (6)0.0244 (6)0.0235 (6)
Geometric parameters (Å, º) top
C1—N11.340 (3)C7—H7B0.96
C1—C21.359 (3)C7—H7C0.96
C1—H10.93C8—C91.394 (2)
C2—C31.400 (3)C8—C131.401 (2)
C2—H20.93C8—C141.455 (3)
C3—N21.355 (2)C9—C101.372 (3)
C3—C41.407 (2)C9—H90.93
C4—C51.357 (3)C10—C111.378 (3)
C4—H40.93C10—H100.93
C5—N11.339 (3)C11—C121.378 (3)
C5—H50.93C11—H110.93
C6—N21.446 (2)C12—C131.389 (3)
C6—H6A0.96C12—H120.93
C6—H6B0.96C13—O21.3452 (18)
C6—H6C0.96C14—O11.205 (2)
C7—N21.442 (3)C14—H140.93
C7—H7A0.96O2—H2A0.82
N1—C1—C2124.69 (19)C9—C8—C13119.44 (16)
N1—C1—H1117.7C9—C8—C14120.36 (16)
C2—C1—H1117.7C13—C8—C14120.19 (14)
C1—C2—C3120.29 (17)C10—C9—C8121.25 (17)
C1—C2—H2119.9C10—C9—H9119.4
C3—C2—H2119.9C8—C9—H9119.4
N2—C3—C2122.62 (15)C9—C10—C11118.68 (17)
N2—C3—C4122.36 (16)C9—C10—H10120.7
C2—C3—C4115.02 (16)C11—C10—H10120.7
C5—C4—C3120.10 (18)C10—C11—C12121.63 (19)
C5—C4—H4120C10—C11—H11119.2
C3—C4—H4120C12—C11—H11119.2
N1—C5—C4124.86 (17)C11—C12—C13119.98 (18)
N1—C5—H5117.6C11—C12—H12120
C4—C5—H5117.6C13—C12—H12120
N2—C6—H6A109.5O2—C13—C12121.78 (16)
N2—C6—H6B109.5O2—C13—C8119.24 (15)
H6A—C6—H6B109.5C12—C13—C8118.99 (15)
N2—C6—H6C109.5O1—C14—C8125.87 (17)
H6A—C6—H6C109.5O1—C14—H14117.1
H6B—C6—H6C109.5C8—C14—H14117.1
N2—C7—H7A109.5C5—N1—C1114.99 (16)
N2—C7—H7B109.5C3—N2—C7120.92 (15)
H7A—C7—H7B109.5C3—N2—C6121.81 (17)
N2—C7—H7C109.5C7—N2—C6117.26 (16)
H7A—C7—H7C109.5C13—O2—H2A109.5
H7B—C7—H7C109.5
N1—C1—C2—C31.0 (3)C9—C8—C13—O2177.74 (14)
C1—C2—C3—N2177.17 (16)C14—C8—C13—O23.5 (2)
C1—C2—C3—C42.3 (2)C9—C8—C13—C121.9 (2)
N2—C3—C4—C5177.77 (16)C14—C8—C13—C12176.90 (16)
C2—C3—C4—C51.7 (2)C9—C8—C14—O16.8 (3)
C3—C4—C5—N10.3 (3)C13—C8—C14—O1174.44 (18)
C13—C8—C9—C101.3 (2)C4—C5—N1—C11.7 (3)
C14—C8—C9—C10177.51 (16)C2—C1—N1—C51.1 (3)
C8—C9—C10—C110.1 (3)C2—C3—N2—C7177.21 (17)
C9—C10—C11—C120.8 (3)C4—C3—N2—C72.2 (3)
C10—C11—C12—C130.2 (3)C2—C3—N2—C63.3 (3)
C11—C12—C13—O2178.43 (16)C4—C3—N2—C6177.28 (17)
C11—C12—C13—C81.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.822.637 (2)174
C9—H9···O1i0.932.693.456 (3)140
C5—H5···O1ii0.932.73.583 (3)158
Symmetry codes: (i) x+2, y1, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC7H10N2·C7H6O2
Mr244.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.540 (3), 8.473 (3), 10.413 (4)
α, β, γ (°)85.370 (11), 77.371 (10), 87.203 (10)
V3)646.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.4 × 0.38
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.967, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
4199, 2913, 1882
Rint0.02
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.163, 1.01
No. of reflections2913
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.822.637 (2)173.6
C9—H9···O1i0.932.693.456 (3)140.1
C5—H5···O1ii0.932.73.583 (3)158.1
Symmetry codes: (i) x+2, y1, z; (ii) x+2, y, z.
 

Acknowledgements

This work was supported by the Research Funds from the Faculty of Science (A1B1), the Thailand Research Fund (RSA4680016) to NM, and the Thai Government Stimulus Package 2 (TKK2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agrigulture and Center for Petroleum Petrochemicals and Advanced Materials.

References

First citationBosch, E. (2010). Cryst. Growth Des. 10, 3808–3813.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLehn, J. M. (1995). Supramolecular Chemistry. New York: VCH.  Google Scholar
First citationLo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, m958–m959.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913–o916.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds