organic compounds
2-Hydroxy-N-(3-nitrophenyl)benzamide
aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com
In the 13H10N2O4, as expected, the nitro- and hydroxy-substituted benzene rings are planar with r. m. s. deviations of 0.0037 and 0.0014 Å, respectively, but are twisted slightly relative to each other, making a dihedral angle of 12.23 (7)°. The nitro group is only slightly twisted [by 2.71 (16)°] with respect to its parent ring. An intramolecular N—H⋯O hydrogen bond forms an S(6) ring motif. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds build up sheets parallel to the ab plane. Futhermore, weak π–π interactions [centroid–centroid distances = 3.7150 (8) 3.7342 (6) and 3.9421 (8) Å] between the rings yield a three-dimensional network.
of title compound, CRelated literature
For the pharmaceutical properties of benzoxazepines and their derivatives, see: Fattorusso et al. (2005); Samanta et al. (2010). For related structures, see: Raza et al. (2009, 2010); Glidewell et al. (2006). For hydrogen-bonding discussion, see: Bernstein et al. (1995); Janiak (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
https://doi.org/10.1107/S1600536810031910/dn2595sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031910/dn2595Isup2.hkl
3-Nitroaniline (4.14 g, 0.03 mol) was added to 2-hydroxybenzoyl chloride prepared by treating salicylic acid (4.14 g, 0.03 mol) with oxalyl chloride (2.80 ml, 4.00 g, 0.032 mol) using DMF in catalytic amount. The reaction mixture was refluxed for 2 h, cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3×25 ml). The organic extract was combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The title compound (I) was mechanically separated as yellow cubical crystals.
Although H atoms were appeared in difference Fourier map but were positioned geometrically with (O–H = 0.82, N–H= 0.86 and C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and x = 1.2 for other H atoms.
Asymmetric synthesis is gaining much importance. Aim of our work is the formation of various chiral benzoxazepines and their derivatives that have been reported as anti-tumor (Samanta et al., 2010) and anti-HIV agents (Fattorusso et al., 2005). The title compound (I, Fig.1) has been synthesized as a precursor for variously substituted chiral benzoxazepines.
We have reported the crystal structures of (II) i.e., 2-hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) and (III) 2-hydroxy-5-nitro-N-phenylbenzamide (Raza et al., 2010). The title compound differs from (II) and (III) due to the attachement of nitro group at different position.
In (I), the nitro and hydroxy substituted phenyl rings A (C1–C6) and B (C8—C13) are planar with r. m. s. deviation of 0.0037 and 0.0014 Å, respectively. The central group C (N1/C7/O3) is of course planar. The dihedral angle between A/B, A/C and B/C is 12.23 (7)°, 6.13 (20)° and 18.35 (18)°, respectively. The nitro group is slightly twisted with respect to its parent phenyl ring making a dihedral angle of 2.71 (16)°. Bond distances and angles agree with related compounds (Raza et al., 2009,2010; Glidewell et al., 2006).
There exist intramolecular N—H···O hydrogen bond forming S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of two dimensional polymeric sheets due to intermolecular H-bondings of N—H···O and O—H···O types. The polymeric sheets extend in the ab-plane (Table 1, Fig. 2). Futhermore weak slippest π–π interactions between the phenyl rings yield a three dimensionnal network (Table 2).
For the pharmaceutical properties of benzoxazepines and their derivatives, see: Fattorusso et al. (2005); Samanta et al. (2010). For related structures, see: Raza et al. (2009, 2010); Glidewell et al. (2006). For hydrogen-bonding discussion, see: Bernstein et al. (1995); Janiak (2000).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C13H10N2O4 | F(000) = 536 |
Mr = 258.23 | Dx = 1.482 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 931 reflections |
a = 7.8385 (2) Å | θ = 2.8–26.0° |
b = 11.9531 (3) Å | µ = 0.11 mm−1 |
c = 12.3550 (3) Å | T = 296 K |
β = 90.860 (1)° | Prisms, orange |
V = 1157.46 (5) Å3 | 0.28 × 0.22 × 0.20 mm |
Z = 4 |
Bruker Kappa APEXII CCD diffractometer | 2874 independent reflections |
Radiation source: fine-focus sealed tube | 2254 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
Detector resolution: 7.5 pixels mm-1 | θmax = 28.3°, θmin = 2.4° |
ω scans | h = −10→8 |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | k = −15→15 |
Tmin = 0.979, Tmax = 0.988 | l = −16→15 |
4381 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2825P] where P = (Fo2 + 2Fc2)/3 |
2874 reflections | (Δ/σ)max < 0.001 |
173 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C13H10N2O4 | V = 1157.46 (5) Å3 |
Mr = 258.23 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.8385 (2) Å | µ = 0.11 mm−1 |
b = 11.9531 (3) Å | T = 296 K |
c = 12.3550 (3) Å | 0.28 × 0.22 × 0.20 mm |
β = 90.860 (1)° |
Bruker Kappa APEXII CCD diffractometer | 2874 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2254 reflections with I > 2σ(I) |
Tmin = 0.979, Tmax = 0.988 | Rint = 0.023 |
4381 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.115 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.26 e Å−3 |
2874 reflections | Δρmin = −0.19 e Å−3 |
173 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.67761 (15) | 0.72384 (9) | 0.11659 (11) | 0.0599 (4) | |
O2 | 0.87762 (16) | 0.63301 (11) | 0.04018 (13) | 0.0864 (6) | |
O3 | 0.19790 (13) | 0.61776 (7) | 0.25603 (10) | 0.0529 (3) | |
O4 | −0.01040 (12) | 0.30182 (7) | 0.25612 (9) | 0.0435 (3) | |
N1 | 0.25743 (14) | 0.43458 (8) | 0.23703 (10) | 0.0406 (4) | |
N2 | 0.74358 (15) | 0.63616 (11) | 0.08799 (10) | 0.0478 (4) | |
C1 | 0.41415 (16) | 0.43895 (10) | 0.18388 (11) | 0.0340 (4) | |
C2 | 0.50276 (16) | 0.53731 (10) | 0.16487 (11) | 0.0354 (4) | |
C3 | 0.65510 (16) | 0.53059 (11) | 0.11058 (11) | 0.0361 (4) | |
C4 | 0.72509 (18) | 0.43172 (12) | 0.07522 (12) | 0.0430 (4) | |
C5 | 0.63600 (18) | 0.33434 (12) | 0.09615 (12) | 0.0445 (4) | |
C6 | 0.48277 (18) | 0.33755 (11) | 0.14922 (11) | 0.0398 (4) | |
C7 | 0.15642 (15) | 0.51916 (9) | 0.26848 (11) | 0.0338 (4) | |
C8 | −0.00575 (15) | 0.48872 (10) | 0.32268 (10) | 0.0325 (3) | |
C9 | −0.08272 (16) | 0.38269 (10) | 0.31694 (10) | 0.0334 (3) | |
C10 | −0.23250 (17) | 0.36262 (11) | 0.37214 (12) | 0.0420 (4) | |
C11 | −0.30562 (19) | 0.44557 (12) | 0.43280 (13) | 0.0485 (5) | |
C12 | −0.23231 (19) | 0.55075 (12) | 0.43935 (12) | 0.0455 (4) | |
C13 | −0.08404 (17) | 0.57126 (11) | 0.38488 (11) | 0.0388 (4) | |
H1 | 0.22076 | 0.36854 | 0.25156 | 0.0487* | |
H2 | 0.46071 | 0.60586 | 0.18806 | 0.0424* | |
H4 | 0.82802 | 0.43043 | 0.03876 | 0.0516* | |
H4A | −0.06998 | 0.24546 | 0.25731 | 0.0652* | |
H5 | 0.68008 | 0.26593 | 0.07413 | 0.0534* | |
H6 | 0.42427 | 0.27130 | 0.16212 | 0.0477* | |
H10 | −0.28373 | 0.29254 | 0.36804 | 0.0504* | |
H11 | −0.40553 | 0.43091 | 0.46989 | 0.0582* | |
H12 | −0.28277 | 0.60681 | 0.48010 | 0.0546* | |
H13 | −0.03449 | 0.64182 | 0.38951 | 0.0465* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0605 (7) | 0.0384 (6) | 0.0814 (8) | −0.0136 (5) | 0.0186 (6) | −0.0046 (5) |
O2 | 0.0610 (8) | 0.0748 (9) | 0.1249 (13) | −0.0213 (7) | 0.0524 (8) | −0.0141 (8) |
O3 | 0.0429 (5) | 0.0216 (4) | 0.0950 (8) | 0.0011 (4) | 0.0234 (5) | 0.0044 (5) |
O4 | 0.0406 (5) | 0.0258 (4) | 0.0646 (6) | −0.0064 (4) | 0.0155 (4) | −0.0098 (4) |
N1 | 0.0381 (6) | 0.0205 (5) | 0.0636 (8) | −0.0002 (4) | 0.0166 (5) | 0.0025 (5) |
N2 | 0.0407 (6) | 0.0484 (7) | 0.0546 (7) | −0.0111 (5) | 0.0106 (5) | −0.0035 (6) |
C1 | 0.0324 (6) | 0.0275 (6) | 0.0421 (7) | 0.0017 (4) | 0.0040 (5) | 0.0012 (5) |
C2 | 0.0326 (6) | 0.0278 (6) | 0.0459 (7) | 0.0016 (5) | 0.0043 (5) | −0.0017 (5) |
C3 | 0.0321 (6) | 0.0364 (7) | 0.0399 (7) | −0.0026 (5) | 0.0014 (5) | −0.0004 (5) |
C4 | 0.0359 (7) | 0.0490 (8) | 0.0443 (7) | 0.0064 (6) | 0.0078 (5) | −0.0028 (6) |
C5 | 0.0491 (8) | 0.0358 (7) | 0.0489 (8) | 0.0123 (6) | 0.0063 (6) | −0.0053 (6) |
C6 | 0.0451 (7) | 0.0273 (6) | 0.0471 (7) | 0.0035 (5) | 0.0053 (6) | −0.0010 (5) |
C7 | 0.0321 (6) | 0.0239 (6) | 0.0456 (7) | 0.0005 (4) | 0.0046 (5) | 0.0016 (5) |
C8 | 0.0329 (6) | 0.0250 (6) | 0.0398 (6) | 0.0002 (4) | 0.0035 (5) | 0.0019 (5) |
C9 | 0.0340 (6) | 0.0259 (6) | 0.0405 (6) | 0.0007 (5) | 0.0038 (5) | −0.0007 (5) |
C10 | 0.0382 (7) | 0.0316 (6) | 0.0564 (8) | −0.0060 (5) | 0.0102 (6) | 0.0003 (6) |
C11 | 0.0417 (7) | 0.0442 (8) | 0.0603 (9) | 0.0001 (6) | 0.0209 (7) | 0.0005 (7) |
C12 | 0.0483 (8) | 0.0367 (7) | 0.0520 (8) | 0.0073 (6) | 0.0154 (6) | −0.0040 (6) |
C13 | 0.0421 (7) | 0.0272 (6) | 0.0472 (7) | 0.0012 (5) | 0.0058 (6) | −0.0015 (5) |
O1—N2 | 1.2232 (17) | C7—C8 | 1.4907 (17) |
O2—N2 | 1.2136 (18) | C8—C13 | 1.3981 (18) |
O3—C7 | 1.2329 (14) | C8—C9 | 1.4050 (17) |
O4—C9 | 1.3540 (15) | C9—C10 | 1.3875 (19) |
O4—H4A | 0.8200 | C10—C11 | 1.373 (2) |
N1—C1 | 1.4026 (17) | C11—C12 | 1.384 (2) |
N1—C7 | 1.3451 (15) | C12—C13 | 1.374 (2) |
N2—C3 | 1.4687 (18) | C2—H2 | 0.9300 |
N1—H1 | 0.8600 | C4—H4 | 0.9300 |
C1—C6 | 1.3959 (18) | C5—H5 | 0.9300 |
C1—C2 | 1.3874 (17) | C6—H6 | 0.9300 |
C2—C3 | 1.3807 (18) | C10—H10 | 0.9300 |
C3—C4 | 1.3768 (19) | C11—H11 | 0.9300 |
C4—C5 | 1.384 (2) | C12—H12 | 0.9300 |
C5—C6 | 1.378 (2) | C13—H13 | 0.9300 |
O1···O4i | 3.1660 (16) | C10···C5v | 3.564 (2) |
O1···N1i | 3.1381 (16) | C10···O3iv | 3.3407 (17) |
O3···C10ii | 3.3407 (17) | C12···C13x | 3.582 (2) |
O3···C9ii | 3.4105 (15) | C12···C8x | 3.4906 (19) |
O3···O4ii | 2.6488 (13) | C13···C13x | 3.5521 (19) |
O3···C5i | 3.4148 (18) | C13···O4ii | 3.3491 (16) |
O3···C2 | 2.8257 (16) | C13···C12x | 3.582 (2) |
O4···N1 | 2.6450 (14) | C7···H4Aii | 2.8100 |
O4···O1iii | 3.1660 (16) | C7···H2 | 2.8000 |
O4···C13iv | 3.3491 (16) | C9···H1 | 2.5300 |
O4···O3iv | 2.6488 (13) | C10···H5xi | 3.0200 |
O4···C4v | 3.4009 (18) | C11···H11xii | 2.9700 |
O4···C5v | 3.4022 (18) | C11···H5xi | 3.0800 |
O1···H12vi | 2.6600 | C12···H11xii | 3.0800 |
O1···H2 | 2.3900 | C13···H4Aii | 2.9900 |
O1···H1i | 2.5000 | H1···O4 | 1.9800 |
O1···H6i | 2.9200 | H1···C9 | 2.5300 |
O2···H4 | 2.4500 | H1···H6 | 2.2700 |
O2···H4vii | 2.6300 | H1···O1iii | 2.5000 |
O3···H13 | 2.4900 | H2···O1 | 2.3900 |
O3···H10ii | 2.6800 | H2···O3 | 2.2400 |
O3···H2 | 2.2400 | H2···C7 | 2.8000 |
O3···H4Aii | 1.8300 | H4···O2 | 2.4500 |
O3···H5i | 2.9000 | H4···O2vii | 2.6300 |
O4···H1 | 1.9800 | H4A···H10 | 2.2500 |
O4···H13iv | 2.6500 | H4A···O3iv | 1.8300 |
N1···O4 | 2.6450 (14) | H4A···C7iv | 2.8100 |
N1···O1iii | 3.1381 (16) | H4A···C13iv | 2.9900 |
N2···C6viii | 3.4176 (18) | H4A···H13iv | 2.3500 |
C2···O3 | 2.8257 (16) | H5···O3iii | 2.9000 |
C2···C4viii | 3.459 (2) | H5···C10xiii | 3.0200 |
C4···O4ix | 3.4009 (18) | H5···C11xiii | 3.0800 |
C4···C9ix | 3.3759 (19) | H6···H1 | 2.2700 |
C4···C2viii | 3.459 (2) | H6···O1iii | 2.9200 |
C5···O4ix | 3.4022 (18) | H10···H4A | 2.2500 |
C5···C9ix | 3.5293 (19) | H10···O3iv | 2.6800 |
C5···C10ix | 3.564 (2) | H11···C11xii | 2.9700 |
C5···O3iii | 3.4148 (18) | H11···C12xii | 3.0800 |
C6···C10ix | 3.532 (2) | H11···H11xii | 2.3500 |
C6···N2viii | 3.4176 (18) | H11···H12xii | 2.5700 |
C8···C12x | 3.4906 (19) | H12···H11xii | 2.5700 |
C9···C4v | 3.3759 (19) | H12···O1xiv | 2.6600 |
C9···C5v | 3.5293 (19) | H13···O3 | 2.4900 |
C9···O3iv | 3.4105 (15) | H13···O4ii | 2.6500 |
C10···C6v | 3.532 (2) | H13···H4Aii | 2.3500 |
C9—O4—H4A | 109.00 | C8—C9—C10 | 119.81 (11) |
C1—N1—C7 | 129.11 (10) | O4—C9—C8 | 119.27 (11) |
O1—N2—O2 | 122.69 (13) | O4—C9—C10 | 120.92 (11) |
O2—N2—C3 | 118.72 (13) | C9—C10—C11 | 120.43 (12) |
O1—N2—C3 | 118.58 (12) | C10—C11—C12 | 120.75 (14) |
C7—N1—H1 | 115.00 | C11—C12—C13 | 119.14 (13) |
C1—N1—H1 | 115.00 | C8—C13—C12 | 121.66 (12) |
N1—C1—C2 | 123.71 (11) | C1—C2—H2 | 121.00 |
N1—C1—C6 | 117.10 (11) | C3—C2—H2 | 121.00 |
C2—C1—C6 | 119.19 (12) | C3—C4—H4 | 121.00 |
C1—C2—C3 | 118.15 (11) | C5—C4—H4 | 121.00 |
N2—C3—C2 | 117.17 (11) | C4—C5—H5 | 120.00 |
N2—C3—C4 | 119.05 (12) | C6—C5—H5 | 120.00 |
C2—C3—C4 | 123.76 (12) | C1—C6—H6 | 120.00 |
C3—C4—C5 | 117.27 (13) | C5—C6—H6 | 120.00 |
C4—C5—C6 | 120.77 (13) | C9—C10—H10 | 120.00 |
C1—C6—C5 | 120.86 (12) | C11—C10—H10 | 120.00 |
N1—C7—C8 | 117.13 (10) | C10—C11—H11 | 120.00 |
O3—C7—C8 | 121.17 (11) | C12—C11—H11 | 120.00 |
O3—C7—N1 | 121.67 (11) | C11—C12—H12 | 120.00 |
C7—C8—C9 | 124.47 (11) | C13—C12—H12 | 120.00 |
C7—C8—C13 | 117.32 (11) | C8—C13—H13 | 119.00 |
C9—C8—C13 | 118.20 (11) | C12—C13—H13 | 119.00 |
C7—N1—C1—C2 | 7.6 (2) | C4—C5—C6—C1 | −0.5 (2) |
C7—N1—C1—C6 | −172.64 (13) | O3—C7—C8—C9 | 163.67 (13) |
C1—N1—C7—O3 | −2.8 (2) | O3—C7—C8—C13 | −17.53 (19) |
C1—N1—C7—C8 | 179.24 (12) | N1—C7—C8—C9 | −18.36 (19) |
O1—N2—C3—C2 | −1.05 (19) | N1—C7—C8—C13 | 160.43 (12) |
O1—N2—C3—C4 | 177.63 (13) | C7—C8—C9—O4 | −2.03 (19) |
O2—N2—C3—C2 | −179.85 (14) | C7—C8—C9—C10 | 178.87 (12) |
O2—N2—C3—C4 | −1.2 (2) | C13—C8—C9—O4 | 179.19 (12) |
N1—C1—C2—C3 | −179.31 (13) | C13—C8—C9—C10 | 0.09 (18) |
C6—C1—C2—C3 | 1.0 (2) | C7—C8—C13—C12 | −178.94 (13) |
N1—C1—C6—C5 | 179.86 (13) | C9—C8—C13—C12 | −0.1 (2) |
C2—C1—C6—C5 | −0.4 (2) | O4—C9—C10—C11 | −179.40 (13) |
C1—C2—C3—N2 | 177.89 (12) | C8—C9—C10—C11 | −0.3 (2) |
C1—C2—C3—C4 | −0.7 (2) | C9—C10—C11—C12 | 0.5 (2) |
N2—C3—C4—C5 | −178.69 (13) | C10—C11—C12—C13 | −0.5 (2) |
C2—C3—C4—C5 | −0.1 (2) | C11—C12—C13—C8 | 0.3 (2) |
C3—C4—C5—C6 | 0.7 (2) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2; (v) x−1, y, z; (vi) x+1, −y+3/2, z−1/2; (vii) −x+2, −y+1, −z; (viii) −x+1, −y+1, −z; (ix) x+1, y, z; (x) −x, −y+1, −z+1; (xi) x−1, −y+1/2, z+1/2; (xii) −x−1, −y+1, −z+1; (xiii) x+1, −y+1/2, z−1/2; (xiv) x−1, −y+3/2, z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.86 | 1.98 | 2.6450 (14) | 133 |
N1—H1···O1iii | 0.86 | 2.50 | 3.1381 (16) | 132 |
O4—H4A···O3iv | 0.82 | 1.83 | 2.6488 (13) | 174 |
Symmetry codes: (iii) −x+1, y−1/2, −z+1/2; (iv) −x, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C13H10N2O4 |
Mr | 258.23 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.8385 (2), 11.9531 (3), 12.3550 (3) |
β (°) | 90.860 (1) |
V (Å3) | 1157.46 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.28 × 0.22 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.979, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4381, 2874, 2254 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.115, 1.03 |
No. of reflections | 2874 |
No. of parameters | 173 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.19 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.86 | 1.98 | 2.6450 (14) | 133 |
N1—H1···O1i | 0.86 | 2.50 | 3.1381 (16) | 132 |
O4—H4A···O3ii | 0.82 | 1.83 | 2.6488 (13) | 174 |
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, y−1/2, −z+1/2. |
ring 1/ring 2 | ccd(Å) | ipd(Å) | sa(°) |
Cg1->Cg2i | 3.7150 (8) | 3.455 | 21.6 |
Cg3->Cg4ii | 3.7342 (6) | 3.539 | 18.6 |
Cg5->Cg5iii | 3.9421 (8) | 3.443 | 29.1 |
Symmetry codes: (i) 1-x,1-y,-z, (ii) 1+x,y,z, (iii) -x,1-y,1-z Cg1: C1,C2,C3,C4,C5,C6 Cg2: C8,C9,C10,C11,C12,C13 ccd: center-to-center distance (Distance between ring centroids); ipd: mean interplanar distance (Distance from one plane to the neighbouring centroid); sa: mean slippage angle (Angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000) |
Acknowledgements
The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20–819).
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Fattorusso, C., Gemma, S., Butini, S., Huleatt, P., Catalanotti, B., Persico, M., Angelis, M. D., Fiorini, I., Nacci, V., Ramunno, A., Rodriquez, M., Greco, G., Novellino, E., Bergamini, A., Marini, S., Coletta, M., Maga, G., Spadari, S. & Campiani, G. (2005). J. Med. Chem. 48, 7153–7165. Web of Science CrossRef PubMed CAS Google Scholar
Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o5–o7. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Raza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009). Acta Cryst. E65, o1042. Web of Science CSD CrossRef IUCr Journals Google Scholar
Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852. Web of Science CSD CrossRef IUCr Journals Google Scholar
Samanta, K., Chakravarti, B., Mishra, J. K., Dwivedi, S. K. D., Nayak, L. V., Choudhry, P., Bid, H. K., Konwar, R., Chattopadhyay, N. & Panda, G. (2010). Bioorg. Med. Chem. Lett. 20, 283–287. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Asymmetric synthesis is gaining much importance. Aim of our work is the formation of various chiral benzoxazepines and their derivatives that have been reported as anti-tumor (Samanta et al., 2010) and anti-HIV agents (Fattorusso et al., 2005). The title compound (I, Fig.1) has been synthesized as a precursor for variously substituted chiral benzoxazepines.
We have reported the crystal structures of (II) i.e., 2-hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) and (III) 2-hydroxy-5-nitro-N-phenylbenzamide (Raza et al., 2010). The title compound differs from (II) and (III) due to the attachement of nitro group at different position.
In (I), the nitro and hydroxy substituted phenyl rings A (C1–C6) and B (C8—C13) are planar with r. m. s. deviation of 0.0037 and 0.0014 Å, respectively. The central group C (N1/C7/O3) is of course planar. The dihedral angle between A/B, A/C and B/C is 12.23 (7)°, 6.13 (20)° and 18.35 (18)°, respectively. The nitro group is slightly twisted with respect to its parent phenyl ring making a dihedral angle of 2.71 (16)°. Bond distances and angles agree with related compounds (Raza et al., 2009,2010; Glidewell et al., 2006).
There exist intramolecular N—H···O hydrogen bond forming S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of two dimensional polymeric sheets due to intermolecular H-bondings of N—H···O and O—H···O types. The polymeric sheets extend in the ab-plane (Table 1, Fig. 2). Futhermore weak slippest π–π interactions between the phenyl rings yield a three dimensionnal network (Table 2).