organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-N-(3-nitro­phen­yl)benzamide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 6 August 2010; accepted 9 August 2010; online 28 August 2010)

In the crystal structure of title compound, C13H10N2O4, as expected, the nitro- and hy­droxy-substituted benzene rings are planar with r. m. s. deviations of 0.0037 and 0.0014 Å, respectively, but are twisted slightly relative to each other, making a dihedral angle of 12.23 (7)°. The nitro group is only slightly twisted [by 2.71 (16)°] with respect to its parent ring. An intra­molecular N—H⋯O hydrogen bond forms an S(6) ring motif. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds build up sheets parallel to the ab plane. Futhermore, weak ππ inter­actions [centroid–centroid distances = 3.7150 (8) 3.7342 (6) and 3.9421 (8) Å] between the rings yield a three-dimensional network.

Related literature

For the pharmaceutical properties of benzoxazepines and their derivatives, see: Fattorusso et al. (2005[Fattorusso, C., Gemma, S., Butini, S., Huleatt, P., Catalanotti, B., Persico, M., Angelis, M. D., Fiorini, I., Nacci, V., Ramunno, A., Rodriquez, M., Greco, G., Novellino, E., Bergamini, A., Marini, S., Coletta, M., Maga, G., Spadari, S. & Campiani, G. (2005). J. Med. Chem. 48, 7153-7165.]); Samanta et al. (2010[Samanta, K., Chakravarti, B., Mishra, J. K., Dwivedi, S. K. D., Nayak, L. V., Choudhry, P., Bid, H. K., Konwar, R., Chattopadhyay, N. & Panda, G. (2010). Bioorg. Med. Chem. Lett. 20, 283-287.]). For related structures, see: Raza et al. (2009[Raza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009). Acta Cryst. E65, o1042.], 2010[Raza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.]); Glidewell et al. (2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o5-o7.]). For hydrogen-bonding discussion, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O4

  • Mr = 258.23

  • Monoclinic, P 21 /c

  • a = 7.8385 (2) Å

  • b = 11.9531 (3) Å

  • c = 12.3550 (3) Å

  • β = 90.860 (1)°

  • V = 1157.46 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.988

  • 4381 measured reflections

  • 2874 independent reflections

  • 2254 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.115

  • S = 1.03

  • 2874 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.86 1.98 2.6450 (14) 133
N1—H1⋯O1i 0.86 2.50 3.1381 (16) 132
O4—H4A⋯O3ii 0.82 1.83 2.6488 (13) 174
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Asymmetric synthesis is gaining much importance. Aim of our work is the formation of various chiral benzoxazepines and their derivatives that have been reported as anti-tumor (Samanta et al., 2010) and anti-HIV agents (Fattorusso et al., 2005). The title compound (I, Fig.1) has been synthesized as a precursor for variously substituted chiral benzoxazepines.

We have reported the crystal structures of (II) i.e., 2-hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) and (III) 2-hydroxy-5-nitro-N-phenylbenzamide (Raza et al., 2010). The title compound differs from (II) and (III) due to the attachement of nitro group at different position.

In (I), the nitro and hydroxy substituted phenyl rings A (C1–C6) and B (C8—C13) are planar with r. m. s. deviation of 0.0037 and 0.0014 Å, respectively. The central group C (N1/C7/O3) is of course planar. The dihedral angle between A/B, A/C and B/C is 12.23 (7)°, 6.13 (20)° and 18.35 (18)°, respectively. The nitro group is slightly twisted with respect to its parent phenyl ring making a dihedral angle of 2.71 (16)°. Bond distances and angles agree with related compounds (Raza et al., 2009,2010; Glidewell et al., 2006).

There exist intramolecular N—H···O hydrogen bond forming S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of two dimensional polymeric sheets due to intermolecular H-bondings of N—H···O and O—H···O types. The polymeric sheets extend in the ab-plane (Table 1, Fig. 2). Futhermore weak slippest ππ interactions between the phenyl rings yield a three dimensionnal network (Table 2).

Related literature top

For the pharmaceutical properties of benzoxazepines and their derivatives, see: Fattorusso et al. (2005); Samanta et al. (2010). For related structures, see: Raza et al. (2009, 2010); Glidewell et al. (2006). For hydrogen-bonding discussion, see: Bernstein et al. (1995); Janiak (2000).

Experimental top

3-Nitroaniline (4.14 g, 0.03 mol) was added to 2-hydroxybenzoyl chloride prepared by treating salicylic acid (4.14 g, 0.03 mol) with oxalyl chloride (2.80 ml, 4.00 g, 0.032 mol) using DMF in catalytic amount. The reaction mixture was refluxed for 2 h, cooled to room temperature, neutralized with aqueous NaHCO3 (10%) and extracted with EtOAc (3×25 ml). The organic extract was combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The title compound (I) was mechanically separated as yellow cubical crystals.

Refinement top

Although H atoms were appeared in difference Fourier map but were positioned geometrically with (O–H = 0.82, N–H= 0.86 and C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy and x = 1.2 for other H atoms.

Structure description top

Asymmetric synthesis is gaining much importance. Aim of our work is the formation of various chiral benzoxazepines and their derivatives that have been reported as anti-tumor (Samanta et al., 2010) and anti-HIV agents (Fattorusso et al., 2005). The title compound (I, Fig.1) has been synthesized as a precursor for variously substituted chiral benzoxazepines.

We have reported the crystal structures of (II) i.e., 2-hydroxy-3-nitro-N-phenylbenzamide (Raza et al., 2009) and (III) 2-hydroxy-5-nitro-N-phenylbenzamide (Raza et al., 2010). The title compound differs from (II) and (III) due to the attachement of nitro group at different position.

In (I), the nitro and hydroxy substituted phenyl rings A (C1–C6) and B (C8—C13) are planar with r. m. s. deviation of 0.0037 and 0.0014 Å, respectively. The central group C (N1/C7/O3) is of course planar. The dihedral angle between A/B, A/C and B/C is 12.23 (7)°, 6.13 (20)° and 18.35 (18)°, respectively. The nitro group is slightly twisted with respect to its parent phenyl ring making a dihedral angle of 2.71 (16)°. Bond distances and angles agree with related compounds (Raza et al., 2009,2010; Glidewell et al., 2006).

There exist intramolecular N—H···O hydrogen bond forming S(6) ring motifs (Bernstein et al., 1995). The molecules are stabilized in the form of two dimensional polymeric sheets due to intermolecular H-bondings of N—H···O and O—H···O types. The polymeric sheets extend in the ab-plane (Table 1, Fig. 2). Futhermore weak slippest ππ interactions between the phenyl rings yield a three dimensionnal network (Table 2).

For the pharmaceutical properties of benzoxazepines and their derivatives, see: Fattorusso et al. (2005); Samanta et al. (2010). For related structures, see: Raza et al. (2009, 2010); Glidewell et al. (2006). For hydrogen-bonding discussion, see: Bernstein et al. (1995); Janiak (2000).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. The thermal displacements are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted line indicate the intramolecular H-bond.
[Figure 2] Fig. 2. Partial packing view showing the two dimensional polymeric network parallel to ab-plane. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry codes: (i) -x+1, y-1/2, -z+1/2; (ii) -x, y-1/2, -z+1/2].
2-Hydroxy-N-(3-nitrophenyl)benzamide top
Crystal data top
C13H10N2O4F(000) = 536
Mr = 258.23Dx = 1.482 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 931 reflections
a = 7.8385 (2) Åθ = 2.8–26.0°
b = 11.9531 (3) ŵ = 0.11 mm1
c = 12.3550 (3) ÅT = 296 K
β = 90.860 (1)°Prisms, orange
V = 1157.46 (5) Å30.28 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2874 independent reflections
Radiation source: fine-focus sealed tube2254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 7.5 pixels mm-1θmax = 28.3°, θmin = 2.4°
ω scansh = 108
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1515
Tmin = 0.979, Tmax = 0.988l = 1615
4381 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.2825P]
where P = (Fo2 + 2Fc2)/3
2874 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C13H10N2O4V = 1157.46 (5) Å3
Mr = 258.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8385 (2) ŵ = 0.11 mm1
b = 11.9531 (3) ÅT = 296 K
c = 12.3550 (3) Å0.28 × 0.22 × 0.20 mm
β = 90.860 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2874 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2254 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.988Rint = 0.023
4381 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2874 reflectionsΔρmin = 0.19 e Å3
173 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.67761 (15)0.72384 (9)0.11659 (11)0.0599 (4)
O20.87762 (16)0.63301 (11)0.04018 (13)0.0864 (6)
O30.19790 (13)0.61776 (7)0.25603 (10)0.0529 (3)
O40.01040 (12)0.30182 (7)0.25612 (9)0.0435 (3)
N10.25743 (14)0.43458 (8)0.23703 (10)0.0406 (4)
N20.74358 (15)0.63616 (11)0.08799 (10)0.0478 (4)
C10.41415 (16)0.43895 (10)0.18388 (11)0.0340 (4)
C20.50276 (16)0.53731 (10)0.16487 (11)0.0354 (4)
C30.65510 (16)0.53059 (11)0.11058 (11)0.0361 (4)
C40.72509 (18)0.43172 (12)0.07522 (12)0.0430 (4)
C50.63600 (18)0.33434 (12)0.09615 (12)0.0445 (4)
C60.48277 (18)0.33755 (11)0.14922 (11)0.0398 (4)
C70.15642 (15)0.51916 (9)0.26848 (11)0.0338 (4)
C80.00575 (15)0.48872 (10)0.32268 (10)0.0325 (3)
C90.08272 (16)0.38269 (10)0.31694 (10)0.0334 (3)
C100.23250 (17)0.36262 (11)0.37214 (12)0.0420 (4)
C110.30562 (19)0.44557 (12)0.43280 (13)0.0485 (5)
C120.23231 (19)0.55075 (12)0.43935 (12)0.0455 (4)
C130.08404 (17)0.57126 (11)0.38488 (11)0.0388 (4)
H10.220760.368540.251560.0487*
H20.460710.605860.188060.0424*
H40.828020.430430.038760.0516*
H4A0.069980.245460.257310.0652*
H50.680080.265930.074130.0534*
H60.424270.271300.162120.0477*
H100.283730.292540.368040.0504*
H110.405530.430910.469890.0582*
H120.282770.606810.480100.0546*
H130.034490.641820.389510.0465*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0605 (7)0.0384 (6)0.0814 (8)0.0136 (5)0.0186 (6)0.0046 (5)
O20.0610 (8)0.0748 (9)0.1249 (13)0.0213 (7)0.0524 (8)0.0141 (8)
O30.0429 (5)0.0216 (4)0.0950 (8)0.0011 (4)0.0234 (5)0.0044 (5)
O40.0406 (5)0.0258 (4)0.0646 (6)0.0064 (4)0.0155 (4)0.0098 (4)
N10.0381 (6)0.0205 (5)0.0636 (8)0.0002 (4)0.0166 (5)0.0025 (5)
N20.0407 (6)0.0484 (7)0.0546 (7)0.0111 (5)0.0106 (5)0.0035 (6)
C10.0324 (6)0.0275 (6)0.0421 (7)0.0017 (4)0.0040 (5)0.0012 (5)
C20.0326 (6)0.0278 (6)0.0459 (7)0.0016 (5)0.0043 (5)0.0017 (5)
C30.0321 (6)0.0364 (7)0.0399 (7)0.0026 (5)0.0014 (5)0.0004 (5)
C40.0359 (7)0.0490 (8)0.0443 (7)0.0064 (6)0.0078 (5)0.0028 (6)
C50.0491 (8)0.0358 (7)0.0489 (8)0.0123 (6)0.0063 (6)0.0053 (6)
C60.0451 (7)0.0273 (6)0.0471 (7)0.0035 (5)0.0053 (6)0.0010 (5)
C70.0321 (6)0.0239 (6)0.0456 (7)0.0005 (4)0.0046 (5)0.0016 (5)
C80.0329 (6)0.0250 (6)0.0398 (6)0.0002 (4)0.0035 (5)0.0019 (5)
C90.0340 (6)0.0259 (6)0.0405 (6)0.0007 (5)0.0038 (5)0.0007 (5)
C100.0382 (7)0.0316 (6)0.0564 (8)0.0060 (5)0.0102 (6)0.0003 (6)
C110.0417 (7)0.0442 (8)0.0603 (9)0.0001 (6)0.0209 (7)0.0005 (7)
C120.0483 (8)0.0367 (7)0.0520 (8)0.0073 (6)0.0154 (6)0.0040 (6)
C130.0421 (7)0.0272 (6)0.0472 (7)0.0012 (5)0.0058 (6)0.0015 (5)
Geometric parameters (Å, º) top
O1—N21.2232 (17)C7—C81.4907 (17)
O2—N21.2136 (18)C8—C131.3981 (18)
O3—C71.2329 (14)C8—C91.4050 (17)
O4—C91.3540 (15)C9—C101.3875 (19)
O4—H4A0.8200C10—C111.373 (2)
N1—C11.4026 (17)C11—C121.384 (2)
N1—C71.3451 (15)C12—C131.374 (2)
N2—C31.4687 (18)C2—H20.9300
N1—H10.8600C4—H40.9300
C1—C61.3959 (18)C5—H50.9300
C1—C21.3874 (17)C6—H60.9300
C2—C31.3807 (18)C10—H100.9300
C3—C41.3768 (19)C11—H110.9300
C4—C51.384 (2)C12—H120.9300
C5—C61.378 (2)C13—H130.9300
O1···O4i3.1660 (16)C10···C5v3.564 (2)
O1···N1i3.1381 (16)C10···O3iv3.3407 (17)
O3···C10ii3.3407 (17)C12···C13x3.582 (2)
O3···C9ii3.4105 (15)C12···C8x3.4906 (19)
O3···O4ii2.6488 (13)C13···C13x3.5521 (19)
O3···C5i3.4148 (18)C13···O4ii3.3491 (16)
O3···C22.8257 (16)C13···C12x3.582 (2)
O4···N12.6450 (14)C7···H4Aii2.8100
O4···O1iii3.1660 (16)C7···H22.8000
O4···C13iv3.3491 (16)C9···H12.5300
O4···O3iv2.6488 (13)C10···H5xi3.0200
O4···C4v3.4009 (18)C11···H11xii2.9700
O4···C5v3.4022 (18)C11···H5xi3.0800
O1···H12vi2.6600C12···H11xii3.0800
O1···H22.3900C13···H4Aii2.9900
O1···H1i2.5000H1···O41.9800
O1···H6i2.9200H1···C92.5300
O2···H42.4500H1···H62.2700
O2···H4vii2.6300H1···O1iii2.5000
O3···H132.4900H2···O12.3900
O3···H10ii2.6800H2···O32.2400
O3···H22.2400H2···C72.8000
O3···H4Aii1.8300H4···O22.4500
O3···H5i2.9000H4···O2vii2.6300
O4···H11.9800H4A···H102.2500
O4···H13iv2.6500H4A···O3iv1.8300
N1···O42.6450 (14)H4A···C7iv2.8100
N1···O1iii3.1381 (16)H4A···C13iv2.9900
N2···C6viii3.4176 (18)H4A···H13iv2.3500
C2···O32.8257 (16)H5···O3iii2.9000
C2···C4viii3.459 (2)H5···C10xiii3.0200
C4···O4ix3.4009 (18)H5···C11xiii3.0800
C4···C9ix3.3759 (19)H6···H12.2700
C4···C2viii3.459 (2)H6···O1iii2.9200
C5···O4ix3.4022 (18)H10···H4A2.2500
C5···C9ix3.5293 (19)H10···O3iv2.6800
C5···C10ix3.564 (2)H11···C11xii2.9700
C5···O3iii3.4148 (18)H11···C12xii3.0800
C6···C10ix3.532 (2)H11···H11xii2.3500
C6···N2viii3.4176 (18)H11···H12xii2.5700
C8···C12x3.4906 (19)H12···H11xii2.5700
C9···C4v3.3759 (19)H12···O1xiv2.6600
C9···C5v3.5293 (19)H13···O32.4900
C9···O3iv3.4105 (15)H13···O4ii2.6500
C10···C6v3.532 (2)H13···H4Aii2.3500
C9—O4—H4A109.00C8—C9—C10119.81 (11)
C1—N1—C7129.11 (10)O4—C9—C8119.27 (11)
O1—N2—O2122.69 (13)O4—C9—C10120.92 (11)
O2—N2—C3118.72 (13)C9—C10—C11120.43 (12)
O1—N2—C3118.58 (12)C10—C11—C12120.75 (14)
C7—N1—H1115.00C11—C12—C13119.14 (13)
C1—N1—H1115.00C8—C13—C12121.66 (12)
N1—C1—C2123.71 (11)C1—C2—H2121.00
N1—C1—C6117.10 (11)C3—C2—H2121.00
C2—C1—C6119.19 (12)C3—C4—H4121.00
C1—C2—C3118.15 (11)C5—C4—H4121.00
N2—C3—C2117.17 (11)C4—C5—H5120.00
N2—C3—C4119.05 (12)C6—C5—H5120.00
C2—C3—C4123.76 (12)C1—C6—H6120.00
C3—C4—C5117.27 (13)C5—C6—H6120.00
C4—C5—C6120.77 (13)C9—C10—H10120.00
C1—C6—C5120.86 (12)C11—C10—H10120.00
N1—C7—C8117.13 (10)C10—C11—H11120.00
O3—C7—C8121.17 (11)C12—C11—H11120.00
O3—C7—N1121.67 (11)C11—C12—H12120.00
C7—C8—C9124.47 (11)C13—C12—H12120.00
C7—C8—C13117.32 (11)C8—C13—H13119.00
C9—C8—C13118.20 (11)C12—C13—H13119.00
C7—N1—C1—C27.6 (2)C4—C5—C6—C10.5 (2)
C7—N1—C1—C6172.64 (13)O3—C7—C8—C9163.67 (13)
C1—N1—C7—O32.8 (2)O3—C7—C8—C1317.53 (19)
C1—N1—C7—C8179.24 (12)N1—C7—C8—C918.36 (19)
O1—N2—C3—C21.05 (19)N1—C7—C8—C13160.43 (12)
O1—N2—C3—C4177.63 (13)C7—C8—C9—O42.03 (19)
O2—N2—C3—C2179.85 (14)C7—C8—C9—C10178.87 (12)
O2—N2—C3—C41.2 (2)C13—C8—C9—O4179.19 (12)
N1—C1—C2—C3179.31 (13)C13—C8—C9—C100.09 (18)
C6—C1—C2—C31.0 (2)C7—C8—C13—C12178.94 (13)
N1—C1—C6—C5179.86 (13)C9—C8—C13—C120.1 (2)
C2—C1—C6—C50.4 (2)O4—C9—C10—C11179.40 (13)
C1—C2—C3—N2177.89 (12)C8—C9—C10—C110.3 (2)
C1—C2—C3—C40.7 (2)C9—C10—C11—C120.5 (2)
N2—C3—C4—C5178.69 (13)C10—C11—C12—C130.5 (2)
C2—C3—C4—C50.1 (2)C11—C12—C13—C80.3 (2)
C3—C4—C5—C60.7 (2)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+3/2, z1/2; (vii) x+2, y+1, z; (viii) x+1, y+1, z; (ix) x+1, y, z; (x) x, y+1, z+1; (xi) x1, y+1/2, z+1/2; (xii) x1, y+1, z+1; (xiii) x+1, y+1/2, z1/2; (xiv) x1, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.982.6450 (14)133
N1—H1···O1iii0.862.503.1381 (16)132
O4—H4A···O3iv0.821.832.6488 (13)174
Symmetry codes: (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H10N2O4
Mr258.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.8385 (2), 11.9531 (3), 12.3550 (3)
β (°) 90.860 (1)
V3)1157.46 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.979, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
4381, 2874, 2254
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.03
No. of reflections2874
No. of parameters173
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.19

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.861.982.6450 (14)133
N1—H1···O1i0.862.503.1381 (16)132
O4—H4A···O3ii0.821.832.6488 (13)174
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1/2, z+1/2.
π-π contacts (Å, °) top
ring 1/ring 2ccd(Å)ipd(Å)sa(°)
Cg1->Cg2i3.7150 (8)3.45521.6
Cg3->Cg4ii3.7342 (6)3.53918.6
Cg5->Cg5iii3.9421 (8)3.44329.1
Symmetry codes: (i) 1-x,1-y,-z, (ii) 1+x,y,z, (iii) -x,1-y,1-z

Cg1: C1,C2,C3,C4,C5,C6

Cg2: C8,C9,C10,C11,C12,C13

ccd: center-to-center distance (Distance between ring centroids);

ipd: mean interplanar distance (Distance from one plane to the neighbouring centroid);

sa: mean slippage angle (Angle subtended by the intercentroid vector to the plane normal).

For details, see Janiak (2000)
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. ARR also acknowledges the Higher Education Commission, Government of Pakistan, for generous support of a research project (20–819).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFattorusso, C., Gemma, S., Butini, S., Huleatt, P., Catalanotti, B., Persico, M., Angelis, M. D., Fiorini, I., Nacci, V., Ramunno, A., Rodriquez, M., Greco, G., Novellino, E., Bergamini, A., Marini, S., Coletta, M., Maga, G., Spadari, S. & Campiani, G. (2005). J. Med. Chem. 48, 7153–7165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o5–o7.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationRaza, A. R., Danish, M., Tahir, M. N., Nisar, B. & Park, G. (2009). Acta Cryst. E65, o1042.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaza, A. R., Nisar, B. & Tahir, M. N. (2010). Acta Cryst. E66, o1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamanta, K., Chakravarti, B., Mishra, J. K., Dwivedi, S. K. D., Nayak, L. V., Choudhry, P., Bid, H. K., Konwar, R., Chattopadhyay, N. & Panda, G. (2010). Bioorg. Med. Chem. Lett. 20, 283–287.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds