organic compounds
1-(Prop-2-en-1-yl)-3-[(trimethylsilyl)methyl]benzimidazolium bromide monohydrate
aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey, and cDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr
In the title compound, C14H21N2Si+·Br−·H2O, the benzimidazole ring system is almost planar [maximum deviation = 0.021 (2) Å]. In the crystal, O—H⋯Br and C—H⋯O hydrogen bonds link the ions via the O atoms of the water molecules. In addition, there are π–π stacking interactions between the centroids of the benzene and imidazole rings of the benzimidazole ring system [centroid–centroid distances = 3.521 (3) and 3.575 (2) Å].
Related literature
For the antitumour activity of alkylsilyl-substituted benzimidazole derivatives, see: Kleemann et al. (2009); Lukevics et al. (2001); Ignatovich et al. (2010). For the pharmacological activity of benzimidazole compounds, see: Singh & Lown (2000); Huang et al. (2006); Turner & Denny (1996); Galal et al. (2009); Küçükbay et al. (2003, 2004, 2009, 2010a,b); Şireci et al. (2010); Yılmaz & Küçükbay (2009); Yılmaz et al. (2010). For the structures of similar benzimidazole derivatives, see: Akkurt et al. (2008, 2010a,b); Yıldırım et al. (2006). For π–π interactions, see: Janiak (2000).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810033015/dn2597sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033015/dn2597Isup2.hkl
A mixture of 1-(trimethylsilylmethyl)benzimidazole (1.02 g, 4.99 mmol) and allyl bromide (0.5 ml, 5,78 mmol) in dimethylformamide (5 ml) was refluxed for 3 h. The mixture was then cooled and the volatiles were removed under vacuum. The residue was crystallized from a dimethylformamide/ethanol (1:1). White crystals of the title compound (1.29 g, 79%) were obtained, m.p.: 394–395 °K; υ(CN)= 1552 cm-1. Anal. found: C 48.67, H 6.72, N 8.11%. Calculated for C14H23BrN2OSi: C 48.98, H 6.75, N 8.16%. 1H NMR (δ, DMSO-d6): 9.70 (s, 1H, NCHN), 8.14 - 7.67 (m, 4H, C6H4), 6.12 (m, 1H, CH allyl), 5.37 (m, 2H, CH2 allyl), 5.22 (d, 2H, CH2 allyl, J= 5.7 Hz), 4.26 (s, 2H, CH2Si) and 0.11 [s, 9H, (CH3)3Si]. 13C NMR (δ, DMSO-d6): 141.6 (NCHN), 132.5, 131.9, 131.3, 127.0, 126.8 and 120.4 (C6H4), 114.5 (CH allyl), 114.2 (CH2 allyl), 49.2 (CH2 allyl), 38.4 (CH2Si) and -2.2 [(CH3)3Si].
The hydrogen atoms on the water molecule were located from a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) Å and H···H = 1.39 (1) Å, and with Uiso(H) = 1.5 Ueq(O). In the last steps of
they were treated as riding on the parent O atom. The other H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C).Heterocycles are important building blocks for the construction of anticancer drugs (Kleemann et al., 2009). For example, alkylsilyl substituted benzimidazole derivatives have been reported to possess important antitumour activity (Lukevics et al., 2001; Ignatovich et al., 2010). Since, benzimidazole compounds have been found to have a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of
(Singh & Lown, 2000; Huang et al., 2006; Turner & Denny, 1996; Galal et al., 2009; Küçükbay et al., 2003, 2004, 2009, 2010a,b; Şireci et al., 2010; Yılmaz et al., 2009, 2010;). We have synthesized and investigated the crystal structures of many benzimidazole derivatives (Akkurt et al., 2008, 2010a,b; Yıldırım et al., 2006). Herein we report the synthesis and structure of the title compound, (I), 1-(prop-2-ene-1-yl)-3-[(trimethylsilyl)methyl]benzimidazolium bromide monohydrate.The benzimidazole ring system (N1/N2/C1–C7) in the title molecule (I) (Fig. 1) is almost planar with a maximum deviation of 0.021 (2)Å for C1 atom. The bond lengths and angles in (I) are compatible with those found for similar compounds (Akkurt et al., 2008, 2010a,b). The average Si—C bond length is 1.857 (5) Å. The angles around the Si atoms with a distorted tetrahedral geometry vary from 105.9 (2)° to 111.7 (3)°.
O–H···Br and C—H···O hydrogen bonds link the molecules (Table 1 and Fig 2). In the π-π stacking interactions with each other (Janiak, 2000) (Table 2).
the benzene (C1–C6) and imidazole (N1/N2/C1/C6/C7) rings of the benzimidazole ring system formFor the antitumour activity of alkylsilyl-substituted benzimidazole derivatives, see: Kleemann et al. (2009); Lukevics et al. (2001); Ignatovich et al. (2010). For the pharmacological activity of benzimidazole compounds, see: Singh & Lown (2000); Huang et al. (2006); Turner & Denny (1996); Galal et al. (2009); Küçükbay et al. (2003, 2004, 2009, 2010a,b); Şireci et al. (2010); Yılmaz et al. (2009, 2010). For the structures of similar benzimidazole derivatives, see: Akkurt et al. (2008, 2010a,b); Yıldırım et al. (2006). For π–π interactions, see: Janiak (2000).
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).C14H21N2Si+·Br−·H2O | Z = 2 |
Mr = 343.33 | F(000) = 356 |
Triclinic, P1 | Dx = 1.285 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9063 (2) Å | Cell parameters from 3185 reflections |
b = 10.4720 (2) Å | θ = 2.4–26.4° |
c = 10.9439 (3) Å | µ = 2.38 mm−1 |
α = 66.542 (4)° | T = 294 K |
β = 71.479 (4)° | Block, white |
γ = 80.625 (5)° | 0.20 × 0.20 × 0.20 mm |
V = 887.07 (5) Å3 |
Rigaku R-AXIS RAPID-S diffractometer | 3618 independent reflections |
Radiation source: Sealed Tube | 2202 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.073 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 26.4°, θmin = 2.4° |
dtprofit.ref scans | h = −11→9 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −13→13 |
Tmin = 0.647, Tmax = 0.647 | l = −13→13 |
18957 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0356P)2 + 0.3659P] where P = (Fo2 + 2Fc2)/3 |
3618 reflections | (Δ/σ)max = 0.006 |
175 parameters | Δρmax = 0.30 e Å−3 |
3 restraints | Δρmin = −0.35 e Å−3 |
C14H21N2Si+·Br−·H2O | γ = 80.625 (5)° |
Mr = 343.33 | V = 887.07 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.9063 (2) Å | Mo Kα radiation |
b = 10.4720 (2) Å | µ = 2.38 mm−1 |
c = 10.9439 (3) Å | T = 294 K |
α = 66.542 (4)° | 0.20 × 0.20 × 0.20 mm |
β = 71.479 (4)° |
Rigaku R-AXIS RAPID-S diffractometer | 3618 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 2202 reflections with I > 2σ(I) |
Tmin = 0.647, Tmax = 0.647 | Rint = 0.073 |
18957 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 3 restraints |
wR(F2) = 0.121 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.30 e Å−3 |
3618 reflections | Δρmin = −0.35 e Å−3 |
175 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.53721 (14) | 0.18235 (12) | 0.70600 (11) | 0.0684 (3) | |
N1 | 0.6155 (3) | 0.3381 (3) | 0.8362 (3) | 0.0570 (7) | |
N2 | 0.7515 (3) | 0.3069 (3) | 0.9818 (3) | 0.0624 (8) | |
C1 | 0.5921 (4) | 0.3128 (4) | 1.0536 (4) | 0.0562 (9) | |
C2 | 0.5185 (5) | 0.3059 (4) | 1.1879 (4) | 0.0669 (10) | |
H2 | 0.5760 | 0.2927 | 1.2499 | 0.080* | |
C3 | 0.3555 (5) | 0.3197 (4) | 1.2249 (4) | 0.0722 (11) | |
H3 | 0.3016 | 0.3143 | 1.3147 | 0.087* | |
C4 | 0.2689 (5) | 0.3415 (4) | 1.1314 (4) | 0.0673 (10) | |
H4 | 0.1590 | 0.3509 | 1.1604 | 0.081* | |
C5 | 0.3419 (4) | 0.3495 (4) | 0.9978 (4) | 0.0625 (9) | |
H5 | 0.2844 | 0.3649 | 0.9353 | 0.075* | |
C6 | 0.5059 (4) | 0.3332 (4) | 0.9609 (3) | 0.0546 (8) | |
C7 | 0.7597 (4) | 0.3221 (4) | 0.8533 (4) | 0.0634 (10) | |
H7 | 0.8535 | 0.3216 | 0.7846 | 0.076* | |
C8 | 0.5773 (5) | 0.3529 (4) | 0.7092 (3) | 0.0634 (10) | |
H8A | 0.6649 | 0.3954 | 0.6294 | 0.076* | |
H8B | 0.4847 | 0.4153 | 0.7007 | 0.076* | |
C9 | 0.7201 (6) | 0.0716 (5) | 0.7079 (6) | 0.1093 (17) | |
H9A | 0.7050 | −0.0136 | 0.7007 | 0.164* | |
H9B | 0.7453 | 0.0508 | 0.7931 | 0.164* | |
H9C | 0.8055 | 0.1197 | 0.6310 | 0.164* | |
C10 | 0.4835 (6) | 0.2278 (6) | 0.5440 (5) | 0.1070 (17) | |
H10A | 0.3868 | 0.2840 | 0.5472 | 0.160* | |
H10B | 0.4690 | 0.1442 | 0.5337 | 0.160* | |
H10C | 0.5666 | 0.2790 | 0.4667 | 0.160* | |
C11 | 0.3721 (6) | 0.0963 (5) | 0.8586 (5) | 0.1049 (16) | |
H11A | 0.3672 | 0.0022 | 0.8668 | 0.157* | |
H11B | 0.2741 | 0.1463 | 0.8470 | 0.157* | |
H11C | 0.3897 | 0.0958 | 0.9409 | 0.157* | |
C12 | 0.8871 (5) | 0.2883 (5) | 1.0387 (4) | 0.0781 (12) | |
H12A | 0.8701 | 0.3488 | 1.0902 | 0.094* | |
H12B | 0.9831 | 0.3152 | 0.9629 | 0.094* | |
C13 | 0.9078 (5) | 0.1417 (5) | 1.1316 (6) | 0.0889 (14) | |
H13 | 0.9301 | 0.0731 | 1.0937 | 0.107* | |
C14 | 0.8967 (6) | 0.1037 (6) | 1.2611 (7) | 0.1190 (19) | |
H14A | 0.8744 | 0.1698 | 1.3021 | 0.143* | |
H14B | 0.9109 | 0.0101 | 1.3139 | 0.143* | |
O1W | 1.0389 (5) | 0.3039 (4) | 0.5704 (4) | 0.1283 (12) | |
H1W | 1.0104 | 0.3435 | 0.4962 | 0.192* | |
H2W | 1.0969 | 0.3573 | 0.5761 | 0.192* | |
Br1 | 0.85464 (5) | 0.48204 (5) | 0.31301 (5) | 0.0895 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0770 (8) | 0.0756 (7) | 0.0588 (6) | −0.0017 (6) | −0.0259 (6) | −0.0264 (6) |
N1 | 0.0539 (18) | 0.067 (2) | 0.0517 (17) | −0.0005 (14) | −0.0141 (14) | −0.0253 (15) |
N2 | 0.0522 (18) | 0.076 (2) | 0.065 (2) | −0.0021 (15) | −0.0165 (15) | −0.0321 (17) |
C1 | 0.052 (2) | 0.064 (2) | 0.055 (2) | −0.0033 (17) | −0.0155 (17) | −0.0241 (18) |
C2 | 0.071 (3) | 0.080 (3) | 0.055 (2) | −0.005 (2) | −0.018 (2) | −0.029 (2) |
C3 | 0.072 (3) | 0.082 (3) | 0.059 (2) | −0.007 (2) | −0.005 (2) | −0.030 (2) |
C4 | 0.054 (2) | 0.073 (3) | 0.072 (3) | −0.0029 (19) | −0.008 (2) | −0.031 (2) |
C5 | 0.055 (2) | 0.066 (2) | 0.066 (2) | 0.0009 (18) | −0.0174 (19) | −0.0259 (19) |
C6 | 0.052 (2) | 0.061 (2) | 0.053 (2) | −0.0012 (16) | −0.0122 (17) | −0.0258 (17) |
C7 | 0.053 (2) | 0.076 (3) | 0.062 (2) | −0.0019 (18) | −0.0085 (18) | −0.032 (2) |
C8 | 0.069 (2) | 0.072 (3) | 0.045 (2) | −0.0009 (19) | −0.0158 (18) | −0.0188 (18) |
C9 | 0.107 (4) | 0.087 (3) | 0.137 (5) | 0.015 (3) | −0.043 (3) | −0.044 (3) |
C10 | 0.121 (4) | 0.144 (5) | 0.079 (3) | −0.010 (3) | −0.041 (3) | −0.053 (3) |
C11 | 0.120 (4) | 0.103 (4) | 0.090 (3) | −0.039 (3) | −0.011 (3) | −0.035 (3) |
C12 | 0.056 (2) | 0.107 (4) | 0.085 (3) | −0.005 (2) | −0.027 (2) | −0.042 (3) |
C13 | 0.067 (3) | 0.099 (4) | 0.115 (4) | 0.009 (2) | −0.044 (3) | −0.044 (3) |
C14 | 0.098 (4) | 0.117 (5) | 0.130 (5) | 0.009 (3) | −0.055 (4) | −0.022 (4) |
O1W | 0.124 (3) | 0.130 (3) | 0.132 (3) | −0.002 (2) | −0.047 (2) | −0.042 (2) |
Br1 | 0.0699 (3) | 0.1215 (4) | 0.0769 (3) | 0.0007 (3) | −0.0195 (2) | −0.0391 (3) |
Si1—C9 | 1.840 (5) | C8—H8A | 0.9700 |
Si1—C10 | 1.842 (4) | C8—H8B | 0.9700 |
Si1—C11 | 1.854 (5) | C9—H9A | 0.9600 |
Si1—C8 | 1.893 (4) | C9—H9B | 0.9600 |
N1—C7 | 1.329 (4) | C9—H9C | 0.9600 |
N1—C6 | 1.390 (4) | C10—H10A | 0.9600 |
N1—C8 | 1.478 (4) | C10—H10B | 0.9600 |
N2—C7 | 1.330 (4) | C10—H10C | 0.9600 |
N2—C1 | 1.392 (4) | C11—H11A | 0.9600 |
N2—C12 | 1.480 (5) | C11—H11B | 0.9600 |
C1—C2 | 1.383 (5) | C11—H11C | 0.9600 |
C1—C6 | 1.390 (5) | C12—C13 | 1.486 (6) |
C2—C3 | 1.377 (5) | C12—H12A | 0.9700 |
C2—H2 | 0.9300 | C12—H12B | 0.9700 |
C3—C4 | 1.397 (5) | C13—C14 | 1.285 (7) |
C3—H3 | 0.9300 | C13—H13 | 0.9300 |
C4—C5 | 1.372 (5) | C14—H14A | 0.9300 |
C4—H4 | 0.9300 | C14—H14B | 0.9300 |
C5—C6 | 1.387 (5) | O1W—H1W | 0.8512 |
C5—H5 | 0.9300 | O1W—H2W | 0.8513 |
C7—H7 | 0.9300 | ||
C9—Si1—C10 | 111.7 (2) | Si1—C8—H8A | 108.8 |
C9—Si1—C11 | 110.6 (2) | N1—C8—H8B | 108.8 |
C10—Si1—C11 | 110.6 (2) | Si1—C8—H8B | 108.8 |
C9—Si1—C8 | 107.8 (2) | H8A—C8—H8B | 107.7 |
C10—Si1—C8 | 105.9 (2) | Si1—C9—H9A | 109.5 |
C11—Si1—C8 | 110.15 (19) | Si1—C9—H9B | 109.5 |
C7—N1—C6 | 108.0 (3) | H9A—C9—H9B | 109.5 |
C7—N1—C8 | 126.3 (3) | Si1—C9—H9C | 109.5 |
C6—N1—C8 | 125.7 (3) | H9A—C9—H9C | 109.5 |
C7—N2—C1 | 107.9 (3) | H9B—C9—H9C | 109.5 |
C7—N2—C12 | 126.3 (3) | Si1—C10—H10A | 109.5 |
C1—N2—C12 | 125.8 (3) | Si1—C10—H10B | 109.5 |
C2—C1—C6 | 121.7 (3) | H10A—C10—H10B | 109.5 |
C2—C1—N2 | 131.6 (3) | Si1—C10—H10C | 109.5 |
C6—C1—N2 | 106.7 (3) | H10A—C10—H10C | 109.5 |
C3—C2—C1 | 116.5 (3) | H10B—C10—H10C | 109.5 |
C3—C2—H2 | 121.8 | Si1—C11—H11A | 109.5 |
C1—C2—H2 | 121.8 | Si1—C11—H11B | 109.5 |
C2—C3—C4 | 121.9 (4) | H11A—C11—H11B | 109.5 |
C2—C3—H3 | 119.0 | Si1—C11—H11C | 109.5 |
C4—C3—H3 | 119.0 | H11A—C11—H11C | 109.5 |
C5—C4—C3 | 121.7 (4) | H11B—C11—H11C | 109.5 |
C5—C4—H4 | 119.2 | N2—C12—C13 | 111.7 (3) |
C3—C4—H4 | 119.2 | N2—C12—H12A | 109.3 |
C4—C5—C6 | 116.6 (3) | C13—C12—H12A | 109.3 |
C4—C5—H5 | 121.7 | N2—C12—H12B | 109.3 |
C6—C5—H5 | 121.7 | C13—C12—H12B | 109.3 |
C5—C6—N1 | 131.6 (3) | H12A—C12—H12B | 107.9 |
C5—C6—C1 | 121.7 (3) | C14—C13—C12 | 124.1 (5) |
N1—C6—C1 | 106.7 (3) | C14—C13—H13 | 118.0 |
N2—C7—N1 | 110.8 (3) | C12—C13—H13 | 118.0 |
N2—C7—H7 | 124.6 | C13—C14—H14A | 120.0 |
N1—C7—H7 | 124.6 | C13—C14—H14B | 120.0 |
N1—C8—Si1 | 113.9 (2) | H14A—C14—H14B | 120.0 |
N1—C8—H8A | 108.8 | H1W—O1W—H2W | 109.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1W | 0.93 | 2.46 | 3.351 (5) | 161 |
O1W—H1W···Br1 | 0.85 | 2.62 | 3.445 (4) | 165 |
O1W—H2W···Br1i | 0.85 | 2.59 | 3.360 (4) | 152 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C14H21N2Si+·Br−·H2O |
Mr | 343.33 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 8.9063 (2), 10.4720 (2), 10.9439 (3) |
α, β, γ (°) | 66.542 (4), 71.479 (4), 80.625 (5) |
V (Å3) | 887.07 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.38 |
Crystal size (mm) | 0.20 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-S |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.647, 0.647 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18957, 3618, 2202 |
Rint | 0.073 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.121, 1.02 |
No. of reflections | 3618 |
No. of parameters | 175 |
No. of restraints | 3 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.30, −0.35 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O1W | 0.93 | 2.46 | 3.351 (5) | 160.8 |
O1W—H1W···Br1 | 0.85 | 2.62 | 3.445 (4) | 164.7 |
O1W—H2W···Br1i | 0.85 | 2.59 | 3.360 (4) | 151.7 |
Symmetry code: (i) −x+2, −y+1, −z+1. |
Cg1: N1,N2,C1,C6,C7; Cg2: C1,C2,C3,C4,C5,C6; ccd: Distance between ring centroids; ipd: mean interplanar distance (Distance from one plane to the neighbouring centroid); sa: mean slippage angle (Angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000). |
ring 1/ring 2 | ccd | ipd | sa |
Cg1->Cg2ii | 3.521 (3) | 3.386 | 15.9 |
Cg2->Cg2ii | 3.575 (2) | 3.396 | 18.2 |
Symmetry code: (ii) 1-x,1-y,2-z. |
Acknowledgements
ZB and MA thank the Unit of the Scientific Research Projects of Erciyes University, Turkey for the research grant FBD-10–2949, and for support of the data collection at Atatürk University, Turkey. HK and NŞ thank İnönü University Research Fund (BAPB-2008–60) for financial support of this study.
References
Akkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1770–o1771. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Akkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010b). Acta Cryst. E66, m253–m254. Web of Science CSD CrossRef IUCr Journals Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El- Khamry, A.-M. A. & Divani, H. I. E. (2009). Eur. J. Med. Chem. 44, 1500–1508. Web of Science CrossRef PubMed CAS Google Scholar
Huang, S.-T., Hsei, I.-J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119. Web of Science CrossRef PubMed CAS Google Scholar
Ignatovich, I., Muravenko, V., Shestakova, I., Domrachova, I., Popelis, J. & Lukevics, E. (2010). Appl. Organomet. Chem. 24, 158–161. Web of Science CrossRef CAS Google Scholar
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896. Web of Science CrossRef Google Scholar
Kleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2009). Pharmaceutical Substances. Stuttgard, Germany: Thieme. Google Scholar
Küçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48, 679–681. Google Scholar
Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64–68. Google Scholar
Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2009). Asian J. Chem. 21, 6181–6189. Google Scholar
Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010a). Asian J. Chem. 22, 2816–2824. Google Scholar
Küçükbay, H., Günal, S., Orhan, E. & Durmaz, R. (2010b). Asian J. Chem. 22, 7376–7382. Google Scholar
Lukevics, E., Arsenyan, P., Shestakova, I. Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, A. K. & Lown, J. W. (2000). Anti-Cancer Drug Des. 15, 265–275. Web of Science PubMed CAS Google Scholar
Şireci, N., Yılmaz, Ü. & Küçükbay, H. (2010). Asian J. Chem. 22, 7153–7158. Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Turner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141–169. CrossRef PubMed Web of Science Google Scholar
Yıldırım, S. Ö., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & McKee, V. (2006). Acta Cryst. E62, o5697–o5698. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155. Google Scholar
Yılmaz, Ü., Şireci, N., Deniz, S. & Küçükbay, H. (2010). Appl. Organomet. Chem. 24, 414–420. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Heterocycles are important building blocks for the construction of anticancer drugs (Kleemann et al., 2009). For example, alkylsilyl substituted benzimidazole derivatives have been reported to possess important antitumour activity (Lukevics et al., 2001; Ignatovich et al., 2010). Since, benzimidazole compounds have been found to have a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of heterocyclic compounds (Singh & Lown, 2000; Huang et al., 2006; Turner & Denny, 1996; Galal et al., 2009; Küçükbay et al., 2003, 2004, 2009, 2010a,b; Şireci et al., 2010; Yılmaz et al., 2009, 2010;). We have synthesized and investigated the crystal structures of many benzimidazole derivatives (Akkurt et al., 2008, 2010a,b; Yıldırım et al., 2006). Herein we report the synthesis and structure of the title compound, (I), 1-(prop-2-ene-1-yl)-3-[(trimethylsilyl)methyl]benzimidazolium bromide monohydrate.
The benzimidazole ring system (N1/N2/C1–C7) in the title molecule (I) (Fig. 1) is almost planar with a maximum deviation of 0.021 (2)Å for C1 atom. The bond lengths and angles in (I) are compatible with those found for similar compounds (Akkurt et al., 2008, 2010a,b). The average Si—C bond length is 1.857 (5) Å. The angles around the Si atoms with a distorted tetrahedral geometry vary from 105.9 (2)° to 111.7 (3)°.
O–H···Br and C—H···O hydrogen bonds link the molecules (Table 1 and Fig 2). In the crystal structure, the benzene (C1–C6) and imidazole (N1/N2/C1/C6/C7) rings of the benzimidazole ring system form π-π stacking interactions with each other (Janiak, 2000) (Table 2).