organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Prop-2-en-1-yl)-3-[(tri­methyl­sil­yl)meth­yl]benzimidazolium bromide monohydrate

aDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, bDepartment of Chemistry, Faculty of Arts and Sciences, Adıyaman University, 02040 Adıyaman, Turkey, and cDepartment of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 12 August 2010; accepted 16 August 2010; online 25 August 2010)

In the title compound, C14H21N2Si+·Br·H2O, the benzimidazole ring system is almost planar [maximum deviation = 0.021 (2) Å]. In the crystal, O—H⋯Br and C—H⋯O hydrogen bonds link the ions via the O atoms of the water mol­ecules. In addition, there are ππ stacking inter­actions between the centroids of the benzene and imidazole rings of the benzimidazole ring system [centroid–centroid distances = 3.521 (3) and 3.575 (2) Å].

Related literature

For the anti­tumour activity of alkyl­silyl-substituted benzimidazole derivatives, see: Kleemann et al. (2009[Kleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2009). Pharmaceutical Substances. Stuttgard, Germany: Thieme.]); Lukevics et al. (2001[Lukevics, E., Arsenyan, P., Shestakova, I. Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507-515.]); Ignatovich et al. (2010[Ignatovich, I., Muravenko, V., Shestakova, I., Domrachova, I., Popelis, J. & Lukevics, E. (2010). Appl. Organomet. Chem. 24, 158-161.]). For the pharmacological activity of benzimidazole compounds, see: Singh & Lown (2000[Singh, A. K. & Lown, J. W. (2000). Anti-Cancer Drug Des. 15, 265-275.]); Huang et al. (2006[Huang, S.-T., Hsei, I.-J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106-6119.]); Turner & Denny (1996[Turner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141-169.]); Galal et al. (2009[Galal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El- Khamry, A.-M. A. & Divani, H. I. E. (2009). Eur. J. Med. Chem. 44, 1500-1508.]); Küçükbay et al. (2003[Küçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48, 679-681.], 2004[Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64-68.], 2009[Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2009). Asian J. Chem. 21, 6181-6189.], 2010a[Küçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010a). Asian J. Chem. 22, 2816-2824.],b[Küçükbay, H., Günal, S., Orhan, E. & Durmaz, R. (2010b). Asian J. Chem. 22, 7376-7382.]); Şireci et al. (2010[Şireci, N., Yılmaz, Ü. & Küçükbay, H. (2010). Asian J. Chem. 22, 7153-7158.]); Yılmaz & Küçükbay (2009[Yılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149-6155.]); Yılmaz et al. (2010[Yılmaz, Ü., Şireci, N., Deniz, S. & Küçükbay, H. (2010). Appl. Organomet. Chem. 24, 414-420.]). For the structures of similar benzimidazole derivatives, see: Akkurt et al. (2008[Akkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809.], 2010a[Akkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1770-o1771.],b[Akkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010b). Acta Cryst. E66, m253-m254.]); Yıldırım et al. (2006[Yıldırım, S. Ö., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & McKee, V. (2006). Acta Cryst. E62, o5697-o5698.]). For ππ inter­actions, see: Janiak (2000[Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21N2Si+·Br·H2O

  • Mr = 343.33

  • Triclinic, [P \overline 1]

  • a = 8.9063 (2) Å

  • b = 10.4720 (2) Å

  • c = 10.9439 (3) Å

  • α = 66.542 (4)°

  • β = 71.479 (4)°

  • γ = 80.625 (5)°

  • V = 887.07 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.38 mm−1

  • T = 294 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.647, Tmax = 0.647

  • 18957 measured reflections

  • 3618 independent reflections

  • 2202 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.121

  • S = 1.02

  • 3618 reflections

  • 175 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1W 0.93 2.46 3.351 (5) 161
O1W—H1W⋯Br1 0.85 2.62 3.445 (4) 165
O1W—H2W⋯Br1i 0.85 2.59 3.360 (4) 152
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Heterocycles are important building blocks for the construction of anticancer drugs (Kleemann et al., 2009). For example, alkylsilyl substituted benzimidazole derivatives have been reported to possess important antitumour activity (Lukevics et al., 2001; Ignatovich et al., 2010). Since, benzimidazole compounds have been found to have a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of heterocyclic compounds (Singh & Lown, 2000; Huang et al., 2006; Turner & Denny, 1996; Galal et al., 2009; Küçükbay et al., 2003, 2004, 2009, 2010a,b; Şireci et al., 2010; Yılmaz et al., 2009, 2010;). We have synthesized and investigated the crystal structures of many benzimidazole derivatives (Akkurt et al., 2008, 2010a,b; Yıldırım et al., 2006). Herein we report the synthesis and structure of the title compound, (I), 1-(prop-2-ene-1-yl)-3-[(trimethylsilyl)methyl]benzimidazolium bromide monohydrate.

The benzimidazole ring system (N1/N2/C1–C7) in the title molecule (I) (Fig. 1) is almost planar with a maximum deviation of 0.021 (2)Å for C1 atom. The bond lengths and angles in (I) are compatible with those found for similar compounds (Akkurt et al., 2008, 2010a,b). The average Si—C bond length is 1.857 (5) Å. The angles around the Si atoms with a distorted tetrahedral geometry vary from 105.9 (2)° to 111.7 (3)°.

O–H···Br and C—H···O hydrogen bonds link the molecules (Table 1 and Fig 2). In the crystal structure, the benzene (C1–C6) and imidazole (N1/N2/C1/C6/C7) rings of the benzimidazole ring system form π-π stacking interactions with each other (Janiak, 2000) (Table 2).

Related literature top

For the antitumour activity of alkylsilyl-substituted benzimidazole derivatives, see: Kleemann et al. (2009); Lukevics et al. (2001); Ignatovich et al. (2010). For the pharmacological activity of benzimidazole compounds, see: Singh & Lown (2000); Huang et al. (2006); Turner & Denny (1996); Galal et al. (2009); Küçükbay et al. (2003, 2004, 2009, 2010a,b); Şireci et al. (2010); Yılmaz et al. (2009, 2010). For the structures of similar benzimidazole derivatives, see: Akkurt et al. (2008, 2010a,b); Yıldırım et al. (2006). For ππ interactions, see: Janiak (2000).

Experimental top

A mixture of 1-(trimethylsilylmethyl)benzimidazole (1.02 g, 4.99 mmol) and allyl bromide (0.5 ml, 5,78 mmol) in dimethylformamide (5 ml) was refluxed for 3 h. The mixture was then cooled and the volatiles were removed under vacuum. The residue was crystallized from a dimethylformamide/ethanol (1:1). White crystals of the title compound (1.29 g, 79%) were obtained, m.p.: 394–395 °K; υ(CN)= 1552 cm-1. Anal. found: C 48.67, H 6.72, N 8.11%. Calculated for C14H23BrN2OSi: C 48.98, H 6.75, N 8.16%. 1H NMR (δ, DMSO-d6): 9.70 (s, 1H, NCHN), 8.14 - 7.67 (m, 4H, C6H4), 6.12 (m, 1H, CH allyl), 5.37 (m, 2H, CH2 allyl), 5.22 (d, 2H, CH2 allyl, J= 5.7 Hz), 4.26 (s, 2H, CH2Si) and 0.11 [s, 9H, (CH3)3Si]. 13C NMR (δ, DMSO-d6): 141.6 (NCHN), 132.5, 131.9, 131.3, 127.0, 126.8 and 120.4 (C6H4), 114.5 (CH allyl), 114.2 (CH2 allyl), 49.2 (CH2 allyl), 38.4 (CH2Si) and -2.2 [(CH3)3Si].

Refinement top

The hydrogen atoms on the water molecule were located from a difference Fourier map and refined with distance restraints of O—H = 0.85 (1) Å and H···H = 1.39 (1) Å, and with Uiso(H) = 1.5 Ueq(O). In the last steps of refinement, they were treated as riding on the parent O atom. The other H atoms were positioned geometrically, with C—H = 0.93–0.97 Å, and refined as riding with Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

Heterocycles are important building blocks for the construction of anticancer drugs (Kleemann et al., 2009). For example, alkylsilyl substituted benzimidazole derivatives have been reported to possess important antitumour activity (Lukevics et al., 2001; Ignatovich et al., 2010). Since, benzimidazole compounds have been found to have a broad range of pharmacological activity, many research groups as well as our group have been interested in these type of heterocyclic compounds (Singh & Lown, 2000; Huang et al., 2006; Turner & Denny, 1996; Galal et al., 2009; Küçükbay et al., 2003, 2004, 2009, 2010a,b; Şireci et al., 2010; Yılmaz et al., 2009, 2010;). We have synthesized and investigated the crystal structures of many benzimidazole derivatives (Akkurt et al., 2008, 2010a,b; Yıldırım et al., 2006). Herein we report the synthesis and structure of the title compound, (I), 1-(prop-2-ene-1-yl)-3-[(trimethylsilyl)methyl]benzimidazolium bromide monohydrate.

The benzimidazole ring system (N1/N2/C1–C7) in the title molecule (I) (Fig. 1) is almost planar with a maximum deviation of 0.021 (2)Å for C1 atom. The bond lengths and angles in (I) are compatible with those found for similar compounds (Akkurt et al., 2008, 2010a,b). The average Si—C bond length is 1.857 (5) Å. The angles around the Si atoms with a distorted tetrahedral geometry vary from 105.9 (2)° to 111.7 (3)°.

O–H···Br and C—H···O hydrogen bonds link the molecules (Table 1 and Fig 2). In the crystal structure, the benzene (C1–C6) and imidazole (N1/N2/C1/C6/C7) rings of the benzimidazole ring system form π-π stacking interactions with each other (Janiak, 2000) (Table 2).

For the antitumour activity of alkylsilyl-substituted benzimidazole derivatives, see: Kleemann et al. (2009); Lukevics et al. (2001); Ignatovich et al. (2010). For the pharmacological activity of benzimidazole compounds, see: Singh & Lown (2000); Huang et al. (2006); Turner & Denny (1996); Galal et al. (2009); Küçükbay et al. (2003, 2004, 2009, 2010a,b); Şireci et al. (2010); Yılmaz et al. (2009, 2010). For the structures of similar benzimidazole derivatives, see: Akkurt et al. (2008, 2010a,b); Yıldırım et al. (2006). For ππ interactions, see: Janiak (2000).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing view of the title compound with O–H···Br and C—H···O hydrogen bonds viewed down the a axis. H atoms not involved in hydrogen bondings are omitted for the sake of clarity. [Symmetry code: (i) -x+2, -y+1, -z+1]
1-(Prop-2-en-1-yl)-3-[(trimethylsilyl)methyl]benzimidazolium bromide monohydrate top
Crystal data top
C14H21N2Si+·Br·H2OZ = 2
Mr = 343.33F(000) = 356
Triclinic, P1Dx = 1.285 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9063 (2) ÅCell parameters from 3185 reflections
b = 10.4720 (2) Åθ = 2.4–26.4°
c = 10.9439 (3) ŵ = 2.38 mm1
α = 66.542 (4)°T = 294 K
β = 71.479 (4)°Block, white
γ = 80.625 (5)°0.20 × 0.20 × 0.20 mm
V = 887.07 (5) Å3
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3618 independent reflections
Radiation source: Sealed Tube2202 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.073
Detector resolution: 10.0000 pixels mm-1θmax = 26.4°, θmin = 2.4°
dtprofit.ref scansh = 119
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1313
Tmin = 0.647, Tmax = 0.647l = 1313
18957 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0356P)2 + 0.3659P]
where P = (Fo2 + 2Fc2)/3
3618 reflections(Δ/σ)max = 0.006
175 parametersΔρmax = 0.30 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H21N2Si+·Br·H2Oγ = 80.625 (5)°
Mr = 343.33V = 887.07 (5) Å3
Triclinic, P1Z = 2
a = 8.9063 (2) ÅMo Kα radiation
b = 10.4720 (2) ŵ = 2.38 mm1
c = 10.9439 (3) ÅT = 294 K
α = 66.542 (4)°0.20 × 0.20 × 0.20 mm
β = 71.479 (4)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
3618 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
2202 reflections with I > 2σ(I)
Tmin = 0.647, Tmax = 0.647Rint = 0.073
18957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0493 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.30 e Å3
3618 reflectionsΔρmin = 0.35 e Å3
175 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.53721 (14)0.18235 (12)0.70600 (11)0.0684 (3)
N10.6155 (3)0.3381 (3)0.8362 (3)0.0570 (7)
N20.7515 (3)0.3069 (3)0.9818 (3)0.0624 (8)
C10.5921 (4)0.3128 (4)1.0536 (4)0.0562 (9)
C20.5185 (5)0.3059 (4)1.1879 (4)0.0669 (10)
H20.57600.29271.24990.080*
C30.3555 (5)0.3197 (4)1.2249 (4)0.0722 (11)
H30.30160.31431.31470.087*
C40.2689 (5)0.3415 (4)1.1314 (4)0.0673 (10)
H40.15900.35091.16040.081*
C50.3419 (4)0.3495 (4)0.9978 (4)0.0625 (9)
H50.28440.36490.93530.075*
C60.5059 (4)0.3332 (4)0.9609 (3)0.0546 (8)
C70.7597 (4)0.3221 (4)0.8533 (4)0.0634 (10)
H70.85350.32160.78460.076*
C80.5773 (5)0.3529 (4)0.7092 (3)0.0634 (10)
H8A0.66490.39540.62940.076*
H8B0.48470.41530.70070.076*
C90.7201 (6)0.0716 (5)0.7079 (6)0.1093 (17)
H9A0.70500.01360.70070.164*
H9B0.74530.05080.79310.164*
H9C0.80550.11970.63100.164*
C100.4835 (6)0.2278 (6)0.5440 (5)0.1070 (17)
H10A0.38680.28400.54720.160*
H10B0.46900.14420.53370.160*
H10C0.56660.27900.46670.160*
C110.3721 (6)0.0963 (5)0.8586 (5)0.1049 (16)
H11A0.36720.00220.86680.157*
H11B0.27410.14630.84700.157*
H11C0.38970.09580.94090.157*
C120.8871 (5)0.2883 (5)1.0387 (4)0.0781 (12)
H12A0.87010.34881.09020.094*
H12B0.98310.31520.96290.094*
C130.9078 (5)0.1417 (5)1.1316 (6)0.0889 (14)
H130.93010.07311.09370.107*
C140.8967 (6)0.1037 (6)1.2611 (7)0.1190 (19)
H14A0.87440.16981.30210.143*
H14B0.91090.01011.31390.143*
O1W1.0389 (5)0.3039 (4)0.5704 (4)0.1283 (12)
H1W1.01040.34350.49620.192*
H2W1.09690.35730.57610.192*
Br10.85464 (5)0.48204 (5)0.31301 (5)0.0895 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0770 (8)0.0756 (7)0.0588 (6)0.0017 (6)0.0259 (6)0.0264 (6)
N10.0539 (18)0.067 (2)0.0517 (17)0.0005 (14)0.0141 (14)0.0253 (15)
N20.0522 (18)0.076 (2)0.065 (2)0.0021 (15)0.0165 (15)0.0321 (17)
C10.052 (2)0.064 (2)0.055 (2)0.0033 (17)0.0155 (17)0.0241 (18)
C20.071 (3)0.080 (3)0.055 (2)0.005 (2)0.018 (2)0.029 (2)
C30.072 (3)0.082 (3)0.059 (2)0.007 (2)0.005 (2)0.030 (2)
C40.054 (2)0.073 (3)0.072 (3)0.0029 (19)0.008 (2)0.031 (2)
C50.055 (2)0.066 (2)0.066 (2)0.0009 (18)0.0174 (19)0.0259 (19)
C60.052 (2)0.061 (2)0.053 (2)0.0012 (16)0.0122 (17)0.0258 (17)
C70.053 (2)0.076 (3)0.062 (2)0.0019 (18)0.0085 (18)0.032 (2)
C80.069 (2)0.072 (3)0.045 (2)0.0009 (19)0.0158 (18)0.0188 (18)
C90.107 (4)0.087 (3)0.137 (5)0.015 (3)0.043 (3)0.044 (3)
C100.121 (4)0.144 (5)0.079 (3)0.010 (3)0.041 (3)0.053 (3)
C110.120 (4)0.103 (4)0.090 (3)0.039 (3)0.011 (3)0.035 (3)
C120.056 (2)0.107 (4)0.085 (3)0.005 (2)0.027 (2)0.042 (3)
C130.067 (3)0.099 (4)0.115 (4)0.009 (2)0.044 (3)0.044 (3)
C140.098 (4)0.117 (5)0.130 (5)0.009 (3)0.055 (4)0.022 (4)
O1W0.124 (3)0.130 (3)0.132 (3)0.002 (2)0.047 (2)0.042 (2)
Br10.0699 (3)0.1215 (4)0.0769 (3)0.0007 (3)0.0195 (2)0.0391 (3)
Geometric parameters (Å, º) top
Si1—C91.840 (5)C8—H8A0.9700
Si1—C101.842 (4)C8—H8B0.9700
Si1—C111.854 (5)C9—H9A0.9600
Si1—C81.893 (4)C9—H9B0.9600
N1—C71.329 (4)C9—H9C0.9600
N1—C61.390 (4)C10—H10A0.9600
N1—C81.478 (4)C10—H10B0.9600
N2—C71.330 (4)C10—H10C0.9600
N2—C11.392 (4)C11—H11A0.9600
N2—C121.480 (5)C11—H11B0.9600
C1—C21.383 (5)C11—H11C0.9600
C1—C61.390 (5)C12—C131.486 (6)
C2—C31.377 (5)C12—H12A0.9700
C2—H20.9300C12—H12B0.9700
C3—C41.397 (5)C13—C141.285 (7)
C3—H30.9300C13—H130.9300
C4—C51.372 (5)C14—H14A0.9300
C4—H40.9300C14—H14B0.9300
C5—C61.387 (5)O1W—H1W0.8512
C5—H50.9300O1W—H2W0.8513
C7—H70.9300
C9—Si1—C10111.7 (2)Si1—C8—H8A108.8
C9—Si1—C11110.6 (2)N1—C8—H8B108.8
C10—Si1—C11110.6 (2)Si1—C8—H8B108.8
C9—Si1—C8107.8 (2)H8A—C8—H8B107.7
C10—Si1—C8105.9 (2)Si1—C9—H9A109.5
C11—Si1—C8110.15 (19)Si1—C9—H9B109.5
C7—N1—C6108.0 (3)H9A—C9—H9B109.5
C7—N1—C8126.3 (3)Si1—C9—H9C109.5
C6—N1—C8125.7 (3)H9A—C9—H9C109.5
C7—N2—C1107.9 (3)H9B—C9—H9C109.5
C7—N2—C12126.3 (3)Si1—C10—H10A109.5
C1—N2—C12125.8 (3)Si1—C10—H10B109.5
C2—C1—C6121.7 (3)H10A—C10—H10B109.5
C2—C1—N2131.6 (3)Si1—C10—H10C109.5
C6—C1—N2106.7 (3)H10A—C10—H10C109.5
C3—C2—C1116.5 (3)H10B—C10—H10C109.5
C3—C2—H2121.8Si1—C11—H11A109.5
C1—C2—H2121.8Si1—C11—H11B109.5
C2—C3—C4121.9 (4)H11A—C11—H11B109.5
C2—C3—H3119.0Si1—C11—H11C109.5
C4—C3—H3119.0H11A—C11—H11C109.5
C5—C4—C3121.7 (4)H11B—C11—H11C109.5
C5—C4—H4119.2N2—C12—C13111.7 (3)
C3—C4—H4119.2N2—C12—H12A109.3
C4—C5—C6116.6 (3)C13—C12—H12A109.3
C4—C5—H5121.7N2—C12—H12B109.3
C6—C5—H5121.7C13—C12—H12B109.3
C5—C6—N1131.6 (3)H12A—C12—H12B107.9
C5—C6—C1121.7 (3)C14—C13—C12124.1 (5)
N1—C6—C1106.7 (3)C14—C13—H13118.0
N2—C7—N1110.8 (3)C12—C13—H13118.0
N2—C7—H7124.6C13—C14—H14A120.0
N1—C7—H7124.6C13—C14—H14B120.0
N1—C8—Si1113.9 (2)H14A—C14—H14B120.0
N1—C8—H8A108.8H1W—O1W—H2W109.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1W0.932.463.351 (5)161
O1W—H1W···Br10.852.623.445 (4)165
O1W—H2W···Br1i0.852.593.360 (4)152
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H21N2Si+·Br·H2O
Mr343.33
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)8.9063 (2), 10.4720 (2), 10.9439 (3)
α, β, γ (°)66.542 (4), 71.479 (4), 80.625 (5)
V3)887.07 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID-S
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.647, 0.647
No. of measured, independent and
observed [I > 2σ(I)] reflections
18957, 3618, 2202
Rint0.073
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.121, 1.02
No. of reflections3618
No. of parameters175
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.35

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1W0.932.463.351 (5)160.8
O1W—H1W···Br10.852.623.445 (4)164.7
O1W—H2W···Br1i0.852.593.360 (4)151.7
Symmetry code: (i) x+2, y+1, z+1.
π-π contacts (Å, °) top
Cg1: N1,N2,C1,C6,C7; Cg2: C1,C2,C3,C4,C5,C6; ccd: Distance between ring centroids; ipd: mean interplanar distance (Distance from one plane to the neighbouring centroid); sa: mean slippage angle (Angle subtended by the intercentroid vector to the plane normal). For details, see Janiak (2000).
ring 1/ring 2ccdipdsa
Cg1->Cg2ii3.521 (3)3.38615.9
Cg2->Cg2ii3.575 (2)3.39618.2
Symmetry code: (ii) 1-x,1-y,2-z.
 

Acknowledgements

ZB and MA thank the Unit of the Scientific Research Projects of Erciyes University, Turkey for the research grant FBD-10–2949, and for support of the data collection at Atatürk University, Turkey. HK and NŞ thank İnönü University Research Fund (BAPB-2008–60) for financial support of this study.

References

First citationAkkurt, M., Çelik, Í., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2010a). Acta Cryst. E66, o1770–o1771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Karaca, S., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, o809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAkkurt, M., Yalçın, Ş. P., Şireci, N., Küçükbay, H. & Tahir, M. N. (2010b). Acta Cryst. E66, m253–m254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGalal, S. A., Hegab, K. H., Kassab, A. S., Rodriguez, M. L., Kerwin, S. M., El- Khamry, A.-M. A. & Divani, H. I. E. (2009). Eur. J. Med. Chem. 44, 1500–1508.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHuang, S.-T., Hsei, I.-J. & Chen, C. (2006). Bioorg. Med. Chem. 14, 6106–6119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIgnatovich, I., Muravenko, V., Shestakova, I., Domrachova, I., Popelis, J. & Lukevics, E. (2010). Appl. Organomet. Chem. 24, 158–161.  Web of Science CrossRef CAS Google Scholar
First citationJaniak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885–3896.  Web of Science CrossRef Google Scholar
First citationKleemann, A., Engel, J., Kutscher, B. & Reichert, D. (2009). Pharmaceutical Substances. Stuttgard, Germany: Thieme.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N. & Günal, S. (2003). Fol. Microbiol. 48, 679–681.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. & Kazaz, C. (2004). Arzneim. Forsch. Drug Res. 54, 64–68.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2009). Asian J. Chem. 21, 6181–6189.  Google Scholar
First citationKüçükbay, H., Durmaz, R., Şireci, N. & Günal, S. (2010a). Asian J. Chem. 22, 2816–2824.  Google Scholar
First citationKüçükbay, H., Günal, S., Orhan, E. & Durmaz, R. (2010b). Asian J. Chem. 22, 7376–7382.  Google Scholar
First citationLukevics, E., Arsenyan, P., Shestakova, I. Domracheva, I., Nesterova, A. & Pudova, O. (2001). Eur. J. Med. Chem. 36, 507–515.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K. & Lown, J. W. (2000). Anti-Cancer Drug Des. 15, 265–275.  Web of Science PubMed CAS Google Scholar
First citationŞireci, N., Yılmaz, Ü. & Küçükbay, H. (2010). Asian J. Chem. 22, 7153–7158.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, P. R. & Denny, W. A. (1996). Mutat. Res. 355, 141–169.  CrossRef PubMed Web of Science Google Scholar
First citationYıldırım, S. Ö., Akkurt, M., Yılmaz, Ü., Küçükbay, H. & McKee, V. (2006). Acta Cryst. E62, o5697–o5698.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYılmaz, Ü. & Küçükbay, H. (2009). Asian J. Chem. 21, 6149–6155.  Google Scholar
First citationYılmaz, Ü., Şireci, N., Deniz, S. & Küçükbay, H. (2010). Appl. Organomet. Chem. 24, 414–420.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds