organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S,2S,4R)-3,3-Di­chloro-4,8,12,12-tetra­methyl­tri­cyclo­[5.5.0.02,4]dodeca-6,8-diene

aLaboratoire de Chimie des Substances Naturelles, "Unité Associé au CNRST (URAC16)", Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta BP 1014 Rabat, Morocco
*Correspondence e-mail: abenharref@yahoo.fr

(Received 14 July 2010; accepted 24 August 2010; online 28 August 2010)

The title compound, C16H22Cl2, a derivative of β-himachalene, was semi-synthesized from natural essential oils of Cedrus atlantica. The mol­ecule is built up from two fused six- and seven-membered rings. The six-membered ring has a perfect chair conformation, whereas the seven-membered ring displays a screw boat conformation; the dihedral angle between the rings is 46.48 (9)°.

Related literature

For background to himachalene derivatives, see: Plattier & Teiseire (1974[Plattier, M. & Teiseire, P. (1974). Recherche, 19, 131-144.]); Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis of the title compound, see: Lassaba et al. (1997[Lassaba, E., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg. 106, 281-288.]). For the reactivity of this sesquiterpene, see: El Jamili et al. (2002[El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645-6648.]; Sbai et al. (2002[Sbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518-o520.]). For the olfactive properties of β-himachalene, see: Benharref et al. (1991[Benharref, A., Chekroun, A. & Lavergne, J. P. (1991). Bull. Soc. Chim. Fr. 128, 738-741.]); Bisarya & Dev (1968[Bisarya, S. C. & Dev, S. (1968). Tetrahedron, 24, 3861-3867.]); Chekroun et al. (2000[Chekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431-4434.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22Cl2

  • Mr = 285.24

  • Orthorhombic, P 21 21 21

  • a = 7.4356 (17) Å

  • b = 8.3124 (18) Å

  • c = 24.108 (6) Å

  • V = 1490.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.27 × 0.18 × 0.12 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 10992 measured reflections

  • 3691 independent reflections

  • 3282 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.096

  • S = 1.11

  • 3691 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.29 e Å−3

  • Absolute structure: Flack (1985[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1535 Friedel pairs

  • Flack parameter: −0.06 (6)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound, β-himachalene (Bisarya & Dev, 1968; Plattier & Teiseire, 1974). The reactivity of this sesquiterpene has been studied extensively by our team (El Jamili et al., 2002; Sbai et al., 2002) in order to prepare new products having olfactive proprieties suitable for the perfume or cosmetics industry. Thus, the action of one equivalent of meta-chloroperbenzoïc acide (m-CPBA) on, β- himachalène gives in quantitative yields the monoepoxyde (Benharref et al., 1991; Chekroun et al., 2000). The treatement of this monoepoxyde with dichlorocarbene, generated in situ from chloroform and in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, give a mixtrure of two diastereoisomers: (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10]dodecane and (1S,2R,7S,8R,10S) -9,9-dichloro-1,2-epoxy-2,6,6,10-tetramethyl- tricyclo[5,5,0,08,10] dodecane (Lassaba et al., 1997). Also in order to prepare products with high added value, we have treated the isomer (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10] dodecane (I) by hydrochloric acid gas and we got one sesquiterpene dichloro-hydrocarbure (II) in yield 75%. The molecule is built up from two fused six-and seven-membered rings(Fig.1). The six-membered ring has a perfect chair conformation, with as indicated by the total puckering amplitude QT = 0.2385 (2)Å and spherical polar angle θ= 99.60 (2)° with φ -117.07 (2)°, whereas the seven-membered ring display a screw boat conformation with QT = 0.9566 (2) Å, θ = 68.84 (2)°, φ2 = -112.42 (1)° and φ3 = 142.26 (3)° (Cremer & Pople, 1975). Owing to the presence of the Cl atoms, the absolute configuration could be fully confirmed to be C7(S), C8(S) and C10(R) (Flack & Bernardinelli, 2000).

Related literature top

For background to himachalene derivatives, see: Plattier & Teiseire (1974); Sbai et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975). For the synthesis of the title compound, see: Lassaba et al. (1997). For the reactivity of this sesquiterpene, see: El Jamili et al. (2002; Sbai et al. (2002). For the olfactive properties of β-himachalene, see: Benharref et al. (1991); Bisarya & Dev (1968); Chekroun et al. (2000).

Experimental top

100 mg (0,33 mm l) of the isomer, (1S,2R,7S,8S,10R)-9,9-dichloro- 1,2-epoxy-2,6,6,10- tetramethyl-tricyclo[5,5,0,08,10]dodecane, dissolved in 20 ml of dichloromethane and then treated with a stream of gaseous hydrochloric acid at 0° for 5 minutes. After concentration of solvent, the residue obtained was chromatgraphed on silica gel impregnated with silver nitrate (10%) with hexane as eluent.

Refinement top

Except H3 and H12, all H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl),0.97 Å (methylene), 0.98Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl).

Structure description top

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found the compound, β-himachalene (Bisarya & Dev, 1968; Plattier & Teiseire, 1974). The reactivity of this sesquiterpene has been studied extensively by our team (El Jamili et al., 2002; Sbai et al., 2002) in order to prepare new products having olfactive proprieties suitable for the perfume or cosmetics industry. Thus, the action of one equivalent of meta-chloroperbenzoïc acide (m-CPBA) on, β- himachalène gives in quantitative yields the monoepoxyde (Benharref et al., 1991; Chekroun et al., 2000). The treatement of this monoepoxyde with dichlorocarbene, generated in situ from chloroform and in the presence of sodium hydroxide as base and n-benzyltriethylammonium chloride as catalyst, give a mixtrure of two diastereoisomers: (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10]dodecane and (1S,2R,7S,8R,10S) -9,9-dichloro-1,2-epoxy-2,6,6,10-tetramethyl- tricyclo[5,5,0,08,10] dodecane (Lassaba et al., 1997). Also in order to prepare products with high added value, we have treated the isomer (1S,2R,7S,8S,10R) -9,9-dichloro-1,2- epoxy-2,6,6,10-tetramethyl-tricyclo[5,5,0,08,10] dodecane (I) by hydrochloric acid gas and we got one sesquiterpene dichloro-hydrocarbure (II) in yield 75%. The molecule is built up from two fused six-and seven-membered rings(Fig.1). The six-membered ring has a perfect chair conformation, with as indicated by the total puckering amplitude QT = 0.2385 (2)Å and spherical polar angle θ= 99.60 (2)° with φ -117.07 (2)°, whereas the seven-membered ring display a screw boat conformation with QT = 0.9566 (2) Å, θ = 68.84 (2)°, φ2 = -112.42 (1)° and φ3 = 142.26 (3)° (Cremer & Pople, 1975). Owing to the presence of the Cl atoms, the absolute configuration could be fully confirmed to be C7(S), C8(S) and C10(R) (Flack & Bernardinelli, 2000).

For background to himachalene derivatives, see: Plattier & Teiseire (1974); Sbai et al. (2002). For ring puckering analysis, see: Cremer & Pople (1975). For the synthesis of the title compound, see: Lassaba et al. (1997). For the reactivity of this sesquiterpene, see: El Jamili et al. (2002; Sbai et al. (2002). For the olfactive properties of β-himachalene, see: Benharref et al. (1991); Bisarya & Dev (1968); Chekroun et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The formation of the title compound.
(1S,2S,4R)-3,3-Dichloro-4,8,12,12- tetramethyltricyclo[5.5.0.02,4]dodeca-6,8-diene top
Crystal data top
C16H22Cl2F(000) = 608
Mr = 285.24Dx = 1.271 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 10992 reflections
a = 7.4356 (17) Åθ = 1.7–28.4°
b = 8.3124 (18) ŵ = 0.42 mm1
c = 24.108 (6) ÅT = 298 K
V = 1490.1 (6) Å3Prism, colourless
Z = 40.27 × 0.18 × 0.12 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
3282 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.4°, θmin = 1.7°
φ and ω scansh = 79
10992 measured reflectionsk = 811
3691 independent reflectionsl = 3228
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0579P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
3691 reflectionsΔρmax = 0.34 e Å3
175 parametersΔρmin = 0.29 e Å3
0 restraintsAbsolute structure: Flack (1985), 1535 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C16H22Cl2V = 1490.1 (6) Å3
Mr = 285.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.4356 (17) ŵ = 0.42 mm1
b = 8.3124 (18) ÅT = 298 K
c = 24.108 (6) Å0.27 × 0.18 × 0.12 mm
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
3282 reflections with I > 2σ(I)
10992 measured reflectionsRint = 0.026
3691 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096Δρmax = 0.34 e Å3
S = 1.11Δρmin = 0.29 e Å3
3691 reflectionsAbsolute structure: Flack (1985), 1535 Friedel pairs
175 parametersAbsolute structure parameter: 0.06 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6213 (2)0.33418 (19)0.89982 (6)0.0375 (3)
C20.4484 (2)0.3173 (2)0.92944 (6)0.0476 (4)
C30.3427 (3)0.4400 (3)0.94246 (7)0.0551 (5)
C40.3834 (3)0.6154 (3)0.93795 (8)0.0588 (5)
H4A0.31460.67300.96580.071*
H4B0.34510.65350.90180.071*
C50.5809 (2)0.6534 (2)0.94551 (7)0.0514 (4)
H5A0.62900.58340.97410.062*
H5B0.59190.76330.95870.062*
C60.6957 (2)0.63474 (18)0.89326 (6)0.0405 (3)
C70.6413 (2)0.47755 (17)0.86197 (6)0.0341 (3)
H70.52340.49700.84510.041*
C80.7727 (2)0.44941 (18)0.81513 (6)0.0384 (3)
H80.81380.54870.79730.046*
C90.7663 (2)0.30866 (19)0.77693 (7)0.0427 (3)
C100.9167 (2)0.3203 (2)0.81854 (7)0.0438 (3)
C110.9108 (2)0.2114 (2)0.86840 (8)0.0497 (4)
H11A0.92570.10140.85580.060*
H11B1.01270.23680.89200.060*
C120.7456 (3)0.2200 (2)0.90240 (7)0.0457 (4)
C131.1028 (3)0.3568 (3)0.79848 (9)0.0628 (5)
H13A1.16000.25900.78670.094*
H13B1.17120.40440.82800.094*
H13C1.09660.43040.76790.094*
C140.8912 (3)0.6291 (2)0.91128 (8)0.0546 (4)
H14A0.91190.53360.93280.082*
H14B0.91810.72210.93340.082*
H14C0.96730.62800.87910.082*
C150.6651 (3)0.7795 (2)0.85566 (8)0.0573 (5)
H15A0.73780.76900.82290.086*
H15B0.69780.87610.87500.086*
H15C0.54060.78470.84530.086*
C160.3883 (3)0.1489 (3)0.94230 (11)0.0727 (6)
H16A0.47250.09960.96730.109*
H16B0.38250.08760.90860.109*
H16C0.27160.15180.95930.109*
Cl10.59995 (6)0.16140 (5)0.781164 (18)0.05350 (13)
Cl20.81596 (8)0.34714 (7)0.706600 (17)0.06577 (16)
H30.223 (3)0.414 (3)0.9587 (9)0.074 (6)*
H120.732 (3)0.127 (3)0.9270 (9)0.064 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0388 (7)0.0457 (7)0.0281 (6)0.0004 (7)0.0008 (5)0.0004 (6)
C20.0430 (9)0.0676 (11)0.0323 (7)0.0041 (8)0.0017 (6)0.0061 (7)
C30.0393 (9)0.0868 (13)0.0391 (9)0.0009 (9)0.0065 (7)0.0031 (9)
C40.0457 (10)0.0781 (12)0.0526 (10)0.0142 (9)0.0084 (8)0.0187 (9)
C50.0500 (9)0.0632 (10)0.0411 (8)0.0055 (9)0.0002 (7)0.0196 (8)
C60.0404 (8)0.0440 (8)0.0370 (7)0.0023 (7)0.0012 (6)0.0080 (6)
C70.0324 (7)0.0403 (7)0.0297 (6)0.0027 (6)0.0007 (5)0.0020 (5)
C80.0422 (8)0.0404 (7)0.0326 (7)0.0017 (6)0.0054 (6)0.0022 (6)
C90.0434 (8)0.0512 (8)0.0334 (7)0.0048 (6)0.0071 (6)0.0074 (6)
C100.0374 (8)0.0520 (8)0.0420 (8)0.0002 (7)0.0066 (6)0.0116 (7)
C110.0441 (9)0.0517 (9)0.0532 (10)0.0111 (7)0.0005 (8)0.0033 (7)
C120.0526 (10)0.0458 (8)0.0388 (8)0.0016 (7)0.0013 (7)0.0033 (7)
C130.0432 (9)0.0831 (13)0.0621 (11)0.0044 (10)0.0113 (8)0.0171 (11)
C140.0431 (9)0.0663 (11)0.0545 (10)0.0054 (9)0.0050 (8)0.0144 (8)
C150.0744 (14)0.0392 (8)0.0583 (11)0.0027 (9)0.0033 (10)0.0024 (8)
C160.0590 (12)0.0815 (13)0.0776 (14)0.0113 (12)0.0084 (11)0.0310 (12)
Cl10.0529 (2)0.0574 (2)0.0502 (2)0.0120 (2)0.00032 (18)0.00975 (19)
Cl20.0750 (3)0.0874 (3)0.0349 (2)0.0115 (3)0.0142 (2)0.0107 (2)
Geometric parameters (Å, º) top
C1—C121.326 (2)C9—C101.505 (2)
C1—C21.477 (2)C9—Cl11.7433 (16)
C1—C71.508 (2)C9—Cl21.7645 (17)
C2—C31.326 (3)C10—C131.497 (2)
C2—C161.502 (3)C10—C111.505 (3)
C3—C41.493 (3)C11—C121.479 (3)
C3—H31.00 (3)C11—H11A0.9700
C4—C51.513 (3)C11—H11B0.9700
C4—H4A0.9700C12—H120.98 (2)
C4—H4B0.9700C13—H13A0.9600
C5—C61.530 (2)C13—H13B0.9600
C5—H5A0.9700C13—H13C0.9600
C5—H5B0.9700C14—H14A0.9600
C6—C141.519 (2)C14—H14B0.9600
C6—C151.524 (2)C14—H14C0.9600
C6—C71.562 (2)C15—H15A0.9600
C7—C81.511 (2)C15—H15B0.9600
C7—H70.9800C15—H15C0.9600
C8—C91.490 (2)C16—H16A0.9600
C8—C101.518 (2)C16—H16B0.9600
C8—H80.9800C16—H16C0.9600
C12—C1—C2121.04 (16)C8—C9—Cl2116.42 (12)
C12—C1—C7121.66 (14)C10—C9—Cl2118.25 (11)
C2—C1—C7116.97 (14)Cl1—C9—Cl2109.39 (9)
C3—C2—C1123.86 (17)C13—C10—C11114.00 (16)
C3—C2—C16119.48 (18)C13—C10—C9118.97 (15)
C1—C2—C16116.59 (17)C11—C10—C9118.17 (15)
C2—C3—C4127.88 (17)C13—C10—C8119.41 (16)
C2—C3—H3117.2 (14)C11—C10—C8116.60 (13)
C4—C3—H3114.8 (13)C9—C10—C859.03 (10)
C3—C4—C5113.09 (17)C12—C11—C10115.96 (15)
C3—C4—H4A109.0C12—C11—H11A108.3
C5—C4—H4A109.0C10—C11—H11A108.3
C3—C4—H4B109.0C12—C11—H11B108.3
C5—C4—H4B109.0C10—C11—H11B108.3
H4A—C4—H4B107.8H11A—C11—H11B107.4
C4—C5—C6114.91 (14)C1—C12—C11126.00 (17)
C4—C5—H5A108.5C1—C12—H12121.5 (13)
C6—C5—H5A108.5C11—C12—H12112.4 (13)
C4—C5—H5B108.5C10—C13—H13A109.5
C6—C5—H5B108.5C10—C13—H13B109.5
H5A—C5—H5B107.5H13A—C13—H13B109.5
C14—C6—C15109.72 (16)C10—C13—H13C109.5
C14—C6—C5107.57 (14)H13A—C13—H13C109.5
C15—C6—C5109.07 (14)H13B—C13—H13C109.5
C14—C6—C7111.10 (13)C6—C14—H14A109.5
C15—C6—C7109.56 (13)C6—C14—H14B109.5
C5—C6—C7109.78 (13)H14A—C14—H14B109.5
C1—C7—C8113.17 (12)C6—C14—H14C109.5
C1—C7—C6113.22 (12)H14A—C14—H14C109.5
C8—C7—C6108.85 (12)H14B—C14—H14C109.5
C1—C7—H7107.1C6—C15—H15A109.5
C8—C7—H7107.1C6—C15—H15B109.5
C6—C7—H7107.1H15A—C15—H15B109.5
C9—C8—C7124.25 (13)C6—C15—H15C109.5
C9—C8—C1060.05 (10)H15A—C15—H15C109.5
C7—C8—C10121.66 (13)H15B—C15—H15C109.5
C9—C8—H8113.6C2—C16—H16A109.5
C7—C8—H8113.6C2—C16—H16B109.5
C10—C8—H8113.6H16A—C16—H16B109.5
C8—C9—C1060.92 (11)C2—C16—H16C109.5
C8—C9—Cl1122.54 (11)H16A—C16—H16C109.5
C10—C9—Cl1122.22 (12)H16B—C16—H16C109.5

Experimental details

Crystal data
Chemical formulaC16H22Cl2
Mr285.24
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)7.4356 (17), 8.3124 (18), 24.108 (6)
V3)1490.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.27 × 0.18 × 0.12
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10992, 3691, 3282
Rint0.026
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.096, 1.11
No. of reflections3691
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.29
Absolute structureFlack (1985), 1535 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: APEX2 (Bruker, 2009), SAINT-Plus (Bruker, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBenharref, A., Chekroun, A. & Lavergne, J. P. (1991). Bull. Soc. Chim. Fr. 128, 738–741.  Google Scholar
First citationBisarya, S. C. & Dev, S. (1968). Tetrahedron, 24, 3861–3867.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekroun, A., Jarid, A., Benharref, A. & Boutalib, A. (2000). J. Org. Chem. 65, 4431–4434.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLassaba, E., Chekroun, A., Benharref, A., Chiaroni, A., Riche, C. & Lavergne, J.-P. (1997). Bull. Soc. Chim. Belg. 106, 281–288.  CAS Google Scholar
First citationPlattier, M. & Teiseire, P. (1974). Recherche, 19, 131–144.  CAS Google Scholar
First citationSbai, F., Dakir, M., Auhmani, A., El Jamili, H., Akssira, M., Benharref, A., Kenz, A. & Pierrot, M. (2002). Acta Cryst. C58, o518–o520.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds