organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2-Hy­dr­oxy­phen­yl)-3-methyl-4,5-di­hydro-1H-pyrazole-1-carbaldehyde

aSchool of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, People's Republic of China
*Correspondence e-mail: cui040506@163.com

(Received 30 May 2010; accepted 6 August 2010; online 18 August 2010)

In the title compound, C11H12N2O2, the dihydro­pyrazole and benzene rings are oriented at a dihedral angle of 68.35 (5)°. The dihydro­pyrazole ring is planar, with a mean deviation from the mean plane of 0.0409 Å. The crystal structure is stabilized by O—H⋯O and C—H⋯O hydrogen bonds.

Related literature

For the anti­bacterial bioactivity of pyrazole derivatives, see: Bekhita & Abdel-Aziem (2004[Bekhita, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935-1945.]); Tanitame et al. (2004a[Tanitame, A., Oyamada, Y., Ofuji, K., Kyoya, Y., Suzuki, K., Ito, H., Kawasaki, M., Nagai, K., Wachid, M. & Yamagishi, J. I. (2004a). Bioorg. Med. Chem. Lett. 14, 2857-2862.],b[Tanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Suzuki, K., Ueda, T., Terauchi, H., Kawasaki, M., Nagai, K., Wachie, M. & Yamagishib, J. I. (2004b). Bioorg. Med. Chem. 12, 5515-5524.]). For the biological properties of dihydro­pyrazole derivatives, see: Dmytro et al. (2009[Dmytro, H., Borys, Z., Olexandr, V., Lucjusz, Z., Andrzej, G. & Roman, L. (2009). Eur. J. Med. Chem. 44, 1396-1404.]); Need et al. (2006[Need, A. B., Davis, R. J., Alexander-Chacko, J. T., Eastwood, B., Chernet, E., Phebus, L. A., Sindelar, D. K. & Nomikos, G. G. (2006). Psychopharmacology (Berlin), 184, 26-35.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O2

  • Mr = 204.23

  • Monoclinic, P 21 /n

  • a = 7.3835 (15) Å

  • b = 13.454 (3) Å

  • c = 10.507 (2) Å

  • β = 106.46 (3)°

  • V = 1001.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.21 × 0.16 × 0.11 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.990

  • 5606 measured reflections

  • 1957 independent reflections

  • 1579 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.086

  • S = 1.08

  • 1957 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.88 2.6954 (14) 175
C4—H4B⋯O1ii 0.97 2.48 3.4438 (16) 170
Symmetry codes: (i) -x+2, -y+1, -z+2; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

There has been much research interest in pyrazole derivatives due to their antibacterial bioactivities (Bekhita et al., 2004; Tanitame et al., 2004a; Tanitame et al., 2004b). Dihydropyrazole-based derivatives have shown several biological activities as CB1 antagonists and tumor necrosis inhibitors (Dmytro et al., 2009; Need et al., 2006). In this paper, we report the synthesis and crystal structure of 5-(2-hydroxyphenyl)-3-methyl-4,5-dihydropyrazole-1-carbaldehyde (I).

The title compound crystallizes in the centrosymmetric space group P21/n. As shown in Fig. 1, the C—N single and double bond lengths are both in the normal ranges [C5—N1 single bond is 1.4826 (15) Å, C12N2 double bond is 1.2797 (17) Å]. The bond lengths of C3—C12 and C3—C5 are 1.5002 (17) and 1.5421 (18) Å, respectively, which indicate that they are both single bonds. The dihedral angle between the dihydropyrazole and benzene rings is 68.35 (5) °. The dihydropyrazole ring adopts a planar conformation, with a mean deviation from the mean plane of 0.0409 Å. The intermolecular O2—H2···O1 and C4—H4B···O1 hydrogen bonds connect the molecules to form a three-dimensional network (Fig. 2).

Related literature top

For the antibacterial bioactivity of pyrazole derivatives, see: Bekhita et al. (2004); Tanitame et al. (2004a,b). For the biological properties of dihydropyrazole derivatives, see: Dmytro et al. (2009); Need et al. (2006).

Experimental top

To a solution of 4-(2-hydroxyphenyl)but-3-en-2-one (0.81 g, 5 mmol) in formic acid (10 ml) was added hydrazine monohydrate (1.25 ml, 25 mmol) and the reaction mixture was refluxed for 2 h. The solvent was evaporated and cold water (30 ml) was added to the oily residue. The resultant precipitate was filtered, recrystallized from ethanol, and colorless single crystals were obtained after 1 day. Mp 155–156 °C. Analysis found: C, 64.5; H, 6.1; N, 14.0%; calculated for C11H12N2O2: C, 64.7; H, 5.9; N, 13.7%. 1H NMR (300 MHz, CDCl3, δ, p.p.m.): 2.19 (s, 3H, –Me), 3.10 (dd, J = 18.7 and 3.7 Hz, 1H, pyrazole), 3.39 (dd, J = 11.2 and 18.6 Hz, 1H, pyrazole), 5.67 (dd, J = 11.6 and 3.5 Hz, 1H, pyrazole), 6.89–7.26 (m, 5H, ArH and –OH), 8.63 (s, 1H, –COH).

Refinement top

All the H atoms were placed in idealized positions (C—H = 0.93–0.97, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.5Ueq(O).

Structure description top

There has been much research interest in pyrazole derivatives due to their antibacterial bioactivities (Bekhita et al., 2004; Tanitame et al., 2004a; Tanitame et al., 2004b). Dihydropyrazole-based derivatives have shown several biological activities as CB1 antagonists and tumor necrosis inhibitors (Dmytro et al., 2009; Need et al., 2006). In this paper, we report the synthesis and crystal structure of 5-(2-hydroxyphenyl)-3-methyl-4,5-dihydropyrazole-1-carbaldehyde (I).

The title compound crystallizes in the centrosymmetric space group P21/n. As shown in Fig. 1, the C—N single and double bond lengths are both in the normal ranges [C5—N1 single bond is 1.4826 (15) Å, C12N2 double bond is 1.2797 (17) Å]. The bond lengths of C3—C12 and C3—C5 are 1.5002 (17) and 1.5421 (18) Å, respectively, which indicate that they are both single bonds. The dihedral angle between the dihydropyrazole and benzene rings is 68.35 (5) °. The dihydropyrazole ring adopts a planar conformation, with a mean deviation from the mean plane of 0.0409 Å. The intermolecular O2—H2···O1 and C4—H4B···O1 hydrogen bonds connect the molecules to form a three-dimensional network (Fig. 2).

For the antibacterial bioactivity of pyrazole derivatives, see: Bekhita et al. (2004); Tanitame et al. (2004a,b). For the biological properties of dihydropyrazole derivatives, see: Dmytro et al. (2009); Need et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystal structure of (I), showing the atom numbering scheme and 35% probability displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The crystal packing of (I), viewed along the a axis. Hydrogen bonds are shown as dashed lines.
5-(2-Hydroxyphenyl)-3-methyl-4,5-dihydro-1H-pyrazole-1-carbaldehyde top
Crystal data top
C11H12N2O2F(000) = 432
Mr = 204.23Dx = 1.355 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.3835 (15) ÅCell parameters from 972 reflections
b = 13.454 (3) Åθ = 3.5–24.7°
c = 10.507 (2) ŵ = 0.10 mm1
β = 106.46 (3)°T = 293 K
V = 1001.0 (3) Å3Block, colorless
Z = 40.21 × 0.16 × 0.11 mm
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
1957 independent reflections
Radiation source: fine-focus sealed tube1579 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 98
Tmin = 0.980, Tmax = 0.990k = 1613
5606 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0484P)2 + 0.0583P]
where P = (Fo2 + 2Fc2)/3
1957 reflections(Δ/σ)max < 0.001
138 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C11H12N2O2V = 1001.0 (3) Å3
Mr = 204.23Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.3835 (15) ŵ = 0.10 mm1
b = 13.454 (3) ÅT = 293 K
c = 10.507 (2) Å0.21 × 0.16 × 0.11 mm
β = 106.46 (3)°
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
1957 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1579 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.990Rint = 0.019
5606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.08Δρmax = 0.20 e Å3
1957 reflectionsΔρmin = 0.18 e Å3
138 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.71057 (17)0.62387 (9)0.66395 (12)0.0271 (3)
H10.63780.65930.59140.032*
C20.81434 (16)0.41527 (9)0.51386 (12)0.0253 (3)
C30.7931 (2)0.35621 (10)0.39114 (13)0.0350 (3)
H3A0.72640.29580.39630.052*
H3B0.91570.34060.38200.052*
H3C0.72350.39410.31570.052*
C40.93391 (17)0.38472 (9)0.64868 (12)0.0260 (3)
H4A1.06700.38590.65340.031*
H4B0.90040.31870.67150.031*
C50.88677 (16)0.46406 (8)0.74008 (11)0.0225 (3)
H51.00310.49630.79250.027*
C60.77821 (16)0.42376 (8)0.83124 (11)0.0215 (3)
C70.58407 (17)0.42893 (9)0.80332 (12)0.0284 (3)
H70.51370.45640.72340.034*
C80.49282 (18)0.39382 (10)0.89242 (14)0.0341 (3)
H80.36210.39850.87300.041*
C90.59650 (18)0.35179 (10)1.01025 (13)0.0320 (3)
H90.53570.32941.07120.038*
C100.78979 (18)0.34274 (9)1.03825 (12)0.0276 (3)
H100.85870.31261.11670.033*
C110.88131 (16)0.37877 (8)0.94901 (11)0.0221 (3)
N10.77351 (14)0.53492 (7)0.64102 (9)0.0237 (2)
N20.72976 (14)0.49870 (8)0.51056 (9)0.0259 (3)
O10.74131 (13)0.66270 (6)0.77367 (9)0.0335 (2)
O21.07147 (12)0.37142 (7)0.97002 (8)0.0306 (2)
H21.12270.36251.04930.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0288 (6)0.0248 (7)0.0264 (7)0.0022 (5)0.0059 (5)0.0068 (5)
C20.0238 (6)0.0293 (7)0.0251 (6)0.0015 (5)0.0107 (5)0.0023 (5)
C30.0377 (7)0.0404 (8)0.0272 (7)0.0047 (6)0.0099 (6)0.0024 (6)
C40.0282 (6)0.0268 (7)0.0248 (6)0.0030 (5)0.0104 (5)0.0037 (5)
C50.0231 (6)0.0216 (6)0.0219 (6)0.0008 (5)0.0049 (5)0.0044 (5)
C60.0266 (6)0.0175 (6)0.0208 (6)0.0009 (5)0.0073 (5)0.0007 (4)
C70.0262 (6)0.0293 (7)0.0282 (7)0.0012 (5)0.0051 (5)0.0045 (5)
C80.0249 (6)0.0382 (8)0.0407 (8)0.0045 (5)0.0117 (6)0.0015 (6)
C90.0383 (7)0.0324 (7)0.0306 (7)0.0097 (6)0.0183 (6)0.0016 (5)
C100.0383 (7)0.0248 (7)0.0203 (6)0.0020 (5)0.0092 (5)0.0012 (5)
C110.0264 (6)0.0184 (6)0.0218 (6)0.0009 (5)0.0074 (5)0.0028 (5)
N10.0286 (5)0.0233 (5)0.0188 (5)0.0018 (4)0.0059 (4)0.0037 (4)
N20.0275 (5)0.0306 (6)0.0200 (5)0.0001 (4)0.0072 (4)0.0026 (4)
O10.0418 (5)0.0275 (5)0.0279 (5)0.0067 (4)0.0047 (4)0.0002 (4)
O20.0267 (5)0.0416 (6)0.0228 (4)0.0073 (4)0.0059 (3)0.0066 (4)
Geometric parameters (Å, º) top
C1—O11.2269 (15)C5—H50.9800
C1—N11.3303 (16)C6—C71.3811 (17)
C1—H10.9300C6—C111.3940 (16)
C2—N21.2802 (16)C7—C81.3824 (19)
C2—C31.4846 (18)C7—H70.9300
C2—C41.4988 (17)C8—C91.3790 (19)
C3—H3A0.9600C8—H80.9300
C3—H3B0.9600C9—C101.3785 (18)
C3—H3C0.9600C9—H90.9300
C4—C51.5403 (17)C10—C111.3892 (18)
C4—H4A0.9700C10—H100.9300
C4—H4B0.9700C11—O21.3617 (15)
C5—N11.4828 (14)N1—N21.4034 (14)
C5—C61.5129 (17)O2—H20.8200
O1—C1—N1124.90 (11)C7—C6—C11118.90 (12)
O1—C1—H1117.5C7—C6—C5123.48 (11)
N1—C1—H1117.5C11—C6—C5117.62 (11)
N2—C2—C3121.01 (11)C6—C7—C8120.97 (12)
N2—C2—C4114.73 (11)C6—C7—H7119.5
C3—C2—C4124.26 (11)C8—C7—H7119.5
C2—C3—H3A109.5C9—C8—C7119.67 (12)
C2—C3—H3B109.5C9—C8—H8120.2
H3A—C3—H3B109.5C7—C8—H8120.2
C2—C3—H3C109.5C10—C9—C8120.38 (13)
H3A—C3—H3C109.5C10—C9—H9119.8
H3B—C3—H3C109.5C8—C9—H9119.8
C2—C4—C5102.86 (9)C9—C10—C11119.81 (12)
C2—C4—H4A111.2C9—C10—H10120.1
C5—C4—H4A111.2C11—C10—H10120.1
C2—C4—H4B111.2O2—C11—C10122.79 (11)
C5—C4—H4B111.2O2—C11—C6117.01 (11)
H4A—C4—H4B109.1C10—C11—C6120.20 (11)
N1—C5—C6112.35 (10)C1—N1—N2119.59 (9)
N1—C5—C4100.95 (9)C1—N1—C5127.43 (10)
C6—C5—C4113.59 (10)N2—N1—C5112.98 (9)
N1—C5—H5109.9C2—N2—N1107.61 (9)
C6—C5—H5109.9C11—O2—H2109.5
C4—C5—H5109.9
N2—C2—C4—C57.20 (14)C7—C6—C11—O2177.26 (11)
C3—C2—C4—C5173.35 (11)C5—C6—C11—O22.42 (15)
C2—C4—C5—N18.69 (12)C7—C6—C11—C102.02 (17)
C2—C4—C5—C6111.79 (11)C5—C6—C11—C10178.30 (10)
N1—C5—C6—C717.36 (16)O1—C1—N1—N2179.59 (11)
C4—C5—C6—C796.46 (14)O1—C1—N1—C51.7 (2)
N1—C5—C6—C11162.98 (10)C6—C5—N1—C166.03 (15)
C4—C5—C6—C1183.21 (13)C4—C5—N1—C1172.61 (11)
C11—C6—C7—C82.53 (19)C6—C5—N1—N2112.71 (11)
C5—C6—C7—C8177.80 (12)C4—C5—N1—N28.64 (12)
C6—C7—C8—C90.9 (2)C3—C2—N2—N1178.62 (11)
C7—C8—C9—C101.4 (2)C4—C2—N2—N11.92 (14)
C8—C9—C10—C111.87 (19)C1—N1—N2—C2176.47 (11)
C9—C10—C11—O2179.39 (11)C5—N1—N2—C24.68 (13)
C9—C10—C11—C60.16 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.882.6954 (14)175
C4—H4B···O1ii0.972.483.4438 (16)170
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC11H12N2O2
Mr204.23
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.3835 (15), 13.454 (3), 10.507 (2)
β (°) 106.46 (3)
V3)1001.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.21 × 0.16 × 0.11
Data collection
DiffractometerBruker Smart APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.980, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
5606, 1957, 1579
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.086, 1.08
No. of reflections1957
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.882.6954 (14)174.8
C4—H4B···O1ii0.972.483.4438 (16)169.9
Symmetry codes: (i) x+2, y+1, z+2; (ii) x+3/2, y1/2, z+3/2.
 

References

First citationBekhita, A. A. & Abdel-Aziem, T. (2004). Bioorg. Med. Chem. 12, 1935–1945.  Web of Science PubMed Google Scholar
First citationBruker (2001). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDmytro, H., Borys, Z., Olexandr, V., Lucjusz, Z., Andrzej, G. & Roman, L. (2009). Eur. J. Med. Chem. 44, 1396–1404.  Web of Science PubMed Google Scholar
First citationNeed, A. B., Davis, R. J., Alexander-Chacko, J. T., Eastwood, B., Chernet, E., Phebus, L. A., Sindelar, D. K. & Nomikos, G. G. (2006). Psychopharmacology (Berlin), 184, 26–35.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Fujimoto, M., Suzuki, K., Ueda, T., Terauchi, H., Kawasaki, M., Nagai, K., Wachie, M. & Yamagishib, J. I. (2004b). Bioorg. Med. Chem. 12, 5515–5524.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTanitame, A., Oyamada, Y., Ofuji, K., Kyoya, Y., Suzuki, K., Ito, H., Kawasaki, M., Nagai, K., Wachid, M. & Yamagishi, J. I. (2004a). Bioorg. Med. Chem. Lett. 14, 2857–2862.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds