organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Fluoro­phen­yl)-2-[2-(5-phenyl-1,3-oxazol-2-yl)phen­yl]-1,3-oxazole

aDepartment of Chemistry, Kharkov V. N. Karazin National University, 4 Svobody Sqr., Kharkov 61077, Ukraine, and bFaculty of Chemistry, University of Gdańsk, Sobieskiego 18, 80-952 Gdańsk, Poland
*Correspondence e-mail: andrey.o.doroshenko@univer.kharkov.ua

(Received 20 July 2010; accepted 4 August 2010; online 21 August 2010)

In the title compound, C24H15FN2O2, the dihedral angles between the central benzene ring and the oxazole rings are 10.7 (6) and 64.1 (5)°. The dihedral angles between the oxazole rings and their pendant rings are 2.0 (3) and 24.3 (2)°. The F atoms are disordered over two sites with occupancies of 0.627 (3) and 0.373 (3) in the phenyl­ene–oxazol­yl–phenyl and in oxazol­yl–phenyl fragments, respectively. In the crystal structure, mol­ecules are linked through a network of C—H⋯F and weak ππ stacking inter­actions.

Related literature

For background to the practical applications of 1,2-bis-(5-phenyl-oxazol-2-yl)benzene (ortho-POPOP) analogs (spectroscopic and fluorescence kinetics data), see: Doroshenko et al. (1996[Doroshenko, A. O., Kirichenko, A. V., Mitina, V. G. & Ponomaryov, O. A. (1996). J. Photochem. Photobiol. A Chem. 94, 15-26.], 1999[Doroshenko, A. O. (1999). Chem. Phys. Rep. 18, 873-879.], 2000a[Doroshenko, A. O. (2000a). Russ. J. Phys. Chem. 74, 773-777.],c[Doroshenko, A. O., Kyrychenko, A. V. & Waluk, J. (2000c). J. Fluor. 10, 41-48.], 2002a[Doroshenko, A. O. (2002a). Theor. Exper. Chem. 38, 135-155.]), Kirichenko et al. (1998[Kirichenko, A. V., Doroshenko, A. O. & Shershukov, V. M. (1998). Chem. Phys. Rep. 17, 1643-1651.]). For related structures, see: Doroshenko et al. (1994[Doroshenko, A. O., Patsenker, L. D., Baumer, V. N., Chepeleva, L. V., Van'kevich, A. V., Kirichenko, A. V., Yarmolenko, S. N., Shershukov, V. M., Mitina, V. G. & Ponomaryov, O. A. (1994). Mol. Eng. 3, 353-363.], 1997[Doroshenko, A. O., Baumer, V. N., Kirichenko, A. V., Shershukov, V. M. & Tolmachev, A. V. (1997). Chem. Heterocycl. Compd, 33, 1341-1349.], 2000b[Doroshenko, A. O., Kyrychenko, A. V., Baumer, V. N., Verezubova, A. A. & Ptyagina, L. M. (2000b). J. Mol. Struct. 524, 289-296.], 2002b[Doroshenko, A. O., Baumer, V. N., Verezubova, A. A. & Ptyagina, L. M. (2002b). J. Mol. Struct. 609, 29-37.]).

[Scheme 1]

Experimental

Crystal data
  • C24H15FN2O2

  • Mr = 382.38

  • Monoclinic, P 21 /c

  • a = 9.3158 (3) Å

  • b = 10.8176 (3) Å

  • c = 18.9449 (5) Å

  • β = 100.571 (3)°

  • V = 1876.76 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.6 × 0.3 × 0.05 mm

Data collection
  • Oxford Diffraction Gemini R Ultra Ruby CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.956, Tmax = 0.991

  • 16242 measured reflections

  • 4263 independent reflections

  • 2707 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.120

  • S = 1.04

  • 4263 reflections

  • 266 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯F1i 0.93 2.31 3.235 (2) 170
C28—H28A⋯F1ii 0.93 2.45 3.155 (2) 133
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Table 2
ππ inter­actions (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C2–C7, O9/C8/C12/N11/C10 and C13–C18 rings, respectively. CgICgJ is the distance between the ring centroids. The inter­planar angle is that between the planes of rings I and J. CgI_Perp is the perpendicuar distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on the ring I.

I J CgICgJ Inter­planar angle CgI_Perp CgI_Offset
2 1iii 3.818 (1) 2.0 (1) 3.505 (1) 1.514
1 2iii 3.818 (1) 2.0 (1) 3.546 (1) 1.415
2 3iv 3.860 (1) 10.9 (1) 3.803 (1) 0.661
3 2iv 3.860 (1) 10.9 (1) 3.762 (1) 0.864
Symmetry codes: (iii) -x, -y, -z; (iv) -x, -y+1, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of 1,2-bis-(5-phenyl-oxazol-2-yl)benzene (ortho-POPOP) belong to the class of organic molecules, which exhibit efficient fluorescence with abnormally high Stokes shift (Doroshenko, 1996, 1999, 2000b). These molecules are prospective for their practical application as fluorescent probes, labels and chemosensors (Doroshenko, 2002a). Presence of two bulky heterocyclic substituents in 1,2-positions of the ortho-POPOP central benzene ring results in a significant sterical hindrance. This hindrance is manifested by a prominent non-planarity of ortho-POPOPs both in the crystalline state (Doroshenko, 1994) and in solutions (Doroshenko, 1996, 2002a). All the already examined crystal structures of the ortho-analogs of POPOP are characterized by essentially different angles between the planes of the central phenylene and each of the attached heterocyclic rings. Thus, two quasi-planar fragments containing two and three aromatic or heteroaromatic rings could be defined for the ortho-POPOPs molecules in crystals (Doroshenko, 1994, 1997, 2000b, 2002b).

The same arrangement is typical for the newly synthesized fluoro-substituted representative of this series (Fig. 1). The fluorine atom and the corresponding hydrogen are significantly disordered in the crystal structure over two sites with probabilities 0.627 (3) and 0.373 (3) and vice versa (Fig. 2). The title molecules are linked through a network of C–H···F hydrogen bonds (Tab. 1) and π-electron ring–π-electron ring interactions in the solid state (Fig. 3, Tab. 2).

Related literature top

For background to the practical applications of 1,2-bis-(5-phenyl-oxazol-2-yl)benzene (ortho-POPOP) analogs (spectroscopic and fluorescence kinetics data), see: Doroshenko et al. (1996, 1999, 2000a,c, 2002a), Kirichenko et al. (1998). For related structures, see: Doroshenko et al. (1994, 1997, 2000b, 2002b).

Experimental top

Synthesis of the title compound was conducted according to the procedure presented on Fig. 4:

1 g (0.0038 mol) of 2-(5-phenyl-oxazol-2-yl)benzoic acid (Doroshenko, 1994, 2000b, 2002b) was boiled in 15 ml of thionyl chloride during 2 h. After adding of 20 ml of ortho-xylene the excess of thionyl chloride was distilled off. The resulting solution of 2-(5-phenyl-oxazol-2-yl)benzoic acid chloride in xylene was added to the solution of 0.72 g (0.0038 mol) of 4-F-ω-aminoacetophenone hydrochloride in 20 ml of water. The reaction mixture was gradually basified to pH~9 by the saturated aqueous sodium carbonate while intensive stirring for 1 h. The resulting solid was filtered, washed by distilled water, dried, dissolved in 25 ml of concentrated sulfuric acid and left on for 7 h at room temperature. Then the reaction mixture was poured on ice and filtered to give 0.92 g (0.0024 mol, 60%) of the final product (1-(5-[4'-F-phenyl]-oxazol-2-yl)-2-(5-phenyloxazol-2-yl)-benzene) as colorless solid (m.p. 98–99°C). The crystals were obtained by crystallization from hexane.

The necessary precursors have been prepared from the commercially available chemicals by the following procedures:

4-F-ω-Br-Acetophenone: 16 g (0.1 mol) of bromine was added dropwise to the solution 13.8 g (0.1 mol) of 4-F-acetophenone in 50 ml of ethanol at 30–40°C while stirring. After decolorization of the reaction mixture, ethanol was removed in vacuo. The resulting light yellow oily liquid was washed several times with distilled water to remove the traces of hydrobromic acid and used in the following synthesis without additional purification. Yield 19.1 g (0.088 mol, 88%).

4-F-ω-Amino-acetophenone hydrochloride: 6.5 g (0.046 mol) of hexamethylenetetramine was added portionwise at continuous stirring to the solution of 10 g (0.046 mol) of 4-F-ω-Br-acetophenone in 70 ml of chloroform. The reaction mixture was stirred during 5 h, then the precipitated solid was filtered, washed with chloroform, dried and mixed with 25 ml of concentrated HCl in 70 ml of ethanol. The mixture was stirred until the complete dissolution was reached and then it was kept for 7 h at room temperature. The precipitated ammonium chloride was filtered off, the filtrate was concentrated in vacuo and the resulted solid was boiled with 50 ml of acetone during 1 h, cooled to the room temperature and filtered off to give 7.2 g (0.038 mol, 83%) of colorless powder of 4-F-ω-aminoacetophenone hydrochloride (m.p. 169–171°C).

Refinement top

All the H atoms could be seen in the difference density maps with the exception of the atoms H2X and H27X that are disordered with F1 and F1A, respectively. However, the H atoms have been situated into the idealized positions with C—H = 0.93 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C). The distances C2-F1 and C27-F1A have been restrained by SADI command of SHELXL97 (Sheldrick, 2008). The value of an effective standard deviation of SADI was 0.001. The sum of the occupations of F1 and F1A was constrained to equal to 1 as it follows from the reaction (Fig. 3). Both fluorines were refined anisotropically.

Structure description top

Derivatives of 1,2-bis-(5-phenyl-oxazol-2-yl)benzene (ortho-POPOP) belong to the class of organic molecules, which exhibit efficient fluorescence with abnormally high Stokes shift (Doroshenko, 1996, 1999, 2000b). These molecules are prospective for their practical application as fluorescent probes, labels and chemosensors (Doroshenko, 2002a). Presence of two bulky heterocyclic substituents in 1,2-positions of the ortho-POPOP central benzene ring results in a significant sterical hindrance. This hindrance is manifested by a prominent non-planarity of ortho-POPOPs both in the crystalline state (Doroshenko, 1994) and in solutions (Doroshenko, 1996, 2002a). All the already examined crystal structures of the ortho-analogs of POPOP are characterized by essentially different angles between the planes of the central phenylene and each of the attached heterocyclic rings. Thus, two quasi-planar fragments containing two and three aromatic or heteroaromatic rings could be defined for the ortho-POPOPs molecules in crystals (Doroshenko, 1994, 1997, 2000b, 2002b).

The same arrangement is typical for the newly synthesized fluoro-substituted representative of this series (Fig. 1). The fluorine atom and the corresponding hydrogen are significantly disordered in the crystal structure over two sites with probabilities 0.627 (3) and 0.373 (3) and vice versa (Fig. 2). The title molecules are linked through a network of C–H···F hydrogen bonds (Tab. 1) and π-electron ring–π-electron ring interactions in the solid state (Fig. 3, Tab. 2).

For background to the practical applications of 1,2-bis-(5-phenyl-oxazol-2-yl)benzene (ortho-POPOP) analogs (spectroscopic and fluorescence kinetics data), see: Doroshenko et al. (1996, 1999, 2000a,c, 2002a), Kirichenko et al. (1998). For related structures, see: Doroshenko et al. (1994, 1997, 2000b, 2002b).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Two quasi-planar fragments in the molecule of the title compound in the crystalline state: phenylene-oxazolyl-phenyl mean plane is shown in red, while as oxazolyl-phenyl one - in green (the interplanar angle is ~75°).
[Figure 2] Fig. 2. The title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 25% probability level. Cg1, Cg2 and Cg3 denote the ring centroids.
[Figure 3] Fig. 3. The arrangement of the molecules in the crystal structure, viewed approximately along the c axis. The C–H···F interactions are represented by the dashed lines and the π-electron ring-π-electron ring interactions by the dotted lines. The H atoms not involved in interactions have been omitted [symmetry codes: (i) x + 1, y + 1, z; (ii) x + 1, y, z; (iii) -x, -y, -z; (iv) -x, -y + 1, -z.]
[Figure 4] Fig. 4. The scheme of the synthesis of the title compound. General procedure is analogous to that of Doroshenko (1994, 2000b, 2002b).
5-(4-Fluorophenyl)-2-[2-(5-phenyl-1,3-oxazol-2-yl)phenyl]-1,3-oxazole top
Crystal data top
C24H15FN2O2F(000) = 792
Mr = 382.38Dx = 1.353 Mg m3
Monoclinic, P21/cMelting point = 371–372 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3158 (3) ÅCell parameters from 3303 reflections
b = 10.8176 (3) Åθ = 3.3–27.5°
c = 18.9449 (5) ŵ = 0.09 mm1
β = 100.571 (3)°T = 295 K
V = 1876.76 (9) Å3Plate, colorless
Z = 40.6 × 0.3 × 0.05 mm
Data collection top
Oxford Diffraction GEMINI R ULTRA Ruby CCD
diffractometer
4263 independent reflections
Radiation source: Enhance (Mo) X-ray Source2707 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.4002 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω–scanh = 128
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1413
Tmin = 0.956, Tmax = 0.991l = 2423
16242 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.057P)2 + 0.132P]
where P = (Fo2 + 2Fc2)/3
4263 reflections(Δ/σ)max < 0.001
266 parametersΔρmax = 0.11 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C24H15FN2O2V = 1876.76 (9) Å3
Mr = 382.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3158 (3) ŵ = 0.09 mm1
b = 10.8176 (3) ÅT = 295 K
c = 18.9449 (5) Å0.6 × 0.3 × 0.05 mm
β = 100.571 (3)°
Data collection top
Oxford Diffraction GEMINI R ULTRA Ruby CCD
diffractometer
4263 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2707 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.991Rint = 0.024
16242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.11 e Å3
4263 reflectionsΔρmin = 0.17 e Å3
266 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.2973 (2)0.04508 (16)0.07969 (11)0.0836 (5)
H2X0.35530.10020.09960.100*0.373 (3)
C30.3040 (2)0.04438 (19)0.00717 (11)0.0897 (6)
H3A0.36580.09850.02210.108*
C40.21904 (19)0.03660 (18)0.02205 (9)0.0782 (5)
H4A0.22270.03670.07140.094*
C50.12753 (16)0.11865 (14)0.02066 (8)0.0567 (4)
C60.12191 (19)0.11481 (14)0.09413 (8)0.0637 (4)
H6A0.05950.16800.12380.076*
C70.2071 (2)0.03362 (15)0.12375 (10)0.0765 (5)
H7A0.20350.03210.17310.092*
C80.04037 (17)0.20440 (15)0.01170 (8)0.0610 (4)
O90.05304 (11)0.28136 (9)0.03280 (5)0.0564 (3)
C100.12111 (18)0.34965 (15)0.01103 (8)0.0613 (4)
N110.07881 (19)0.32285 (16)0.07828 (7)0.0901 (5)
C120.0236 (2)0.2319 (2)0.07878 (9)0.0898 (6)
H12A0.07460.19430.12000.108*
C130.22591 (18)0.44337 (13)0.01956 (8)0.0593 (4)
C140.2713 (2)0.52658 (16)0.02812 (10)0.0767 (5)
H14A0.23630.51790.07710.092*
C150.3661 (3)0.62072 (17)0.00440 (13)0.0892 (6)
H15A0.39550.67480.03710.107*
C160.4173 (3)0.63497 (17)0.06724 (13)0.0990 (7)
H16A0.48130.69920.08350.119*
C170.3742 (2)0.55401 (15)0.11556 (10)0.0850 (6)
H17A0.40910.56480.16440.102*
C180.28031 (18)0.45720 (13)0.09299 (8)0.0593 (4)
C190.24338 (18)0.37467 (13)0.14869 (8)0.0570 (4)
O200.28866 (11)0.25451 (8)0.14949 (5)0.0531 (3)
C210.24141 (16)0.20247 (13)0.20772 (7)0.0522 (4)
C220.1756 (2)0.29195 (15)0.23785 (8)0.0685 (5)
H22A0.13390.28210.27850.082*
N230.17751 (17)0.40188 (12)0.20054 (7)0.0730 (4)
C240.27167 (16)0.07253 (13)0.22396 (7)0.0516 (4)
C250.18402 (19)0.00816 (16)0.26323 (8)0.0676 (4)
H25A0.10550.04770.27750.081*
C260.2127 (2)0.11355 (16)0.28108 (9)0.0779 (5)
H26A0.15470.15620.30790.093*
C270.3264 (2)0.17102 (13)0.25913 (9)0.0783 (5)
H27X0.34490.25370.27100.094*0.627 (3)
C280.4143 (2)0.11109 (16)0.22020 (9)0.0731 (5)
H28A0.49190.15210.20590.088*
C290.38663 (13)0.01038 (10)0.20252 (6)0.0603 (4)
H29A0.44580.05180.17570.072*
F10.37996 (13)0.12266 (10)0.10536 (6)0.1162 (10)0.627 (3)
F1A0.35448 (13)0.28464 (10)0.27722 (6)0.1097 (15)0.373 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0755 (13)0.0850 (13)0.0943 (14)0.0163 (10)0.0260 (11)0.0062 (11)
C30.0700 (13)0.1112 (15)0.0847 (14)0.0244 (11)0.0053 (11)0.0203 (11)
C40.0627 (11)0.1125 (15)0.0551 (9)0.0099 (10)0.0005 (9)0.0114 (9)
C50.0493 (9)0.0709 (9)0.0482 (8)0.0065 (7)0.0046 (7)0.0034 (7)
C60.0745 (11)0.0633 (9)0.0536 (9)0.0050 (8)0.0123 (8)0.0077 (7)
C70.0945 (14)0.0753 (11)0.0638 (10)0.0066 (10)0.0252 (10)0.0043 (9)
C80.0528 (9)0.0831 (10)0.0445 (8)0.0028 (8)0.0022 (7)0.0033 (7)
O90.0592 (6)0.0682 (6)0.0411 (5)0.0030 (5)0.0076 (5)0.0026 (4)
C100.0634 (10)0.0778 (10)0.0439 (8)0.0072 (8)0.0129 (7)0.0120 (7)
N110.0927 (12)0.1320 (14)0.0450 (8)0.0220 (11)0.0112 (8)0.0085 (8)
C120.0843 (13)0.1395 (17)0.0429 (9)0.0238 (13)0.0049 (9)0.0017 (10)
C130.0646 (10)0.0579 (9)0.0569 (9)0.0104 (7)0.0154 (8)0.0087 (7)
C140.0890 (13)0.0739 (11)0.0701 (11)0.0085 (10)0.0221 (10)0.0202 (9)
C150.1089 (16)0.0629 (11)0.1017 (16)0.0036 (11)0.0347 (13)0.0229 (10)
C160.1239 (19)0.0595 (11)0.1153 (18)0.0168 (11)0.0265 (15)0.0006 (11)
C170.1146 (16)0.0605 (10)0.0780 (12)0.0085 (11)0.0124 (11)0.0034 (9)
C180.0709 (11)0.0502 (8)0.0574 (9)0.0084 (8)0.0136 (8)0.0009 (7)
C190.0665 (10)0.0543 (9)0.0491 (8)0.0066 (7)0.0074 (7)0.0036 (7)
O200.0637 (6)0.0552 (6)0.0401 (5)0.0056 (5)0.0089 (5)0.0005 (4)
C210.0564 (9)0.0641 (9)0.0351 (7)0.0010 (7)0.0055 (6)0.0003 (6)
C220.0850 (12)0.0756 (11)0.0490 (9)0.0089 (9)0.0230 (9)0.0005 (8)
N230.0956 (11)0.0684 (8)0.0592 (8)0.0146 (8)0.0251 (8)0.0016 (7)
C240.0571 (9)0.0620 (8)0.0327 (6)0.0013 (7)0.0005 (6)0.0014 (6)
C250.0741 (11)0.0758 (10)0.0542 (9)0.0029 (9)0.0154 (8)0.0047 (8)
C260.0976 (14)0.0739 (11)0.0631 (10)0.0092 (11)0.0175 (10)0.0124 (9)
C270.1052 (15)0.0623 (10)0.0629 (11)0.0043 (10)0.0037 (11)0.0084 (8)
C280.0789 (12)0.0714 (11)0.0673 (11)0.0136 (9)0.0088 (9)0.0004 (8)
C290.0626 (10)0.0689 (10)0.0480 (8)0.0003 (8)0.0066 (7)0.0003 (7)
F10.1184 (17)0.1224 (17)0.1149 (16)0.0571 (13)0.0399 (13)0.0033 (12)
F1A0.144 (3)0.0654 (19)0.121 (3)0.0135 (18)0.030 (2)0.0228 (16)
Geometric parameters (Å, º) top
F1—C21.293 (2)C15—C161.362 (3)
F1A—C271.290 (2)C15—H15A0.9300
C2—C31.364 (3)C16—C171.379 (3)
C2—C71.368 (2)C16—H16A0.9300
C2—H2X0.9300C17—C181.381 (2)
C3—C41.364 (2)C17—H17A0.9300
C3—H3A0.9300C18—C191.470 (2)
C4—C51.384 (2)C19—N231.2842 (18)
C4—H4A0.9300C19—O201.3658 (16)
C5—C61.384 (2)O20—C211.3806 (15)
C5—C81.442 (2)C21—C221.329 (2)
C6—C71.371 (2)C21—C241.4553 (19)
C6—H6A0.9300C22—N231.3851 (19)
C7—H7A0.9300C22—H22A0.9300
C8—C121.342 (2)C24—C291.3869 (18)
C8—O91.3755 (18)C24—C251.389 (2)
O9—C101.3530 (17)C25—C261.373 (2)
C10—N111.296 (2)C25—H25A0.9300
C10—C131.452 (2)C26—C271.358 (3)
N11—C121.370 (2)C26—H26A0.9300
C12—H12A0.9300C27—C281.362 (3)
C13—C141.394 (2)C27—H27X0.9300
C13—C181.399 (2)C28—C291.3688 (19)
C14—C151.369 (3)C28—H28A0.9300
C14—H14A0.9300C29—H29A0.9300
F1—C2—C3117.53 (17)C16—C15—H15A120.1
C28—C27—F1A118.98 (16)C14—C15—H15A120.1
F1—C2—C7121.08 (18)C15—C16—C17119.9 (2)
C26—C27—F1A119.12 (16)C15—C16—H16A120.1
C3—C2—C7121.38 (15)C17—C16—H16A120.1
C3—C2—H2X119.3C16—C17—C18121.41 (18)
C7—C2—H2X119.3C16—C17—H17A119.3
C2—C3—C4119.32 (17)C18—C17—H17A119.3
C2—C3—H3A120.3C17—C18—C13118.84 (15)
C4—C3—H3A120.3C17—C18—C19117.16 (15)
C3—C4—C5121.03 (16)C13—C18—C19123.99 (14)
C3—C4—H4A119.5N23—C19—O20113.56 (12)
C5—C4—H4A119.5N23—C19—C18128.11 (13)
C6—C5—C4118.31 (15)O20—C19—C18118.25 (12)
C6—C5—C8121.79 (14)C19—O20—C21104.70 (10)
C4—C5—C8119.90 (14)C22—C21—O20106.61 (12)
C7—C6—C5120.87 (15)C22—C21—C24134.38 (13)
C7—C6—H6A119.6O20—C21—C24119.01 (11)
C5—C6—H6A119.6C21—C22—N23110.87 (13)
C2—C7—C6119.08 (16)C21—C22—H22A124.6
C2—C7—H7A120.5N23—C22—H22A124.6
C6—C7—H7A120.5C19—N23—C22104.25 (12)
C12—C8—O9106.02 (15)C29—C24—C25118.39 (14)
C12—C8—C5135.87 (16)C29—C24—C21122.43 (12)
O9—C8—C5118.11 (12)C25—C24—C21119.17 (13)
C10—O9—C8105.62 (11)C26—C25—C24120.40 (16)
N11—C10—O9112.90 (15)C26—C25—H25A119.8
N11—C10—C13127.55 (14)C24—C25—H25A119.8
O9—C10—C13119.52 (13)C27—C26—C25119.39 (16)
C10—N11—C12104.68 (14)C27—C26—H26A120.3
C8—C12—N11110.77 (16)C25—C26—H26A120.3
C8—C12—H12A124.6C26—C27—C28121.88 (14)
N11—C12—H12A124.6C26—C27—H27X119.1
C14—C13—C18118.53 (16)C28—C27—H27X119.1
C14—C13—C10116.98 (14)C27—C28—C29118.98 (16)
C18—C13—C10124.47 (13)C27—C28—H28A120.5
C15—C14—C13121.44 (18)C29—C28—H28A120.5
C15—C14—H14A119.3C28—C29—C24120.96 (13)
C13—C14—H14A119.3C28—C29—H29A119.5
C16—C15—C14119.88 (18)C24—C29—H29A119.5
F1—C2—C3—C4179.65 (17)C16—C17—C18—C131.4 (3)
F1—C2—C7—C6179.66 (16)C16—C17—C18—C19178.80 (17)
C7—C2—C3—C40.1 (3)C14—C13—C18—C171.3 (2)
C2—C3—C4—C50.7 (3)C10—C13—C18—C17176.83 (16)
C3—C4—C5—C61.4 (3)C14—C13—C18—C19178.87 (15)
C3—C4—C5—C8179.17 (16)C10—C13—C18—C193.0 (2)
C4—C5—C6—C71.4 (2)C17—C18—C19—N2362.1 (2)
C8—C5—C6—C7179.17 (15)C13—C18—C19—N23117.72 (19)
C3—C2—C7—C60.1 (3)C17—C18—C19—O20114.53 (16)
C5—C6—C7—C20.7 (3)C13—C18—C19—O2065.7 (2)
C6—C5—C8—C12178.5 (2)N23—C19—O20—C211.55 (17)
C4—C5—C8—C122.1 (3)C18—C19—O20—C21178.63 (13)
C6—C5—C8—O91.8 (2)C19—O20—C21—C221.09 (15)
C4—C5—C8—O9177.70 (14)C19—O20—C21—C24179.70 (13)
C12—C8—O9—C100.55 (17)O20—C21—C22—N230.37 (18)
C5—C8—O9—C10179.30 (13)C24—C21—C22—N23179.41 (16)
C8—O9—C10—N110.18 (18)O20—C19—N23—C221.31 (19)
C8—O9—C10—C13178.55 (13)C18—C19—N23—C22178.03 (16)
O9—C10—N11—C120.3 (2)C21—C22—N23—C190.6 (2)
C13—C10—N11—C12177.95 (17)C22—C21—C24—C29154.69 (17)
O9—C8—C12—N110.7 (2)O20—C21—C24—C2924.3 (2)
C5—C8—C12—N11179.07 (18)C22—C21—C24—C2524.4 (3)
C10—N11—C12—C80.6 (2)O20—C21—C24—C25156.70 (13)
N11—C10—C13—C1410.2 (3)C29—C24—C25—C261.0 (2)
O9—C10—C13—C14167.91 (14)C21—C24—C25—C26178.13 (15)
N11—C10—C13—C18171.60 (17)C24—C25—C26—C270.9 (3)
O9—C10—C13—C1810.3 (2)C25—C26—C27—C280.5 (3)
C18—C13—C14—C150.4 (3)C26—C27—C28—C290.3 (3)
C10—C13—C14—C15177.86 (16)C27—C28—C29—C240.3 (2)
C13—C14—C15—C160.5 (3)C25—C24—C29—C280.7 (2)
C14—C15—C16—C170.4 (3)C21—C24—C29—C28178.37 (13)
C15—C16—C17—C180.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···F1i0.932.313.235 (2)170
C28—H28A···F1ii0.932.453.155 (2)133
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H15FN2O2
Mr382.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)9.3158 (3), 10.8176 (3), 18.9449 (5)
β (°) 100.571 (3)
V3)1876.76 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.6 × 0.3 × 0.05
Data collection
DiffractometerOxford Diffraction GEMINI R ULTRA Ruby CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.956, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
16242, 4263, 2707
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.120, 1.04
No. of reflections4263
No. of parameters266
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···F1i0.932.313.235 (2)170
C28—H28A···F1ii0.932.453.155 (2)133
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
ππ interactions (Å, °) top
Cg1, Cg2 and Cg3 are the centroids of the C2–C7, O9/C8/C12/N11/C10 and C13–C18 rings, respectively. CgI··· CgJ is the distance between the ring centroids. The interplanar angle is that between the planes of rings I and J. CgI_Perp is the perpendicuar distance of CgI from ring J. CgI_Offset is the distance between CgI and the perpendicular projection of CgJ on the ring I.
IJCgI···CgJInterplanar angleCgI_PerpCgI_Offset
21iii3.818 (1)2.0 (1)3.505 (1)1.514
12iii3.818 (1)2.0 (1)3.546 (1)1.415
23iv3.860 (1)10.9 (1)3.803 (1)0.661
32iv3.860 (1)10.9 (1)3.762 (1)0.864
Symmetry codes: (iii) -x, -y, -z; (iv) -x, -y+1, -z.
 

References

First citationDoroshenko, A. O. (1999). Chem. Phys. Rep. 18, 873–879.  Google Scholar
First citationDoroshenko, A. O. (2000a). Russ. J. Phys. Chem. 74, 773–777.  Google Scholar
First citationDoroshenko, A. O. (2002a). Theor. Exper. Chem. 38, 135–155.  CrossRef CAS Google Scholar
First citationDoroshenko, A. O., Baumer, V. N., Kirichenko, A. V., Shershukov, V. M. & Tolmachev, A. V. (1997). Chem. Heterocycl. Compd, 33, 1341–1349.  CrossRef CAS Google Scholar
First citationDoroshenko, A. O., Baumer, V. N., Verezubova, A. A. & Ptyagina, L. M. (2002b). J. Mol. Struct. 609, 29–37.  Web of Science CSD CrossRef CAS Google Scholar
First citationDoroshenko, A. O., Kirichenko, A. V., Mitina, V. G. & Ponomaryov, O. A. (1996). J. Photochem. Photobiol. A Chem. 94, 15–26.  CrossRef CAS Web of Science Google Scholar
First citationDoroshenko, A. O., Kyrychenko, A. V., Baumer, V. N., Verezubova, A. A. & Ptyagina, L. M. (2000b). J. Mol. Struct. 524, 289–296.  Web of Science CSD CrossRef CAS Google Scholar
First citationDoroshenko, A. O., Kyrychenko, A. V. & Waluk, J. (2000c). J. Fluor. 10, 41–48.  Web of Science CrossRef CAS Google Scholar
First citationDoroshenko, A. O., Patsenker, L. D., Baumer, V. N., Chepeleva, L. V., Van'kevich, A. V., Kirichenko, A. V., Yarmolenko, S. N., Shershukov, V. M., Mitina, V. G. & Ponomaryov, O. A. (1994). Mol. Eng. 3, 353–363.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKirichenko, A. V., Doroshenko, A. O. & Shershukov, V. M. (1998). Chem. Phys. Rep. 17, 1643–1651.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds