organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Chloro-3-(4-fluoro­phenyl­sulfon­yl)-2-methyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 4 August 2010; accepted 12 August 2010; online 18 August 2010)

In the title compound, C15H10ClFO3S, the 4-fluoro­phenyl ring makes a dihedral angle of 75.83 (5)° with the plane of the benzofuran fragment. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers, which are further linked via an aromatic ππ inter­action between the benzene rings of adjacent mol­ecules [centroid–centroid distance = 3.510 (2) Å].

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For the structures of related 3-(4-fluoro­phenyl­sulfon­yl)-5-halogeno-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1909.],b[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2049.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10ClFO3S

  • Mr = 324.74

  • Triclinic, [P \overline 1]

  • a = 7.341 (2) Å

  • b = 9.138 (2) Å

  • c = 11.347 (3) Å

  • α = 71.161 (12)°

  • β = 79.177 (11)°

  • γ = 69.108 (10)°

  • V = 670.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.46 mm−1

  • T = 173 K

  • 0.32 × 0.32 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.673, Tmax = 0.746

  • 11617 measured reflections

  • 3098 independent reflections

  • 2847 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.103

  • S = 1.08

  • 3098 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.93 2.48 3.335 (2) 153
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many compounds containing a benzofuran skeleton show interesting pharmacological properties such as antifungal, antitumor, antiviral, and antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfonyl)-5-halo-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 75.83 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds between the 4-fluorophenyl H atom and the oxygen of the OSO unit, with C11–H11···O3i (Table 1). The packing is further stabilized by an aromatic ππ interaction between the benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.510 (2) Å (Cg is the centroid of the C2-C7 benzene ring).

Related literature top

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-(4-fluorophenylsulfonyl)-5-halogeno-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b).

Experimental top

77% 3-chloroperoxybenzoic acid (515 mg, 2.3 mmol) was added in small portions to a stirred solution of 5-chloro-3-(4-fluorophenylsulfanyl)-2-methyl-1-benzofuran (339 mg, 1.1 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (benzene) to afford the title compound as a colourless solid [yield 78%, m.p. 452-453 K; Rf = 0.54 (benzene)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform at room temperature.

Refinement top

All H atoms were clearly located from Fourier difference maps and refined at idealized positions using a riding model, with C–H = 0.93 Å for aryl and 0.96 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Structure description top

Many compounds containing a benzofuran skeleton show interesting pharmacological properties such as antifungal, antitumor, antiviral, and antimicrobial activities (Aslam et al., 2006, Galal et al., 2009, Khan et al., 2005). These compounds widely occur in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our study of the substituent effect on the solid state structures of 3-(4-fluorophenylsulfonyl)-5-halo-2-methyl-1-benzofuran analogues (Choi et al., 2010a,b), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 75.83 (5)°. The crystal packing (Fig. 2) is stabilized by weak intermolecular C–H···O hydrogen bonds between the 4-fluorophenyl H atom and the oxygen of the OSO unit, with C11–H11···O3i (Table 1). The packing is further stabilized by an aromatic ππ interaction between the benzene rings of neighbouring molecules, with a Cg···Cgii distance of 3.510 (2) Å (Cg is the centroid of the C2-C7 benzene ring).

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For the structures of related 3-(4-fluorophenylsulfonyl)-5-halogeno-2-methyl-1-benzofuran derivatives, see: Choi et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. C–H···O and ππ interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroid. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+2, -z+1.]
5-Chloro-3-(4-fluorophenylsulfonyl)-2-methyl-1-benzofuran top
Crystal data top
C15H10ClFO3SZ = 2
Mr = 324.74F(000) = 332
Triclinic, P1Dx = 1.608 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.341 (2) ÅCell parameters from 8342 reflections
b = 9.138 (2) Åθ = 2.5–27.7°
c = 11.347 (3) ŵ = 0.46 mm1
α = 71.161 (12)°T = 173 K
β = 79.177 (11)°Block, colourless
γ = 69.108 (10)°0.32 × 0.32 × 0.24 mm
V = 670.8 (3) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3098 independent reflections
Radiation source: rotating anode2847 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.031
Detector resolution: 10.0 pixels mm-1θmax = 27.7°, θmin = 1.9°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1111
Tmin = 0.673, Tmax = 0.746l = 1414
11617 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.103H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0581P)2 + 0.2203P]
where P = (Fo2 + 2Fc2)/3
3098 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C15H10ClFO3Sγ = 69.108 (10)°
Mr = 324.74V = 670.8 (3) Å3
Triclinic, P1Z = 2
a = 7.341 (2) ÅMo Kα radiation
b = 9.138 (2) ŵ = 0.46 mm1
c = 11.347 (3) ÅT = 173 K
α = 71.161 (12)°0.32 × 0.32 × 0.24 mm
β = 79.177 (11)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2847 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 0.746Rint = 0.031
11617 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
3098 reflectionsΔρmin = 0.41 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.24730 (7)0.91535 (6)0.18345 (4)0.04478 (15)
S0.53086 (5)0.60366 (4)0.70560 (3)0.02358 (12)
O10.22044 (16)1.06562 (13)0.64622 (10)0.0287 (2)
O20.64062 (16)0.58741 (14)0.80400 (10)0.0305 (3)
O30.63148 (17)0.54999 (13)0.59840 (10)0.0316 (3)
C10.3925 (2)0.80676 (17)0.65127 (13)0.0239 (3)
C20.3246 (2)0.88838 (17)0.52755 (13)0.0233 (3)
C30.3365 (2)0.84457 (19)0.41916 (14)0.0269 (3)
H30.40570.73940.41350.032*
C40.2404 (2)0.9649 (2)0.32022 (14)0.0295 (3)
C50.1371 (2)1.1238 (2)0.32493 (15)0.0321 (3)
H50.07561.20060.25570.038*
C60.1260 (2)1.16749 (19)0.43212 (16)0.0306 (3)
H60.05851.27310.43740.037*
C70.2195 (2)1.04713 (18)0.53112 (14)0.0252 (3)
C80.3252 (2)0.91825 (18)0.71784 (14)0.0266 (3)
C90.3365 (3)0.9110 (2)0.84855 (15)0.0357 (4)
H9A0.41350.80340.89140.053*
H9B0.20710.93650.88980.053*
H9C0.39630.98860.84920.053*
C100.3594 (2)0.50045 (17)0.77249 (13)0.0239 (3)
C110.2586 (2)0.46848 (18)0.69636 (14)0.0278 (3)
H110.28140.50150.60990.033*
C120.1243 (2)0.3871 (2)0.75089 (17)0.0338 (4)
H120.05330.36590.70220.041*
C130.0986 (3)0.3385 (2)0.87841 (17)0.0355 (4)
C140.1979 (3)0.3677 (2)0.95508 (16)0.0395 (4)
H140.17690.33181.04150.047*
C150.3287 (3)0.4512 (2)0.90095 (15)0.0331 (3)
H150.39630.47450.95050.040*
F0.03024 (18)0.25795 (15)0.93220 (12)0.0533 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0493 (3)0.0579 (3)0.0263 (2)0.0134 (2)0.01042 (18)0.01054 (19)
S0.02279 (19)0.02453 (19)0.02076 (19)0.00504 (14)0.00356 (14)0.00462 (13)
O10.0298 (6)0.0254 (5)0.0308 (6)0.0077 (4)0.0021 (4)0.0093 (4)
O20.0275 (5)0.0352 (6)0.0283 (6)0.0104 (5)0.0088 (4)0.0041 (5)
O30.0311 (6)0.0313 (6)0.0261 (5)0.0037 (5)0.0011 (4)0.0088 (4)
C10.0231 (7)0.0255 (7)0.0221 (7)0.0078 (5)0.0023 (5)0.0047 (5)
C20.0197 (6)0.0244 (7)0.0236 (7)0.0080 (5)0.0014 (5)0.0030 (5)
C30.0251 (7)0.0292 (7)0.0239 (7)0.0071 (6)0.0021 (6)0.0059 (6)
C40.0268 (7)0.0377 (8)0.0225 (7)0.0129 (6)0.0023 (6)0.0036 (6)
C50.0255 (7)0.0339 (8)0.0297 (8)0.0105 (6)0.0060 (6)0.0038 (6)
C60.0254 (7)0.0234 (7)0.0372 (8)0.0072 (6)0.0028 (6)0.0011 (6)
C70.0221 (7)0.0257 (7)0.0276 (7)0.0100 (6)0.0005 (5)0.0053 (6)
C80.0240 (7)0.0278 (7)0.0280 (7)0.0095 (6)0.0013 (6)0.0070 (6)
C90.0400 (9)0.0395 (9)0.0296 (8)0.0107 (7)0.0023 (7)0.0150 (7)
C100.0254 (7)0.0210 (6)0.0233 (7)0.0046 (5)0.0044 (5)0.0053 (5)
C110.0281 (7)0.0280 (7)0.0269 (7)0.0040 (6)0.0053 (6)0.0108 (6)
C120.0331 (8)0.0308 (8)0.0426 (9)0.0080 (6)0.0100 (7)0.0156 (7)
C130.0322 (8)0.0283 (8)0.0461 (10)0.0143 (7)0.0036 (7)0.0050 (7)
C140.0460 (10)0.0450 (10)0.0271 (8)0.0225 (8)0.0039 (7)0.0002 (7)
C150.0391 (9)0.0396 (9)0.0246 (7)0.0186 (7)0.0068 (6)0.0052 (6)
F0.0511 (7)0.0503 (7)0.0638 (8)0.0340 (6)0.0040 (6)0.0032 (6)
Geometric parameters (Å, º) top
Cl—C41.7388 (17)C6—H60.9300
S—O31.4336 (11)C8—C91.480 (2)
S—O21.4365 (11)C9—H9A0.9600
S—C11.7344 (15)C9—H9B0.9600
S—C101.7534 (16)C9—H9C0.9600
O1—C81.3619 (18)C10—C151.380 (2)
O1—C71.3716 (19)C10—C111.392 (2)
C1—C81.360 (2)C11—C121.380 (2)
C1—C21.448 (2)C11—H110.9300
C2—C71.389 (2)C12—C131.367 (3)
C2—C31.390 (2)C12—H120.9300
C3—C41.383 (2)C13—F1.341 (2)
C3—H30.9300C13—C141.373 (3)
C4—C51.392 (2)C14—C151.371 (2)
C5—C61.378 (2)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.377 (2)
O3—S—O2119.62 (7)C1—C8—O1110.49 (13)
O3—S—C1107.05 (7)C1—C8—C9134.07 (15)
O2—S—C1108.80 (7)O1—C8—C9115.40 (13)
O3—S—C10107.97 (7)C8—C9—H9A109.5
O2—S—C10107.47 (7)C8—C9—H9B109.5
C1—S—C10105.01 (7)H9A—C9—H9B109.5
C8—O1—C7107.07 (11)C8—C9—H9C109.5
C8—C1—C2107.35 (13)H9A—C9—H9C109.5
C8—C1—S126.21 (12)H9B—C9—H9C109.5
C2—C1—S126.43 (11)C15—C10—C11121.27 (15)
C7—C2—C3119.30 (14)C15—C10—S118.69 (12)
C7—C2—C1104.34 (13)C11—C10—S120.04 (12)
C3—C2—C1136.33 (14)C12—C11—C10119.11 (15)
C4—C3—C2116.80 (14)C12—C11—H11120.4
C4—C3—H3121.6C10—C11—H11120.4
C2—C3—H3121.6C13—C12—C11118.22 (15)
C3—C4—C5123.19 (15)C13—C12—H12120.9
C3—C4—Cl118.60 (13)C11—C12—H12120.9
C5—C4—Cl118.21 (12)F—C13—C12118.62 (16)
C6—C5—C4120.04 (15)F—C13—C14117.88 (16)
C6—C5—H5120.0C12—C13—C14123.50 (16)
C4—C5—H5120.0C15—C14—C13118.32 (16)
C7—C6—C5116.73 (14)C15—C14—H14120.8
C7—C6—H6121.6C13—C14—H14120.8
C5—C6—H6121.6C14—C15—C10119.55 (15)
O1—C7—C6125.32 (14)C14—C15—H15120.2
O1—C7—C2110.74 (13)C10—C15—H15120.2
C6—C7—C2123.93 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.483.335 (2)153
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10ClFO3S
Mr324.74
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.341 (2), 9.138 (2), 11.347 (3)
α, β, γ (°)71.161 (12), 79.177 (11), 69.108 (10)
V3)670.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.46
Crystal size (mm)0.32 × 0.32 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.673, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
11617, 3098, 2847
Rint0.031
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.103, 1.08
No. of reflections3098
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.41

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.483.335 (2)152.8
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by Blue-Bio Industry RIC at Dongeui University as an RIC program under the Ministry of Knowledge Economy and Busan city.

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010a). Acta Cryst. E66, o1909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010b). Acta Cryst. E66, o2049.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds