organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[2-(5H-Indolo[2,3-b]quinoxalin-5-yl)eth­yl]-1,3-oxazolidin-2-one

aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, bCNRST Division UATRS, Angle Allal Fassi/FAR, BP 8027 Hay Riad, Rabat, Morocco, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 21 July 2010; accepted 18 August 2010; online 28 August 2010)

The title compound, C19H16N4O2, has an almost planar fused N-heterocyclic system (r.m.s. deviation = 0.031 Å) and an almost planar five-membered 1,3-oxazolidine ring (r.m.s. deviation = 0.015 Å) at the ends of an ethyl­ene chain [N—C—C—N torsion angle = −65.6 (2)°]. The ring systems are inclined at 38.1 (1)° to one another.

Related literature

For background to this class of oxindole derivatives, see: Alsubari et al. (2009[Alsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337-346.]). For a related structure, see: Alsubari et al. (2010[Alsubari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o454])

[Scheme 1]

Experimental

Crystal data
  • C19H16N4O2

  • Mr = 332.36

  • Monoclinic, P 21 /n

  • a = 14.5565 (4) Å

  • b = 5.8993 (2) Å

  • c = 18.6434 (6) Å

  • β = 92.393 (2)°

  • V = 1599.57 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.37 × 0.18 × 0.17 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 19296 measured reflections

  • 3216 independent reflections

  • 1897 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.152

  • S = 0.95

  • 3216 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The synthesis of new oxindole derivatives having an oxazolindin-2-one unit has been detailed in a recent report (Alsubari et al., 2009). Among related compounds whose structures have been determined is 3-[2-(2,3-dioxoindolin-1-yl)ethyl]-1,3-oxazolidin-2-one (Alsubari et al., 2010) in which the oxazolidinyl ring has an envelope conformation with the methylene C atom bonded to the N atom as the flap. The –CH2–CH2– connecting this ring to the other fused-ring system has its substituents in a gauche conformation [torsion angle = 62.7 (2)°]. In the tite compound (Scheme I, Fig. 1), the oxazolidinyl ring is planar (rms 0.015 Å), and there is no indication of any disorder in the ethylene portion of the ring. The fused N-heterocyclic system (rms 0.031 Å) is also planar and the two ring systems are inclined at 38.1 (1)° to one another. . The fused-rings are not stacked directly over one another, however, the distance between two inversion-related fused ring systems is only 3.4 Å (Fig. 2).

Related literature top

For background to this class of oxindole derivatives, see: Alsubari et al. (2009). For a related structure, see: Alsubari et al. (2010)

Experimental top

1-(2-(2-Oxoxazolidin-3-yl)ethyl)indoline-2,3-dione (0.5 g, 3.84 mmole) and o-phenylenediamine (0.41 g, 3.84 mmole) were heated in xylene (30 ml) and refluxed for twelve hours. The solvent was then removed under reduced pressure and the residue recrystallized from ethanol to afford the title compound as yellow crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Structure description top

The synthesis of new oxindole derivatives having an oxazolindin-2-one unit has been detailed in a recent report (Alsubari et al., 2009). Among related compounds whose structures have been determined is 3-[2-(2,3-dioxoindolin-1-yl)ethyl]-1,3-oxazolidin-2-one (Alsubari et al., 2010) in which the oxazolidinyl ring has an envelope conformation with the methylene C atom bonded to the N atom as the flap. The –CH2–CH2– connecting this ring to the other fused-ring system has its substituents in a gauche conformation [torsion angle = 62.7 (2)°]. In the tite compound (Scheme I, Fig. 1), the oxazolidinyl ring is planar (rms 0.015 Å), and there is no indication of any disorder in the ethylene portion of the ring. The fused N-heterocyclic system (rms 0.031 Å) is also planar and the two ring systems are inclined at 38.1 (1)° to one another. . The fused-rings are not stacked directly over one another, however, the distance between two inversion-related fused ring systems is only 3.4 Å (Fig. 2).

For background to this class of oxindole derivatives, see: Alsubari et al. (2009). For a related structure, see: Alsubari et al. (2010)

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Two molecules disposed about a center-of-inversion.
3-[2-(5H-Indolo[2,3-b]quinoxalin-5-yl)ethyl]-1,3-oxazolidin-2-one top
Crystal data top
C19H16N4O2F(000) = 696
Mr = 332.36Dx = 1.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2575 reflections
a = 14.5565 (4) Åθ = 2.8–21.3°
b = 5.8993 (2) ŵ = 0.09 mm1
c = 18.6434 (6) ÅT = 293 K
β = 92.393 (2)°Prism, yellow
V = 1599.57 (9) Å30.37 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker X8 APEXII
diffractometer
1897 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 26.3°, θmin = 2.8°
φ and ω scansh = 1818
19296 measured reflectionsk = 77
3216 independent reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0947P)2]
where P = (Fo2 + 2Fc2)/3
3216 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C19H16N4O2V = 1599.57 (9) Å3
Mr = 332.36Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.5565 (4) ŵ = 0.09 mm1
b = 5.8993 (2) ÅT = 293 K
c = 18.6434 (6) Å0.37 × 0.18 × 0.17 mm
β = 92.393 (2)°
Data collection top
Bruker X8 APEXII
diffractometer
1897 reflections with I > 2σ(I)
19296 measured reflectionsRint = 0.054
3216 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 0.95Δρmax = 0.22 e Å3
3216 reflectionsΔρmin = 0.15 e Å3
226 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.14976 (14)0.4457 (3)0.30554 (10)0.0756 (6)
O20.09479 (13)0.3291 (3)0.41022 (10)0.0765 (6)
N10.38685 (12)0.2701 (3)0.50246 (9)0.0499 (5)
N20.32451 (12)0.6823 (3)0.43058 (9)0.0493 (5)
N30.21587 (12)0.6899 (3)0.52289 (9)0.0491 (5)
N40.10754 (12)0.7065 (3)0.38211 (9)0.0449 (4)
C10.42821 (14)0.3536 (4)0.44272 (11)0.0455 (5)
C20.50363 (16)0.2364 (4)0.41630 (12)0.0536 (6)
H20.52350.10270.43830.064*
C30.54794 (16)0.3169 (4)0.35861 (12)0.0571 (6)
H30.59800.23820.34180.069*
C40.51867 (16)0.5176 (4)0.32443 (12)0.0573 (6)
H40.54960.57130.28520.069*
C50.44540 (15)0.6342 (4)0.34824 (12)0.0519 (6)
H50.42620.76640.32490.062*
C60.39828 (14)0.5568 (4)0.40790 (10)0.0434 (5)
C70.28851 (14)0.5993 (4)0.48773 (11)0.0448 (5)
C80.31888 (14)0.3950 (4)0.52400 (11)0.0446 (5)
C90.26054 (15)0.3687 (4)0.58425 (11)0.0477 (5)
C100.25656 (16)0.2117 (4)0.64019 (12)0.0593 (6)
H100.29850.09280.64370.071*
C110.19041 (17)0.2347 (5)0.68979 (14)0.0693 (7)
H110.18740.13090.72720.083*
C120.12790 (18)0.4118 (5)0.68458 (13)0.0713 (8)
H120.08290.42290.71840.086*
C130.13042 (17)0.5719 (5)0.63082 (12)0.0624 (7)
H130.08840.69070.62820.075*
C140.19776 (15)0.5498 (4)0.58088 (11)0.0480 (6)
C150.15862 (15)0.8786 (4)0.49739 (11)0.0505 (6)
H15A0.19610.98390.47140.061*
H15B0.13530.95820.53840.061*
C160.07797 (15)0.8028 (4)0.44871 (12)0.0483 (6)
H16A0.04240.69080.47370.058*
H16B0.03840.93170.43810.058*
C170.11498 (16)0.4834 (4)0.37101 (13)0.0539 (6)
C180.1696 (2)0.6593 (5)0.27265 (14)0.0742 (8)
H18A0.13410.67630.22780.089*
H18B0.23440.66990.26300.089*
C190.14339 (19)0.8400 (4)0.32542 (12)0.0616 (7)
H19A0.19650.92760.34210.074*
H19B0.09710.94160.30460.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1126 (15)0.0451 (11)0.0699 (11)0.0048 (9)0.0125 (11)0.0150 (8)
O20.0993 (14)0.0362 (10)0.0947 (14)0.0026 (9)0.0106 (11)0.0101 (9)
N10.0567 (11)0.0489 (11)0.0437 (10)0.0008 (9)0.0010 (9)0.0018 (8)
N20.0515 (11)0.0515 (11)0.0446 (10)0.0010 (9)0.0001 (9)0.0027 (8)
N30.0496 (11)0.0537 (12)0.0442 (10)0.0081 (9)0.0031 (9)0.0015 (8)
N40.0569 (11)0.0318 (10)0.0459 (10)0.0031 (8)0.0002 (8)0.0013 (8)
C10.0486 (12)0.0489 (13)0.0387 (11)0.0020 (10)0.0038 (10)0.0051 (9)
C20.0602 (14)0.0534 (14)0.0467 (13)0.0070 (11)0.0034 (11)0.0031 (11)
C30.0562 (14)0.0647 (16)0.0507 (14)0.0115 (12)0.0040 (11)0.0073 (12)
C40.0571 (15)0.0726 (17)0.0426 (12)0.0010 (13)0.0062 (11)0.0009 (12)
C50.0539 (13)0.0558 (15)0.0460 (12)0.0022 (11)0.0012 (11)0.0057 (11)
C60.0434 (12)0.0499 (13)0.0366 (11)0.0014 (10)0.0034 (9)0.0038 (9)
C70.0471 (12)0.0466 (13)0.0401 (11)0.0011 (10)0.0041 (10)0.0004 (10)
C80.0462 (12)0.0438 (13)0.0430 (11)0.0005 (10)0.0072 (10)0.0009 (10)
C90.0466 (12)0.0526 (14)0.0436 (12)0.0055 (10)0.0022 (10)0.0002 (10)
C100.0585 (14)0.0619 (16)0.0573 (15)0.0005 (12)0.0025 (12)0.0096 (12)
C110.0661 (16)0.083 (2)0.0587 (16)0.0056 (15)0.0070 (13)0.0199 (14)
C120.0602 (16)0.102 (2)0.0523 (14)0.0002 (16)0.0111 (12)0.0145 (15)
C130.0573 (15)0.0779 (18)0.0524 (14)0.0068 (13)0.0057 (12)0.0027 (13)
C140.0483 (13)0.0553 (14)0.0401 (11)0.0023 (10)0.0031 (10)0.0013 (10)
C150.0596 (14)0.0442 (13)0.0479 (13)0.0055 (10)0.0024 (11)0.0064 (10)
C160.0494 (12)0.0401 (13)0.0558 (13)0.0085 (10)0.0059 (10)0.0024 (10)
C170.0604 (15)0.0371 (13)0.0639 (15)0.0037 (10)0.0018 (12)0.0045 (11)
C180.104 (2)0.0604 (18)0.0588 (16)0.0010 (14)0.0136 (15)0.0080 (12)
C190.0917 (18)0.0481 (15)0.0453 (13)0.0035 (13)0.0039 (12)0.0037 (10)
Geometric parameters (Å, º) top
O1—C171.359 (3)C7—C81.442 (3)
O1—C181.436 (3)C8—C91.445 (3)
O2—C171.211 (3)C9—C101.398 (3)
N1—C81.310 (3)C9—C141.406 (3)
N1—C11.379 (3)C10—C111.369 (3)
N2—C71.302 (3)C10—H100.9300
N2—C61.385 (3)C11—C121.386 (4)
N3—C71.375 (3)C11—H110.9300
N3—C141.395 (3)C12—C131.379 (3)
N3—C151.458 (3)C12—H120.9300
N4—C171.338 (3)C13—C141.386 (3)
N4—C191.434 (3)C13—H130.9300
N4—C161.447 (3)C15—C161.521 (3)
C1—C21.404 (3)C15—H15A0.9700
C1—C61.423 (3)C15—H15B0.9700
C2—C31.362 (3)C16—H16A0.9700
C2—H20.9300C16—H16B0.9700
C3—C41.402 (3)C18—C191.510 (3)
C3—H30.9300C18—H18A0.9700
C4—C51.359 (3)C18—H18B0.9700
C4—H40.9300C19—H19A0.9700
C5—C61.407 (3)C19—H19B0.9700
C5—H50.9300
C17—O1—C18109.19 (18)C10—C11—C12120.3 (2)
C8—N1—C1114.03 (19)C10—C11—H11119.8
C7—N2—C6113.11 (18)C12—C11—H11119.8
C7—N3—C14108.24 (18)C13—C12—C11122.0 (2)
C7—N3—C15125.57 (18)C13—C12—H12119.0
C14—N3—C15125.53 (18)C11—C12—H12119.0
C17—N4—C19113.09 (19)C12—C13—C14117.7 (2)
C17—N4—C16123.23 (19)C12—C13—H13121.1
C19—N4—C16123.19 (18)C14—C13—H13121.1
N1—C1—C2118.8 (2)C13—C14—N3128.8 (2)
N1—C1—C6122.26 (19)C13—C14—C9121.2 (2)
C2—C1—C6118.94 (19)N3—C14—C9109.98 (19)
C3—C2—C1120.5 (2)N3—C15—C16112.74 (18)
C3—C2—H2119.7N3—C15—H15A109.0
C1—C2—H2119.7C16—C15—H15A109.0
C2—C3—C4120.5 (2)N3—C15—H15B109.0
C2—C3—H3119.7C16—C15—H15B109.0
C4—C3—H3119.7H15A—C15—H15B107.8
C5—C4—C3120.4 (2)N4—C16—C15112.19 (17)
C5—C4—H4119.8N4—C16—H16A109.2
C3—C4—H4119.8C15—C16—H16A109.2
C4—C5—C6120.6 (2)N4—C16—H16B109.2
C4—C5—H5119.7C15—C16—H16B109.2
C6—C5—H5119.7H16A—C16—H16B107.9
N2—C6—C5118.5 (2)O2—C17—N4128.5 (2)
N2—C6—C1122.53 (18)O2—C17—O1121.9 (2)
C5—C6—C1118.95 (19)N4—C17—O1109.6 (2)
N2—C7—N3126.0 (2)O1—C18—C19106.30 (19)
N2—C7—C8124.87 (19)O1—C18—H18A110.5
N3—C7—C8109.16 (18)C19—C18—H18A110.5
N1—C8—C7123.16 (19)O1—C18—H18B110.5
N1—C8—C9130.8 (2)C19—C18—H18B110.5
C7—C8—C9106.00 (18)H18A—C18—H18B108.7
C10—C9—C14119.3 (2)N4—C19—C18101.7 (2)
C10—C9—C8134.1 (2)N4—C19—H19A111.4
C14—C9—C8106.60 (18)C18—C19—H19A111.4
C11—C10—C9119.4 (2)N4—C19—H19B111.4
C11—C10—H10120.3C18—C19—H19B111.4
C9—C10—H10120.3H19A—C19—H19B109.3
C8—N1—C1—C2178.18 (19)C14—C9—C10—C111.3 (3)
C8—N1—C1—C60.5 (3)C8—C9—C10—C11179.5 (2)
N1—C1—C2—C3178.2 (2)C9—C10—C11—C120.0 (4)
C6—C1—C2—C30.6 (3)C10—C11—C12—C131.0 (4)
C1—C2—C3—C40.3 (3)C11—C12—C13—C140.6 (4)
C2—C3—C4—C50.2 (4)C12—C13—C14—N3178.6 (2)
C3—C4—C5—C60.6 (3)C12—C13—C14—C90.9 (3)
C7—N2—C6—C5177.54 (18)C7—N3—C14—C13179.2 (2)
C7—N2—C6—C12.3 (3)C15—N3—C14—C138.2 (4)
C4—C5—C6—N2179.5 (2)C7—N3—C14—C91.2 (2)
C4—C5—C6—C10.4 (3)C15—N3—C14—C9172.27 (19)
N1—C1—C6—N21.3 (3)C10—C9—C14—C131.8 (3)
C2—C1—C6—N2179.99 (19)C8—C9—C14—C13178.8 (2)
N1—C1—C6—C5178.46 (19)C10—C9—C14—N3177.76 (19)
C2—C1—C6—C50.2 (3)C8—C9—C14—N31.6 (2)
C6—N2—C7—N3178.79 (19)C7—N3—C15—C1687.4 (3)
C6—N2—C7—C81.6 (3)C14—N3—C15—C1682.2 (2)
C14—N3—C7—N2179.42 (19)C17—N4—C16—C1598.1 (2)
C15—N3—C7—N28.3 (3)C19—N4—C16—C1573.2 (3)
C14—N3—C7—C80.3 (2)N3—C15—C16—N465.6 (2)
C15—N3—C7—C8171.34 (18)C19—N4—C17—O2176.5 (3)
C1—N1—C8—C71.2 (3)C16—N4—C17—O24.4 (4)
C1—N1—C8—C9178.5 (2)C19—N4—C17—O14.0 (3)
N2—C7—C8—N10.2 (3)C16—N4—C17—O1176.09 (18)
N3—C7—C8—N1179.50 (19)C18—O1—C17—O2178.2 (2)
N2—C7—C8—C9179.6 (2)C18—O1—C17—N42.2 (3)
N3—C7—C8—C90.7 (2)C17—O1—C18—C190.2 (3)
N1—C8—C9—C101.9 (4)C17—N4—C19—C183.8 (3)
C7—C8—C9—C10177.9 (2)C16—N4—C19—C18175.9 (2)
N1—C8—C9—C14178.8 (2)O1—C18—C19—N42.3 (3)
C7—C8—C9—C141.4 (2)

Experimental details

Crystal data
Chemical formulaC19H16N4O2
Mr332.36
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)14.5565 (4), 5.8993 (2), 18.6434 (6)
β (°) 92.393 (2)
V3)1599.57 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.18 × 0.17
Data collection
DiffractometerBruker X8 APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19296, 3216, 1897
Rint0.054
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.152, 0.95
No. of reflections3216
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

 

Acknowledgements

We thank Université Mohammed V-Agdal and the University of Malaya for supporting this study.

References

First citationAlsubari, A., Bouhfid, R. & Essassi, E. M. (2009). ARKIVOC, xii, 337–346.  Google Scholar
First citationAlsubari, A., Bouhfid, R., Zouihri, H., Essassi, E. M. & Ng, S. W. (2010). Acta Cryst. E66, o454  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds