metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(2-amino­phen­yl)methanol-κ2O,N]bis­­(nitrato-κO)manganese(II)

aDepartment of Chemistry, University of Urmiyeh, Urmyieh, Iran
*Correspondence e-mail: m.esmhosseini@urmia.ac.ir

(Received 17 July 2010; accepted 28 July 2010; online 4 August 2010)

In the title compound, [Mn(NO3)2(C7H9NO)2], the MnII atom (site symmetry 2) is coordinated by two N,O-bidentate (2-amino­phen­yl)methanol ligands and two monodentate nitrate anions in a distorted cis-MnN2O4 octa­hedral coordination geometry. In the crystal, N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds help to establish the packing.

Related literature

For structures involving the same ligand with other metal ions, see: Bandoli et al. (2002[Bandoli, G., Dolmella, A., Gerber, T. I. A., Mpinda, D., Perils, J. & Preez, J. G. H. (2002). J. Coord. Chem. 55, 823-833.]); Lewiriski et al. (1998[Lewiriski, J., Zachara, J. & Kopec, T. (1998). Inorg. Chem. Commun. pp. 182-l84.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(NO3)2(C7H9NO)2]

  • Mr = 425.26

  • Orthorhombic, P b c n

  • a = 23.374 (2) Å

  • b = 10.1929 (12) Å

  • c = 7.3336 (6) Å

  • V = 1747.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 120 K

  • 0.40 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.907, Tmax = 0.955

  • 6668 measured reflections

  • 2335 independent reflections

  • 1928 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.071

  • S = 1.10

  • 2335 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—N1 2.2469 (15)
Mn1—O1 2.2041 (13)
Mn1—O2 2.2203 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O3i 0.87 (2) 2.16 (2) 2.9775 (19) 156 (2)
N1—H1D⋯O4ii 0.90 (3) 2.15 (3) 3.037 (2) 169 (2)
O1—H1E⋯O2iii 0.82 (3) 1.88 (3) 2.6937 (17) 176 (3)
C1—H1B⋯O4ii 0.97 2.60 3.479 (2) 151
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [x, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

(2-Aminophenyl)methanol is a bidentate ligand ligand. There are only two complexes with this ligand that have been prepared: those of Re (Bandoli et al., 2002) and Al (Lewiriski et al. 1998). We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of the title compound, Fig. 1, contains half molecule. The MnII atom is six-coordinated in distorted hexagonal configurations by two N and two O atoms from two (2-aminophenyl)methanol ligand and two O atoms from two nitrate anions. The Mn—O and Mn—N bond lengths and angles are collected in Table 1.

Intermolecular N—H···O, O—H···O and C—H···O hydrogen bonding may stabilize the structure, (Table 2, Fig. 2).

Related literature top

For structures involving the same ligand with other metal ions, see: Bandoli et al. (2002); Lewiriski et al. (1998).

Experimental top

A solution of (2-aminophenyl)methanol (0.25 g, 2.00 mmol) in methanol (10 ml) was added to a solution of Mn(NO3)2.4H2O (0.25 g, 1.00 mmol) in methanol (10 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colorless needles of (I) were isolated (yield 0.33 g, 77.6%).

Refinement top

The N- and O-bound H atoms were located in a difference map and freely refined. All C-bound H atoms were positioned geometrically, with C—H = 0.93Å and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

(2-Aminophenyl)methanol is a bidentate ligand ligand. There are only two complexes with this ligand that have been prepared: those of Re (Bandoli et al., 2002) and Al (Lewiriski et al. 1998). We report herein the synthesis and crystal structure of the title compound, (I).

The asymmetric unit of the title compound, Fig. 1, contains half molecule. The MnII atom is six-coordinated in distorted hexagonal configurations by two N and two O atoms from two (2-aminophenyl)methanol ligand and two O atoms from two nitrate anions. The Mn—O and Mn—N bond lengths and angles are collected in Table 1.

Intermolecular N—H···O, O—H···O and C—H···O hydrogen bonding may stabilize the structure, (Table 2, Fig. 2).

For structures involving the same ligand with other metal ions, see: Bandoli et al. (2002); Lewiriski et al. (1998).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. Atoms with suffix a are generated by (1–x, y, 1/2–z).
[Figure 2] Fig. 2. Unit-cell packing diagram for (I). Hydrogen bonds are shown as dashed lines.
Bis[(2-aminophenyl)methanol-κ2O,N]bis(nitrato- κO)manganese(II) top
Crystal data top
[Mn(NO3)2(C7H9NO)2]F(000) = 876
Mr = 425.26Dx = 1.617 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1154 reflections
a = 23.374 (2) Åθ = 2.2–29.2°
b = 10.1929 (12) ŵ = 0.81 mm1
c = 7.3336 (6) ÅT = 120 K
V = 1747.2 (3) Å3Block, colorless
Z = 40.40 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
2335 independent reflections
Radiation source: fine-focus sealed tube1928 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
phi and ω scansθmax = 29.2°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 3123
Tmin = 0.907, Tmax = 0.955k = 1310
6668 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.017P)2 + 1.3224P]
where P = (Fo2 + 2Fc2)/3
2335 reflections(Δ/σ)max = 0.007
135 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Mn(NO3)2(C7H9NO)2]V = 1747.2 (3) Å3
Mr = 425.26Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 23.374 (2) ŵ = 0.81 mm1
b = 10.1929 (12) ÅT = 120 K
c = 7.3336 (6) Å0.40 × 0.10 × 0.06 mm
Data collection top
Bruker SMART CCD
diffractometer
2335 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
1928 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.955Rint = 0.046
6668 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.31 e Å3
2335 reflectionsΔρmin = 0.32 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61659 (7)0.43167 (16)0.1127 (2)0.0177 (3)
H1A0.63800.51320.11580.021*
H1B0.61370.40330.01320.021*
C20.64736 (7)0.32879 (16)0.2234 (2)0.0160 (3)
C30.69730 (8)0.36086 (18)0.3180 (2)0.0208 (3)
H30.71190.44550.30950.025*
C40.72554 (8)0.26846 (19)0.4247 (3)0.0248 (4)
H40.75860.29110.48760.030*
C50.70376 (8)0.14206 (19)0.4363 (3)0.0248 (4)
H50.72210.08020.50870.030*
C60.65484 (8)0.10717 (17)0.3408 (2)0.0197 (3)
H60.64110.02170.34730.024*
C70.62624 (7)0.20036 (16)0.2348 (2)0.0162 (3)
N10.57317 (7)0.16868 (14)0.1479 (2)0.0168 (3)
H1D0.5731 (10)0.194 (2)0.030 (4)0.033 (6)*
H1C0.5657 (10)0.085 (2)0.156 (3)0.027 (6)*
N20.55303 (6)0.21326 (14)0.61414 (18)0.0165 (3)
O10.55977 (5)0.45233 (12)0.18714 (17)0.0181 (2)
H1E0.5502 (11)0.522 (3)0.141 (4)0.046 (8)*
O20.53386 (6)0.31604 (10)0.53077 (16)0.0184 (3)
O30.53757 (6)0.10431 (11)0.55841 (18)0.0241 (3)
O40.58609 (6)0.22845 (13)0.74423 (18)0.0249 (3)
Mn10.50000.29131 (3)0.25000.01412 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0222 (8)0.0131 (7)0.0179 (8)0.0029 (6)0.0022 (7)0.0018 (6)
C20.0186 (7)0.0156 (7)0.0137 (8)0.0016 (6)0.0017 (6)0.0019 (6)
C30.0197 (8)0.0212 (8)0.0216 (8)0.0015 (7)0.0024 (7)0.0055 (7)
C40.0196 (8)0.0306 (10)0.0243 (8)0.0028 (8)0.0040 (7)0.0056 (8)
C50.0244 (9)0.0276 (10)0.0224 (8)0.0090 (8)0.0023 (7)0.0006 (8)
C60.0237 (8)0.0152 (7)0.0203 (8)0.0043 (7)0.0000 (7)0.0005 (7)
C70.0191 (7)0.0151 (7)0.0143 (7)0.0014 (6)0.0016 (6)0.0017 (6)
N10.0230 (7)0.0109 (6)0.0165 (7)0.0018 (5)0.0026 (6)0.0005 (5)
N20.0213 (7)0.0139 (6)0.0144 (6)0.0013 (6)0.0004 (5)0.0012 (5)
O10.0204 (6)0.0102 (5)0.0238 (6)0.0002 (5)0.0008 (5)0.0045 (5)
O20.0288 (6)0.0087 (5)0.0177 (6)0.0011 (5)0.0042 (5)0.0014 (4)
O30.0316 (7)0.0103 (5)0.0305 (7)0.0017 (5)0.0047 (6)0.0007 (5)
O40.0308 (6)0.0276 (7)0.0163 (6)0.0021 (5)0.0072 (6)0.0004 (6)
Mn10.01774 (16)0.00979 (14)0.01484 (16)0.0000.00214 (14)0.000
Geometric parameters (Å, º) top
C1—O11.451 (2)C7—N11.431 (2)
C1—C21.509 (2)Mn1—N12.2469 (15)
C1—H1A0.9700N1—H1D0.90 (3)
C1—H1B0.9700N1—H1C0.87 (2)
C2—C31.397 (2)N2—O31.2372 (19)
C2—C71.402 (2)N2—O41.2375 (18)
C3—C41.391 (3)N2—O21.2931 (18)
C3—H30.9300Mn1—O12.2041 (13)
C4—C51.388 (3)O1—H1E0.82 (3)
C4—H40.9300Mn1—O22.2203 (12)
C5—C61.387 (3)Mn1—O1i2.2041 (13)
C5—H50.9300Mn1—O2i2.2202 (12)
C6—C71.398 (2)Mn1—N1i2.2469 (15)
C6—H60.9300
O1—C1—C2109.56 (13)Mn1—N1—H1D99.2 (16)
O1—C1—H1A109.8C7—N1—H1C111.3 (15)
C2—C1—H1A109.8Mn1—N1—H1C111.6 (15)
O1—C1—H1B109.8H1D—N1—H1C110 (2)
C2—C1—H1B109.8O3—N2—O4123.32 (14)
H1A—C1—H1B108.2O3—N2—O2118.03 (13)
C3—C2—C7118.92 (15)O4—N2—O2118.65 (14)
C3—C2—C1120.20 (15)C1—O1—Mn1123.42 (10)
C7—C2—C1120.88 (15)C1—O1—H1E102.7 (19)
C4—C3—C2121.16 (17)Mn1—O1—H1E124.1 (19)
C4—C3—H3119.4N2—O2—Mn1118.03 (10)
C2—C3—H3119.4O1i—Mn1—O183.74 (7)
C5—C4—C3119.26 (17)O1i—Mn1—O2i83.31 (5)
C5—C4—H4120.4O1—Mn1—O2i86.99 (5)
C3—C4—H4120.4O1i—Mn1—O286.99 (5)
C6—C5—C4120.63 (17)O1—Mn1—O283.31 (5)
C6—C5—H5119.7O2i—Mn1—O2166.96 (6)
C4—C5—H5119.7O1i—Mn1—N1i82.07 (5)
C5—C6—C7120.05 (17)O1—Mn1—N1i165.12 (5)
C5—C6—H6120.0O2i—Mn1—N1i95.79 (5)
C7—C6—H6120.0O2—Mn1—N1i91.45 (5)
C6—C7—C2119.96 (15)O1i—Mn1—N1165.11 (5)
C6—C7—N1120.58 (15)O1—Mn1—N182.07 (5)
C2—C7—N1119.31 (14)O2i—Mn1—N191.45 (5)
C7—N1—Mn1112.68 (10)O2—Mn1—N195.79 (5)
C7—N1—H1D111.3 (16)N1i—Mn1—N1112.40 (8)
O1—C1—C2—C3117.48 (17)O4—N2—O2—Mn1159.69 (11)
O1—C1—C2—C761.89 (19)C1—O1—Mn1—O1i175.17 (15)
C7—C2—C3—C41.1 (3)C1—O1—Mn1—O2i91.58 (12)
C1—C2—C3—C4178.31 (16)C1—O1—Mn1—O297.15 (12)
C2—C3—C4—C50.4 (3)C1—O1—Mn1—N1i167.15 (17)
C3—C4—C5—C60.9 (3)C1—O1—Mn1—N10.31 (12)
C4—C5—C6—C71.4 (3)N2—O2—Mn1—O1i148.15 (12)
C5—C6—C7—C20.7 (2)N2—O2—Mn1—O1127.80 (12)
C5—C6—C7—N1174.78 (16)N2—O2—Mn1—O2i169.96 (11)
C3—C2—C7—C60.5 (2)N2—O2—Mn1—N1i66.17 (12)
C1—C2—C7—C6178.84 (15)N2—O2—Mn1—N146.52 (12)
C3—C2—C7—N1176.07 (15)C7—N1—Mn1—O1i69.1 (2)
C1—C2—C7—N13.3 (2)C7—N1—Mn1—O151.34 (11)
C6—C7—N1—Mn1117.00 (14)C7—N1—Mn1—O2i138.10 (11)
C2—C7—N1—Mn158.50 (17)C7—N1—Mn1—O231.05 (12)
C2—C1—O1—Mn149.35 (17)C7—N1—Mn1—N1i125.03 (12)
O3—N2—O2—Mn119.78 (18)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3ii0.87 (2)2.16 (2)2.9775 (19)156 (2)
N1—H1D···O4iii0.90 (3)2.15 (3)3.037 (2)169 (2)
O1—H1E···O2iv0.82 (3)1.88 (3)2.6937 (17)176 (3)
C1—H1B···O4iii0.972.603.479 (2)151
Symmetry codes: (ii) x, y, z1/2; (iii) x, y, z1; (iv) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(NO3)2(C7H9NO)2]
Mr425.26
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)120
a, b, c (Å)23.374 (2), 10.1929 (12), 7.3336 (6)
V3)1747.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.40 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.907, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
6668, 2335, 1928
Rint0.046
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.071, 1.10
No. of reflections2335
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.32

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Mn1—N12.2469 (15)Mn1—O22.2203 (12)
Mn1—O12.2041 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O3i0.87 (2)2.16 (2)2.9775 (19)156 (2)
N1—H1D···O4ii0.90 (3)2.15 (3)3.037 (2)169 (2)
O1—H1E···O2iii0.82 (3)1.88 (3)2.6937 (17)176 (3)
C1—H1B···O4ii0.972.603.479 (2)151
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z1; (iii) x, y+1, z1/2.
 

Acknowledgements

We are grateful to the University of Urmiyeh for financial support.

References

First citationBandoli, G., Dolmella, A., Gerber, T. I. A., Mpinda, D., Perils, J. & Preez, J. G. H. (2002). J. Coord. Chem. 55, 823–833.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLewiriski, J., Zachara, J. & Kopec, T. (1998). Inorg. Chem. Commun. pp. 182–l84.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds