organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis(2,6-diiso­propyl­phen­yl)imidazolidin-2-yl­­idene

aThe Maritime Centre for Green Chemistry (MCGC), Department of Chemistry, Saint Mary's University, 923 Robie Street, Halifax, NS B3H 3C3, Canada
*Correspondence e-mail: jason.masuda@smu.ca

(Received 20 July 2010; accepted 27 July 2010; online 4 August 2010)

The title compound, C27H38N2, is the first reported free imidazolidin-2-yl­idene carbene with 2,6-diisopropyl­phenyl groups in the 1,3-positions. The five-membered ring adopts a twisted conformation and the dihedral angle between the aromatic rings is 48.81 (6)°. Both isopropyl groups attached to one of the benzene rings are disordered over two sets of sites in 0.74 (2):0.26 (2) and 0.599 (8):0.401 (8) ratios.

Related literature

There are few examples in the literature of crystallograph­ic­ally characterized free ylidenes with ortho-alkyl substituted phenyl groups in the 1,3-positions: for related structures see: Arduengo et al. (1991[Arduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361-363.], 1992[Arduengo, A. J., Dias, H. V. R., Harlow, R. L. & Kline, M. (1992). J. Am. Chem. Soc. 114, 5530-5534.], 1995[Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027-11028.], 1999[Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523-14534.]). For background to free carbenes, see: Igau et al. (1989[Igau, A., Baceiredo, A., Trinquier, G. & Bertrand, G. (1989). Angew. Chem. 101, 617-618.]) and for Arduengo-type carbenes, see: Pauling (1980[Pauling, L. (1980). Chem. Commun. 15, 688-689.]).

[Scheme 1]

Experimental

Crystal data
  • C27H38N2

  • Mr = 390.59

  • Monoclinic, P 21 /c

  • a = 20.835 (7) Å

  • b = 5.922 (2) Å

  • c = 19.694 (7) Å

  • β = 93.090 (4)°

  • V = 2426.2 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 150 K

  • 0.50 × 0.34 × 0.12 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.716, Tmax = 0.746

  • 22607 measured reflections

  • 4259 independent reflections

  • 3326 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.097

  • S = 1.01

  • 4259 reflections

  • 319 parameters

  • 168 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Free carbenes have received substantial attention in the literature since their introduction by Igau et al. (1989). Arduengo-type carbenes, described by Linus Pauling as push-push, mesomeric pull-pull (Pauling, 1980) are electronically stabilized through donating amino-substituents and sterically protected by alkyl substituted phenyl groups in the 1,3-positions. Beginning in 1991, free diamino carbenes such as the 1,3-bis(1-adamantyl)imidazol-2-ylidiene (Arduengo et al., 1991) have garnered substantial notoriety across chemical disciplines.

As a result of the increased steric bulk associated with the flanking 2,6-diisopropylphenyl substiuents the title free carbene exibits a N1—C1—N2 bond angle of 104.98 (11)°. This angle represents substantial relaxation when compared to the IPr carbene, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidiene, 101.4 (2)° and the IMes carbene 1,3-bis (2,4,6-trimethylphenyl)imidazolidin-2-ylidiene, 101.4 (3)° (Arduengo et al., 1999). However, the N1—C1—N2 angle in the title molecule is similar to that of the saturated analogue of IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidiene, 104.7 (3)° (Arduengo et al., 1995). It should be noted that the unit-cell parameters are nearly identical to those reported for the analagous IPr carbene (Arduengo et al., 1999). This is not surprising as the addition of two Hydrogen atoms to the C=C bond in the backbone of the molecule will casue little change in the overall molecular volume and shape of the parent molecule relative to that of the imidazol-2-ylidiene.

Related literature top

There are few examples in the literature of crystallographically characterized free ylidenes with ortho-alkyl substituted phenyl groups in the 1,3-positions: for related structures see: Arduengo et al. (1991, 1992, 1995, 1999). For background to free carbenes, see: Igau et al. (1989) and for Arduengo-type carbenes, see: Pauling (1980).

Experimental top

1,3-bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene was prepared through the addition of 0.466 g of potassium bis-hexamethyl disilazide to a solution of 1.00 g (0.234 mmol) of 1,3-bis(2,6-diisopropylphenyl) imidazolidinium chloride (0.234 mmol) in diethylether. Volatiles were removed under reduced pressure and the remaining solid was dissolved in pentane, filtered through diatomaceous earth and cooled to 243 K yielding colorless blocks of (I). The proton NMR matched that in the literature of the title ylidene (Arduengo et al., 1999).

Refinement top

The H atoms were placed in geometrically idealized positions with C—H distances of 0.95Å (aromatic),0.98Å (idealized tertiary), 0.99Å (Idealized secondary) and 0.98Å (Idealized methyl). H atoms were constrained to ride on the parent C atom with Uiso(H) = 1.2Ueq(C) for aromatic, Uiso(H) = 1.5Ueq(C) for the idealized methyl protons, Uiso(H) = 1.2Ueq(C) for the idealized tertiary protons and Uiso(H) = 1.2Ueq(C) for the idealized secondary protons. A short contact distance of 1.89 Angstroms is observed between H31B and H2B, where H31B lies in the disordered part of the model. Tests for twinning and missed symmetry were preformed and no twinning laws or change of spacegroup were suggested. The short contact is believed to arise from the disorder present in the crystal. In order to obtain satisfactory thermal parametersthe use of SIMU and DELU restraints were applied to carbon atoms C21 to C27.

Structure description top

Free carbenes have received substantial attention in the literature since their introduction by Igau et al. (1989). Arduengo-type carbenes, described by Linus Pauling as push-push, mesomeric pull-pull (Pauling, 1980) are electronically stabilized through donating amino-substituents and sterically protected by alkyl substituted phenyl groups in the 1,3-positions. Beginning in 1991, free diamino carbenes such as the 1,3-bis(1-adamantyl)imidazol-2-ylidiene (Arduengo et al., 1991) have garnered substantial notoriety across chemical disciplines.

As a result of the increased steric bulk associated with the flanking 2,6-diisopropylphenyl substiuents the title free carbene exibits a N1—C1—N2 bond angle of 104.98 (11)°. This angle represents substantial relaxation when compared to the IPr carbene, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidiene, 101.4 (2)° and the IMes carbene 1,3-bis (2,4,6-trimethylphenyl)imidazolidin-2-ylidiene, 101.4 (3)° (Arduengo et al., 1999). However, the N1—C1—N2 angle in the title molecule is similar to that of the saturated analogue of IMes, 1,3-bis(2,4,6-trimethylphenyl)imidazolidin-2-ylidiene, 104.7 (3)° (Arduengo et al., 1995). It should be noted that the unit-cell parameters are nearly identical to those reported for the analagous IPr carbene (Arduengo et al., 1999). This is not surprising as the addition of two Hydrogen atoms to the C=C bond in the backbone of the molecule will casue little change in the overall molecular volume and shape of the parent molecule relative to that of the imidazol-2-ylidiene.

There are few examples in the literature of crystallographically characterized free ylidenes with ortho-alkyl substituted phenyl groups in the 1,3-positions: for related structures see: Arduengo et al. (1991, 1992, 1995, 1999). For background to free carbenes, see: Igau et al. (1989) and for Arduengo-type carbenes, see: Pauling (1980).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms. Perspective is down the 010 axis and H atoms are removed for clarity.
1,3-Bis(2,6-diisopropylphenyl)imidazolidin-2-ylidene top
Crystal data top
C27H38N2F(000) = 856
Mr = 390.59Dx = 1.069 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9396 reflections
a = 20.835 (7) Åθ = 2.2–28.4°
b = 5.922 (2) ŵ = 0.06 mm1
c = 19.694 (7) ÅT = 150 K
β = 93.090 (4)°Block, colourless
V = 2426.2 (14) Å30.50 × 0.34 × 0.12 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4259 independent reflections
Radiation source: fine-focus sealed tube3326 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2424
Tmin = 0.716, Tmax = 0.746k = 77
22607 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.6416P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
4259 reflectionsΔρmax = 0.18 e Å3
319 parametersΔρmin = 0.14 e Å3
168 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (6)
Crystal data top
C27H38N2V = 2426.2 (14) Å3
Mr = 390.59Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.835 (7) ŵ = 0.06 mm1
b = 5.922 (2) ÅT = 150 K
c = 19.694 (7) Å0.50 × 0.34 × 0.12 mm
β = 93.090 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4259 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3326 reflections with I > 2σ(I)
Tmin = 0.716, Tmax = 0.746Rint = 0.033
22607 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037168 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.01Δρmax = 0.18 e Å3
4259 reflectionsΔρmin = 0.14 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.21083 (5)0.66151 (18)0.15446 (5)0.0270 (3)
N20.30506 (5)0.79278 (17)0.17711 (5)0.0263 (3)
C10.24262 (6)0.8528 (2)0.17156 (6)0.0252 (3)
C20.25298 (6)0.4697 (2)0.13858 (8)0.0379 (4)
H2A0.25570.44960.08890.046*
H2B0.23820.32720.15890.046*
C30.31647 (6)0.5471 (2)0.17175 (8)0.0369 (4)
H3A0.32480.47710.21700.044*
H3B0.35280.51360.14290.044*
C40.35630 (6)0.9431 (2)0.19756 (6)0.0251 (3)
C50.36374 (6)1.0164 (2)0.26515 (7)0.0286 (3)
C60.41414 (6)1.1635 (2)0.28223 (7)0.0327 (3)
H6A0.41971.21720.32760.039*
C70.45624 (6)1.2329 (2)0.23476 (7)0.0330 (3)
H7A0.49041.33310.24750.040*
C80.44864 (6)1.1564 (2)0.16868 (7)0.0301 (3)
H8A0.47791.20430.13630.036*
C90.39891 (6)1.0107 (2)0.14862 (6)0.0268 (3)
C100.39200 (6)0.9307 (2)0.07521 (7)0.0324 (3)
H10A0.35360.82970.07070.039*
C110.45050 (7)0.7930 (3)0.05695 (8)0.0427 (4)
H11A0.45660.66700.08890.064*
H11B0.48880.88960.05960.064*
H11C0.44370.73400.01060.064*
C120.38055 (8)1.1287 (3)0.02624 (7)0.0461 (4)
H12A0.34241.21280.03870.069*
H12B0.37391.07140.02030.069*
H12C0.41801.22900.02900.069*
C130.31902 (7)0.9415 (3)0.31916 (7)0.0366 (3)
H13A0.28900.82570.29840.044*
C140.27892 (8)1.1385 (3)0.34266 (9)0.0580 (5)
H14A0.25471.20440.30350.087*
H14B0.30731.25330.36390.087*
H14C0.24891.08470.37570.087*
C150.35625 (8)0.8326 (3)0.37951 (8)0.0608 (5)
H15A0.38100.70420.36360.091*
H15B0.32600.77990.41250.091*
H15C0.38560.94380.40110.091*
C160.14366 (6)0.6519 (2)0.13366 (6)0.0268 (3)
C170.10301 (6)0.5242 (2)0.17292 (7)0.0320 (3)
C180.03883 (6)0.5047 (3)0.15029 (8)0.0390 (4)
H18A0.01040.41770.17590.047*
C190.01594 (7)0.6089 (3)0.09170 (8)0.0431 (4)
H19A0.02800.59310.07700.052*
C200.05626 (7)0.7360 (3)0.05408 (7)0.0408 (4)
H20A0.03960.80820.01380.049*
C210.12121 (6)0.7610 (2)0.07385 (7)0.0317 (3)
C22B0.1629 (5)0.9020 (16)0.0300 (6)0.0390 (10)0.74 (2)
H22A0.20220.94100.05910.047*0.74 (2)
C23B0.1861 (4)0.7654 (14)0.0289 (4)0.0624 (15)0.74 (2)
H23A0.20750.62820.01160.094*0.74 (2)
H23B0.21640.85580.05390.094*0.74 (2)
H23C0.14930.72400.05950.094*0.74 (2)
C24B0.1334 (4)1.1277 (10)0.0058 (4)0.0546 (15)0.74 (2)
H24A0.11831.21080.04490.082*0.74 (2)
H24B0.09721.09890.02690.082*0.74 (2)
H24C0.16601.21750.01610.082*0.74 (2)
C22A0.1707 (15)0.880 (4)0.0293 (14)0.037 (2)0.26 (2)
H22B0.21520.88250.05120.045*0.26 (2)
C23A0.1669 (12)0.755 (4)0.0425 (9)0.056 (3)0.26 (2)
H23D0.19700.82640.07260.083*0.26 (2)
H23E0.12310.76670.06300.083*0.26 (2)
H23F0.17830.59580.03610.083*0.26 (2)
C24A0.1448 (11)1.106 (3)0.0164 (12)0.044 (3)0.26 (2)
H24D0.14831.19440.05850.066*0.26 (2)
H24E0.09951.09420.00060.066*0.26 (2)
H24F0.16901.18020.01850.066*0.26 (2)
C25B0.1227 (4)0.4253 (16)0.2422 (5)0.0339 (9)0.599 (8)
H25A0.16980.45340.25050.041*0.599 (8)
C26B0.1126 (4)0.1722 (14)0.2434 (5)0.0444 (11)0.599 (8)
H26A0.13380.10300.20530.067*0.599 (8)
H26B0.06650.13920.23920.067*0.599 (8)
H26C0.13100.11060.28640.067*0.599 (8)
C27B0.0885 (3)0.5341 (5)0.30107 (14)0.0470 (10)0.599 (8)
H27A0.09320.69860.29890.070*0.599 (8)
H27B0.10770.47870.34450.070*0.599 (8)
H27C0.04280.49450.29740.070*0.599 (8)
C25A0.1323 (7)0.398 (2)0.2352 (7)0.0383 (16)0.401 (8)
H25B0.17790.36040.22660.046*0.401 (8)
C26A0.0966 (7)0.178 (2)0.2496 (10)0.065 (3)0.401 (8)
H26D0.11860.09950.28820.097*0.401 (8)
H26E0.09610.08020.20940.097*0.401 (8)
H26F0.05230.21210.26060.097*0.401 (8)
C27A0.1321 (4)0.5605 (9)0.2935 (2)0.0548 (18)0.401 (8)
H27D0.15280.49030.33400.082*0.401 (8)
H27E0.08760.60000.30240.082*0.401 (8)
H27F0.15560.69740.28210.082*0.401 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0214 (5)0.0227 (6)0.0366 (6)0.0006 (5)0.0017 (4)0.0014 (5)
N20.0228 (5)0.0192 (6)0.0366 (6)0.0009 (4)0.0017 (4)0.0016 (5)
C10.0237 (6)0.0264 (7)0.0252 (6)0.0000 (5)0.0002 (5)0.0032 (5)
C20.0277 (7)0.0221 (7)0.0631 (10)0.0019 (6)0.0051 (7)0.0008 (7)
C30.0273 (7)0.0222 (7)0.0604 (10)0.0013 (6)0.0051 (6)0.0017 (7)
C40.0214 (6)0.0200 (6)0.0333 (7)0.0017 (5)0.0039 (5)0.0019 (5)
C50.0268 (7)0.0271 (7)0.0314 (7)0.0055 (6)0.0025 (5)0.0023 (6)
C60.0329 (7)0.0307 (8)0.0335 (7)0.0045 (6)0.0076 (6)0.0036 (6)
C70.0271 (7)0.0255 (7)0.0454 (8)0.0016 (6)0.0087 (6)0.0008 (6)
C80.0236 (7)0.0277 (7)0.0390 (8)0.0006 (6)0.0004 (5)0.0050 (6)
C90.0234 (6)0.0242 (7)0.0323 (7)0.0035 (5)0.0020 (5)0.0023 (6)
C100.0300 (7)0.0345 (8)0.0328 (7)0.0010 (6)0.0016 (6)0.0018 (6)
C110.0435 (9)0.0424 (9)0.0427 (9)0.0055 (7)0.0069 (7)0.0045 (7)
C120.0572 (10)0.0485 (10)0.0323 (8)0.0104 (8)0.0014 (7)0.0008 (7)
C130.0358 (8)0.0432 (9)0.0308 (7)0.0016 (7)0.0011 (6)0.0052 (6)
C140.0544 (10)0.0698 (12)0.0518 (10)0.0190 (9)0.0202 (8)0.0124 (9)
C150.0571 (11)0.0747 (13)0.0510 (10)0.0123 (10)0.0059 (8)0.0300 (10)
C160.0222 (6)0.0249 (7)0.0329 (7)0.0004 (5)0.0017 (5)0.0027 (6)
C170.0276 (7)0.0295 (7)0.0389 (7)0.0019 (6)0.0014 (6)0.0008 (6)
C180.0272 (7)0.0397 (9)0.0505 (9)0.0065 (6)0.0053 (6)0.0013 (7)
C190.0238 (7)0.0504 (10)0.0542 (10)0.0020 (7)0.0073 (7)0.0055 (8)
C200.0354 (8)0.0459 (9)0.0397 (8)0.0025 (7)0.0100 (7)0.0000 (7)
C210.0302 (7)0.0328 (7)0.0317 (7)0.0006 (6)0.0023 (5)0.0022 (6)
C22B0.029 (2)0.048 (2)0.0391 (18)0.0014 (14)0.0040 (14)0.0110 (14)
C23B0.071 (3)0.055 (2)0.064 (3)0.016 (2)0.032 (3)0.016 (2)
C24B0.075 (4)0.0357 (17)0.054 (3)0.0053 (15)0.009 (2)0.0093 (14)
C22A0.047 (6)0.037 (5)0.027 (4)0.004 (4)0.005 (5)0.011 (3)
C23A0.088 (8)0.045 (5)0.035 (4)0.006 (6)0.014 (5)0.001 (4)
C24A0.053 (6)0.034 (4)0.044 (6)0.003 (4)0.003 (5)0.002 (3)
C25B0.024 (2)0.0335 (19)0.0445 (17)0.0001 (19)0.0031 (16)0.0070 (17)
C26B0.044 (3)0.0332 (15)0.057 (3)0.0022 (19)0.009 (2)0.0067 (13)
C27B0.063 (3)0.0396 (15)0.0390 (12)0.0043 (16)0.0089 (15)0.0040 (11)
C25A0.040 (5)0.035 (4)0.041 (3)0.003 (3)0.012 (2)0.0096 (16)
C26A0.073 (7)0.044 (3)0.079 (5)0.010 (4)0.018 (5)0.020 (3)
C27A0.075 (5)0.052 (2)0.0371 (18)0.009 (3)0.001 (2)0.005 (2)
Geometric parameters (Å, º) top
N1—C11.3458 (16)C18—C191.371 (2)
N1—C161.4380 (16)C18—H18A0.9500
N1—C21.4793 (17)C19—C201.374 (2)
N2—C11.3474 (16)C19—H19A0.9500
N2—C41.4309 (16)C20—C211.3959 (19)
N2—C31.4790 (17)C20—H20A0.9500
C2—C31.5144 (19)C21—C22B1.509 (9)
C2—H2A0.9900C21—C22A1.56 (3)
C2—H2B0.9900C22B—C23B1.515 (9)
C3—H3A0.9900C22B—C24B1.537 (6)
C3—H3B0.9900C22B—H22A1.0000
C4—C51.4007 (18)C23B—H23A0.9800
C4—C91.4034 (18)C23B—H23B0.9800
C5—C61.3915 (19)C23B—H23C0.9800
C5—C131.5176 (19)C24B—H24A0.9800
C6—C71.379 (2)C24B—H24B0.9800
C6—H6A0.9500C24B—H24C0.9800
C7—C81.3791 (19)C22A—C24A1.458 (17)
C7—H7A0.9500C22A—C23A1.59 (3)
C8—C91.3894 (18)C22A—H22B1.0000
C8—H8A0.9500C23A—H23D0.9800
C9—C101.5205 (19)C23A—H23E0.9800
C10—C111.526 (2)C23A—H23F0.9800
C10—C121.529 (2)C24A—H24D0.9800
C10—H10A1.0000C24A—H24E0.9800
C11—H11A0.9800C24A—H24F0.9800
C11—H11B0.9800C25B—C26B1.514 (11)
C11—H11C0.9800C25B—C27B1.535 (6)
C12—H12A0.9800C25B—H25A1.0000
C12—H12B0.9800C26B—H26A0.9800
C12—H12C0.9800C26B—H26B0.9800
C13—C141.521 (2)C26B—H26C0.9800
C13—C151.527 (2)C27B—H27A0.9800
C13—H13A1.0000C27B—H27B0.9800
C14—H14A0.9800C27B—H27C0.9800
C14—H14B0.9800C25A—C27A1.497 (10)
C14—H14C0.9800C25A—C26A1.537 (18)
C15—H15A0.9800C25A—H25B1.0000
C15—H15B0.9800C26A—H26D0.9800
C15—H15C0.9800C26A—H26E0.9800
C16—C171.3992 (19)C26A—H26F0.9800
C16—C211.4015 (18)C27A—H27D0.9800
C17—C181.3913 (19)C27A—H27E0.9800
C17—C25B1.521 (11)C27A—H27F0.9800
C17—C25A1.534 (18)
C1—N1—C16124.27 (10)C18—C19—C20120.34 (13)
C1—N1—C2114.15 (10)C18—C19—H19A119.8
C16—N1—C2119.28 (10)C20—C19—H19A119.8
C1—N2—C4124.14 (11)C19—C20—C21121.30 (14)
C1—N2—C3114.32 (10)C19—C20—H20A119.3
C4—N2—C3120.77 (10)C21—C20—H20A119.3
N1—C1—N2104.98 (11)C20—C21—C16117.39 (13)
N1—C2—C3101.04 (11)C20—C21—C22B118.6 (4)
N1—C2—H2A111.6C16—C21—C22B124.0 (4)
C3—C2—H2A111.6C20—C21—C22A123.5 (12)
N1—C2—H2B111.6C16—C21—C22A118.7 (11)
C3—C2—H2B111.6C21—C22B—C23B111.1 (7)
H2A—C2—H2B109.4C21—C22B—C24B115.2 (6)
N2—C3—C2100.85 (10)C23B—C22B—C24B111.4 (8)
N2—C3—H3A111.6C21—C22B—H22A106.2
C2—C3—H3A111.6C23B—C22B—H22A106.2
N2—C3—H3B111.6C24B—C22B—H22A106.2
C2—C3—H3B111.6C22B—C23B—H23A109.5
H3A—C3—H3B109.4C22B—C23B—H23B109.5
C5—C4—C9121.50 (12)H23A—C23B—H23B109.5
C5—C4—N2120.20 (11)C22B—C23B—H23C109.5
C9—C4—N2118.29 (11)H23A—C23B—H23C109.5
C6—C5—C4117.85 (12)H23B—C23B—H23C109.5
C6—C5—C13119.82 (12)C22B—C24B—H24A109.5
C4—C5—C13122.33 (12)C22B—C24B—H24B109.5
C7—C6—C5121.48 (13)H24A—C24B—H24B109.5
C7—C6—H6A119.3C22B—C24B—H24C109.5
C5—C6—H6A119.3H24A—C24B—H24C109.5
C6—C7—C8119.80 (12)H24B—C24B—H24C109.5
C6—C7—H7A120.1C24A—C22A—C21105.2 (18)
C8—C7—H7A120.1C24A—C22A—C23A106 (2)
C7—C8—C9121.22 (13)C21—C22A—C23A107 (2)
C7—C8—H8A119.4C24A—C22A—H22B112.9
C9—C8—H8A119.4C21—C22A—H22B112.9
C8—C9—C4118.13 (12)C23A—C22A—H22B112.9
C8—C9—C10119.64 (12)C22A—C23A—H23D109.5
C4—C9—C10122.22 (11)C22A—C23A—H23E109.5
C9—C10—C11110.78 (11)H23D—C23A—H23E109.5
C9—C10—C12111.37 (12)C22A—C23A—H23F109.5
C11—C10—C12111.15 (12)H23D—C23A—H23F109.5
C9—C10—H10A107.8H23E—C23A—H23F109.5
C11—C10—H10A107.8C22A—C24A—H24D109.5
C12—C10—H10A107.8C22A—C24A—H24E109.5
C10—C11—H11A109.5H24D—C24A—H24E109.5
C10—C11—H11B109.5C22A—C24A—H24F109.5
H11A—C11—H11B109.5H24D—C24A—H24F109.5
C10—C11—H11C109.5H24E—C24A—H24F109.5
H11A—C11—H11C109.5C26B—C25B—C17111.3 (7)
H11B—C11—H11C109.5C26B—C25B—C27B109.5 (7)
C10—C12—H12A109.5C17—C25B—C27B113.7 (6)
C10—C12—H12B109.5C26B—C25B—H25A107.4
H12A—C12—H12B109.5C17—C25B—H25A107.4
C10—C12—H12C109.5C27B—C25B—H25A107.4
H12A—C12—H12C109.5C25B—C26B—H26A109.5
H12B—C12—H12C109.5C25B—C26B—H26B109.5
C5—C13—C14110.94 (12)H26A—C26B—H26B109.5
C5—C13—C15111.32 (12)C25B—C26B—H26C109.5
C14—C13—C15110.57 (13)H26A—C26B—H26C109.5
C5—C13—H13A108.0H26B—C26B—H26C109.5
C14—C13—H13A108.0C25B—C27B—H27A109.5
C15—C13—H13A108.0C25B—C27B—H27B109.5
C13—C14—H14A109.5H27A—C27B—H27B109.5
C13—C14—H14B109.5C25B—C27B—H27C109.5
H14A—C14—H14B109.5H27A—C27B—H27C109.5
C13—C14—H14C109.5H27B—C27B—H27C109.5
H14A—C14—H14C109.5C27A—C25A—C17106.4 (9)
H14B—C14—H14C109.5C27A—C25A—C26A112.5 (11)
C13—C15—H15A109.5C17—C25A—C26A112.7 (12)
C13—C15—H15B109.5C27A—C25A—H25B108.4
H15A—C15—H15B109.5C17—C25A—H25B108.4
C13—C15—H15C109.5C26A—C25A—H25B108.4
H15A—C15—H15C109.5C25A—C26A—H26D109.5
H15B—C15—H15C109.5C25A—C26A—H26E109.5
C17—C16—C21121.95 (12)H26D—C26A—H26E109.5
C17—C16—N1118.22 (11)C25A—C26A—H26F109.5
C21—C16—N1119.78 (11)H26D—C26A—H26F109.5
C18—C17—C16117.89 (13)H26E—C26A—H26F109.5
C18—C17—C25B117.6 (4)C25A—C27A—H27D109.5
C16—C17—C25B124.2 (4)C25A—C27A—H27E109.5
C18—C17—C25A123.3 (6)H27D—C27A—H27E109.5
C16—C17—C25A118.6 (6)C25A—C27A—H27F109.5
C19—C18—C17121.12 (13)H27D—C27A—H27F109.5
C19—C18—H18A119.4H27E—C27A—H27F109.5
C17—C18—H18A119.4

Experimental details

Crystal data
Chemical formulaC27H38N2
Mr390.59
Crystal system, space groupMonoclinic, P21/c
Temperature (K)150
a, b, c (Å)20.835 (7), 5.922 (2), 19.694 (7)
β (°) 93.090 (4)
V3)2426.2 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.50 × 0.34 × 0.12
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.716, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
22607, 4259, 3326
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.097, 1.01
No. of reflections4259
No. of parameters319
No. of restraints168
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors would like to thank Saint Mary's University for providing funding in the form of initial operating funds, the Natural Sciences and Engineering Research Council for a Discovery Grant and a Research Tools and Instruments Grant (JDM), the Canadian Foundation for Innovation for a Leaders Opportunity Fund Grant and the Nova Scotia Research and Innovation Trust (JDM). Student funding was provided through the Saint Mary's University Summer Employment Experience Program (ADH) and the office of the Dean of Sciences Summer Research Award (NAG).

References

First citationArduengo, A. J., Dias, H. V. R., Harlow, R. L. & Kline, M. (1992). J. Am. Chem. Soc. 114, 5530–5534.  CSD CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.  CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J., Harlow, R. L. & Kline, M. (1991). J. Am. Chem. Soc. 113, 361–363.  CSD CrossRef CAS Web of Science Google Scholar
First citationArduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationIgau, A., Baceiredo, A., Trinquier, G. & Bertrand, G. (1989). Angew. Chem. 101, 617–618.  CrossRef CAS Google Scholar
First citationPauling, L. (1980). Chem. Commun. 15, 688–689.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds