organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-(2,2-Dimeth­­oxy­eth­yl)-2-(nitro­methyl­­idene)imidazolidine

aShandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, People's Republic of China
*Correspondence e-mail: chm_tianzz@ujn.edu.cn

(Received 21 July 2010; accepted 29 July 2010; online 4 August 2010)

In the title compound, C8H15N3O4, the 2-(nitro­methyl­ene)imidazolidine fragment is close to being planar (r.m.s. deviation = 0.027 Å), which may be correlated with delocalization of the electrons and the effect of the strongly electron-withdrawing NO2 group. An intra­molecular N—H⋯O link generates an S(6) ring. The same H atom also forms a weak inter­molecular N—H⋯O hydrogen bond, which results in C(7) chains propagating in [010].

Related literature

For background to neonicotinoid insecticides, see Moriya et al. (1992[Moriya, K., Shibuya, K., Hattori, Y., Tsuboi, S., Shiokawa, K. & Kagabu, S. (1992). Biosci. Biotech. Biochem. 56, 364-365.]). For the synthesis, see: Tian et al. (2007[Tian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 2288-2292.]).

[Scheme 1]

Experimental

Crystal data
  • C8H15N3O4

  • Mr = 217.23

  • Monoclinic, P 21 /c

  • a = 10.444 (2) Å

  • b = 6.8676 (17) Å

  • c = 14.441 (3) Å

  • β = 99.953 (14)°

  • V = 1020.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.32 × 0.26 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.983

  • 8629 measured reflections

  • 2330 independent reflections

  • 1849 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.06

  • 2330 reflections

  • 139 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.86 2.09 2.6394 (17) 121
N2—H2⋯O3i 0.86 2.64 3.3554 (16) 141
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1999). SIR97. Universities of Bari, Perugia and Rome, Italy.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Since the debut of Imidacloprid in 1990s (Moriya et al., 1992), neonicotinoid insecticides have become rapidly an important chemical class of insecticides. Our interest was introducing oxygen atom into the lead struture and synthesizing a series of new compounds, in which the title compound (I) exhibited good insecticidal activities against pea aphids.

The structure of (I) is shown in Fig. 1 with the atom-numbering scheme. The delocalization of the electrons as far as the strong electron-withdrawing group, NO2, lead to a coplanar olefin-amine π-electron network. Intermolecular hydrogen bonds (N2—H2···O3) are found, and link the molecules into chains.

Related literature top

For background to neonicotinoid insecticides, see Moriya et al. (1992). For the synthesis, see: Tian et al. (2007).

Experimental top

The title compound was synthesized according to the literature (Tian et al., 2007). Colourless prisms of (I) were obtained by slow evaporation of the solution of dichloromethane and ethyl acetate of the title compound.

Refinement top

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of N—H = 0.87 (2) Å, and with Uiso(H) = 1.2Ueq(N). Other H atoms were positioned geometrically and refined using a riding model (including free rotation about the ethanol C—C bond), with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 (1.5 for methyl groups) times Ueq(C).

Structure description top

Since the debut of Imidacloprid in 1990s (Moriya et al., 1992), neonicotinoid insecticides have become rapidly an important chemical class of insecticides. Our interest was introducing oxygen atom into the lead struture and synthesizing a series of new compounds, in which the title compound (I) exhibited good insecticidal activities against pea aphids.

The structure of (I) is shown in Fig. 1 with the atom-numbering scheme. The delocalization of the electrons as far as the strong electron-withdrawing group, NO2, lead to a coplanar olefin-amine π-electron network. Intermolecular hydrogen bonds (N2—H2···O3) are found, and link the molecules into chains.

For background to neonicotinoid insecticides, see Moriya et al. (1992). For the synthesis, see: Tian et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. The H atoms are shown as circles of arbitrary size.
[Figure 2] Fig. 2. Intermolecular hydrogen bonding in the crystal structure of (I).
(E)-1-(2,2-Dimethoxyethyl)-2-(nitromethylidene)imidazolidine top
Crystal data top
C8H15N3O4F(000) = 464
Mr = 217.23Dx = 1.414 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3493 reflections
a = 10.444 (2) Åθ = 2.9–27.3°
b = 6.8676 (17) ŵ = 0.11 mm1
c = 14.441 (3) ÅT = 296 K
β = 99.953 (14)°Prism, colourless
V = 1020.2 (4) Å30.32 × 0.26 × 0.15 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2330 independent reflections
Radiation source: fine-focus sealed tube1849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
φ and ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.965, Tmax = 0.983k = 88
8629 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.1844P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2330 reflectionsΔρmax = 0.25 e Å3
139 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C8H15N3O4V = 1020.2 (4) Å3
Mr = 217.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.444 (2) ŵ = 0.11 mm1
b = 6.8676 (17) ÅT = 296 K
c = 14.441 (3) Å0.32 × 0.26 × 0.15 mm
β = 99.953 (14)°
Data collection top
Bruker APEXII CCD
diffractometer
2330 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1849 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.983Rint = 0.018
8629 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.06Δρmax = 0.25 e Å3
2330 reflectionsΔρmin = 0.16 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00359 (12)0.08330 (19)0.63950 (8)0.0427 (3)
H1A0.05620.08600.59370.051*
C20.06233 (12)0.08637 (17)0.73529 (8)0.0406 (3)
C30.09094 (16)0.0794 (2)0.89827 (9)0.0563 (4)
H3A0.08160.03870.93330.068*
H3B0.07740.19130.93640.068*
C40.22254 (15)0.0880 (2)0.86762 (9)0.0597 (4)
H4A0.27010.20360.89210.072*
H4B0.27410.02620.88880.072*
C50.29097 (12)0.08628 (19)0.70666 (9)0.0461 (3)
H5A0.25330.03860.64470.055*
H5B0.35730.00570.73420.055*
C60.35394 (11)0.28135 (19)0.69663 (8)0.0414 (3)
H60.36430.34830.75740.050*
C70.31179 (18)0.5845 (2)0.62367 (12)0.0641 (4)
H7A0.33230.64100.68530.096*
H7B0.24460.65940.58600.096*
H7C0.38800.58460.59480.096*
C80.48007 (15)0.1666 (3)0.58408 (11)0.0699 (5)
H8A0.44950.03540.58730.105*
H8B0.56760.16500.57190.105*
H8C0.42520.23490.53430.105*
N10.12619 (11)0.07657 (17)0.61267 (8)0.0481 (3)
N20.00157 (12)0.0812 (2)0.80881 (8)0.0569 (3)
H20.08160.07920.80410.068*
N30.19059 (11)0.09392 (17)0.76437 (7)0.0473 (3)
O10.17315 (10)0.07294 (17)0.52580 (7)0.0654 (3)
O20.20198 (10)0.0741 (2)0.67215 (8)0.0725 (4)
O30.26831 (8)0.39078 (13)0.63099 (6)0.0476 (3)
O40.47709 (8)0.26264 (15)0.67127 (6)0.0524 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (6)0.0489 (7)0.0367 (6)0.0019 (5)0.0030 (5)0.0045 (5)
C20.0448 (6)0.0371 (6)0.0384 (6)0.0040 (5)0.0029 (5)0.0046 (5)
C30.0749 (10)0.0563 (9)0.0359 (6)0.0084 (7)0.0049 (6)0.0040 (6)
C40.0647 (9)0.0703 (10)0.0380 (7)0.0080 (7)0.0082 (6)0.0071 (6)
C50.0418 (6)0.0450 (7)0.0487 (7)0.0006 (5)0.0001 (5)0.0001 (5)
C60.0349 (6)0.0491 (7)0.0379 (6)0.0021 (5)0.0001 (4)0.0028 (5)
C70.0774 (11)0.0510 (9)0.0627 (9)0.0060 (7)0.0084 (8)0.0084 (7)
C80.0467 (8)0.1033 (13)0.0602 (9)0.0017 (8)0.0108 (7)0.0211 (9)
N10.0461 (6)0.0522 (7)0.0437 (6)0.0003 (5)0.0008 (5)0.0042 (5)
N20.0519 (6)0.0807 (9)0.0379 (6)0.0050 (6)0.0073 (5)0.0037 (6)
N30.0450 (6)0.0570 (7)0.0368 (5)0.0083 (5)0.0013 (4)0.0060 (5)
O10.0562 (6)0.0879 (8)0.0445 (5)0.0038 (5)0.0124 (4)0.0015 (5)
O20.0446 (6)0.1143 (11)0.0590 (6)0.0025 (6)0.0096 (5)0.0061 (6)
O30.0438 (5)0.0477 (5)0.0479 (5)0.0010 (4)0.0014 (4)0.0026 (4)
O40.0342 (5)0.0713 (7)0.0495 (5)0.0050 (4)0.0010 (4)0.0086 (5)
Geometric parameters (Å, º) top
C1—N11.3447 (17)C5—H5B0.9700
C1—C21.4131 (17)C6—O41.4028 (15)
C1—H1A0.9300C6—O31.4036 (15)
C2—N21.3282 (17)C6—H60.9800
C2—N31.3339 (16)C7—O31.4159 (18)
C3—N21.4573 (17)C7—H7A0.9600
C3—C41.516 (2)C7—H7B0.9600
C3—H3A0.9700C7—H7C0.9600
C3—H3B0.9700C8—O41.4265 (18)
C4—N31.4711 (17)C8—H8A0.9600
C4—H4A0.9700C8—H8B0.9600
C4—H4B0.9700C8—H8C0.9600
C5—N31.4485 (18)N1—O21.2647 (15)
C5—C61.5104 (18)N1—O11.2658 (14)
C5—H5A0.9700N2—H20.8600
N1—C1—C2121.87 (12)O4—C6—H6108.2
N1—C1—H1A119.1O3—C6—H6108.2
C2—C1—H1A119.1C5—C6—H6108.2
N2—C2—N3110.00 (11)O3—C7—H7A109.5
N2—C2—C1126.55 (12)O3—C7—H7B109.5
N3—C2—C1123.45 (12)H7A—C7—H7B109.5
N2—C3—C4102.41 (11)O3—C7—H7C109.5
N2—C3—H3A111.3H7A—C7—H7C109.5
C4—C3—H3A111.3H7B—C7—H7C109.5
N2—C3—H3B111.3O4—C8—H8A109.5
C4—C3—H3B111.3O4—C8—H8B109.5
H3A—C3—H3B109.2H8A—C8—H8B109.5
N3—C4—C3103.81 (11)O4—C8—H8C109.5
N3—C4—H4A111.0H8A—C8—H8C109.5
C3—C4—H4A111.0H8B—C8—H8C109.5
N3—C4—H4B111.0O2—N1—O1119.47 (11)
C3—C4—H4B111.0O2—N1—C1121.53 (11)
H4A—C4—H4B109.0O1—N1—C1119.00 (12)
N3—C5—C6113.17 (11)C2—N2—C3112.80 (12)
N3—C5—H5A108.9C2—N2—H2123.6
C6—C5—H5A108.9C3—N2—H2123.6
N3—C5—H5B108.9C2—N3—C5127.22 (11)
C6—C5—H5B108.9C2—N3—C4110.95 (11)
H5A—C5—H5B107.8C5—N3—C4121.47 (11)
O4—C6—O3112.25 (10)C6—O3—C7112.24 (10)
O4—C6—C5112.21 (11)C6—O4—C8115.70 (10)
O3—C6—C5107.61 (9)
N1—C1—C2—N20.7 (2)C1—C2—N3—C54.8 (2)
N1—C1—C2—N3179.68 (12)N2—C2—N3—C41.74 (15)
N2—C3—C4—N30.09 (15)C1—C2—N3—C4177.89 (12)
N3—C5—C6—O4158.56 (10)C6—C5—N3—C2105.58 (14)
N3—C5—C6—O377.48 (13)C6—C5—N3—C481.94 (15)
C2—C1—N1—O20.51 (19)C3—C4—N3—C21.09 (15)
C2—C1—N1—O1179.59 (12)C3—C4—N3—C5174.68 (12)
N3—C2—N2—C31.71 (16)O4—C6—O3—C762.38 (14)
C1—C2—N2—C3177.90 (12)C5—C6—O3—C7173.69 (12)
C4—C3—N2—C20.95 (16)O3—C6—O4—C861.01 (16)
N2—C2—N3—C5174.88 (12)C5—C6—O4—C860.33 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.092.6394 (17)121
N2—H2···O3i0.862.643.3554 (16)141
Symmetry code: (i) x, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H15N3O4
Mr217.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.444 (2), 6.8676 (17), 14.441 (3)
β (°) 99.953 (14)
V3)1020.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.32 × 0.26 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
8629, 2330, 1849
Rint0.018
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.06
No. of reflections2330
No. of parameters139
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.862.092.6394 (17)121
N2—H2···O3i0.862.643.3554 (16)141
Symmetry code: (i) x, y1/2, z+3/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20902037), the Opening Fund of Shanghai Key Laboratory of Chemical Biology (grant No. SKLCB-2008–08) and the Doctoral Foundation of the University of Jinan (B0542) for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1999). SIR97. Universities of Bari, Perugia and Rome, Italy.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMoriya, K., Shibuya, K., Hattori, Y., Tsuboi, S., Shiokawa, K. & Kagabu, S. (1992). Biosci. Biotech. Biochem. 56, 364–365.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, Z. Z., Shao, X. S., Li, Z., Qian, X. H. & Huang, Q. C. (2007). J. Agric. Food Chem. 55, 2288–2292.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds