organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{3-[(2-Iso­propyl-5-methyl­phen­­oxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-3-(p-tol­yl)sydnone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 July 2010; accepted 29 July 2010; online 4 August 2010)

In the title triazolothia­diazin compound, C24H24N6O3S (systematic name: 4-{3-[(2-isopropyl-5-methyl­phen­oxy)meth­yl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thia­diazin-6-yl}-3-(4-methyl­phen­yl)-1,2,3-oxadiazol-3-ium-5-olate), an intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. The two terminal methyl groups of the isopropyl unit are disordered over two sets of positions in a 0.715 (4):0.285 (4) ratio. The mean planes formed through the major and minor disordered isopropyl units are inclined at inter­planar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached phenyl ring. The 3,6-dihydro-1,3,4-thia­diazine ring adopts a twist-boat conformation. The inter­planar angle formed between 1,2,3-oxadiazole and 1,2,4-triazole rings is 18.80 (11)°. In the crystal, neighbouring mol­ecules are linked into sheets lying parallel to the bc plane by C—H⋯N hydrogen bonds. Weak inter­molecular ππ inter­actions [centroid–centroid distances = 3.2935 (11) and 3.5590 (12) Å] further stabilize the crystal structure.

Related literature

For general background to and applications of materials related to the title triazolothia­diazine compound, see: Kalluraya & Rahiman (1997[Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049-1052.]); Kalluraya et al. (2003[Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355-356.]); Newton & Ramsden (1982[Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965-3011.]); Wagner & Hill (1974[Wagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337-1338.]). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Goh et al. (2010a[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.],b[Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394-o1395.],c[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010c). Acta Cryst. E66, o2162-o2163.],d[Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010d). Acta Cryst. E66, o2178-o2179.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C24H24N6O3S

  • Mr = 476.55

  • Monoclinic, P 21 /c

  • a = 16.7814 (3) Å

  • b = 7.2901 (1) Å

  • c = 20.2221 (3) Å

  • β = 106.991 (1)°

  • V = 2365.95 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 100 K

  • 0.25 × 0.21 × 0.07 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.988

  • 20258 measured reflections

  • 6897 independent reflections

  • 4836 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.162

  • S = 1.04

  • 6897 reflections

  • 314 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O3 0.97 2.20 2.993 (3) 138
C10—H10A⋯N1i 0.97 2.56 3.393 (3) 144
C15—H15A⋯N2ii 0.93 2.49 3.377 (3) 160
C19—H19A⋯N2iii 0.93 2.47 3.397 (3) 174
Symmetry codes: (i) -x+2, -y+1, -z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) -x+2, -y+2, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a triazolothiadiazine moiety at the 4-position of the phenylsydnone was introduced. A series of triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

In the title triazolothiadiazine compound, an intramolecular C10—H10B···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The two terminal methyl groups of the isopropyl unit (atoms C22 and C23) were disordered over two positions with refined occupancies of 0.715 (4) and 0.285 (4). The mean planes formed through the major and minor disordered isopropyl units were inclined at interplanar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached C1-C6 phenyl ring. The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts a twist-boat conformation. The puckering parameters are Q = 0.5952 (17) Å, θ = 113.75 (18)° and φ = 146.7 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings were inclined to each other at interplanar angle of 18.80 (11)°. The interplanar angles formed between the C1-C6 and C14-C19 phenyl rings with respect to 1,2,4-triazole and 1,2,3-oxadiazole rings are 49.56 (11) and 49.84 (11)°, respectively. The bond lengths and angles are comparable to those closely related structures (Goh et al., 2010a,b,c,d).

In the crystal structure, intermolecular C10—H10A···N1, C15—H15A···N2 and C19—H19A···N2 hydrogen bonds (Table 1) link neighbouring molecules into two-dimensional networks parallel to the bc plane (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular Cg1···Cg1 [3.2935 (11) Å; symmetry code: -x+2, -y+1, -z] and Cg2···Cg3 [3.5590 (12) Å; symmetry code: -x+2, y-1/2, -z+1/2] interactions where Cg1, Cg2 and Cg3 are the centroids of 1,2,4-triazole, 1,2,3-oxadiazole and C14-C19 phenyl rings.

Related literature top

For general background to and applications of materials related to the title triazolothiadiazine compound, see: Kalluraya & Rahiman (1997); Kalluraya et al. (2003); Newton & Ramsden (1982); Wagner & Hill (1974). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For related structures, see: Goh et al. (2010a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A solution of triazole (0.01 mol) and 4-bromoacetyl-3-tolylsydnone (0.01 mol) in absolute ethanol (20 ml) was heated under reflux for 10–12 h. The solution was concentrated, cooled to room temperature and neutrallized with 10 % sodium bicarbonate solution. The solid separated was filtered, washed with water, dried and recrystallized from ethanol. Yellow plates of (I) were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.

Refinement top

Atoms C22 and C23 are disordered over two sites with a refined occupancy ratio of 0.715 (4):0.285 (4). The same Uij parameters were applied for atom pairs C6/C11, C22/C22X and C23/C23X. All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl groups.

Structure description top

Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a triazolothiadiazine moiety at the 4-position of the phenylsydnone was introduced. A series of triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).

In the title triazolothiadiazine compound, an intramolecular C10—H10B···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The two terminal methyl groups of the isopropyl unit (atoms C22 and C23) were disordered over two positions with refined occupancies of 0.715 (4) and 0.285 (4). The mean planes formed through the major and minor disordered isopropyl units were inclined at interplanar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached C1-C6 phenyl ring. The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts a twist-boat conformation. The puckering parameters are Q = 0.5952 (17) Å, θ = 113.75 (18)° and φ = 146.7 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings were inclined to each other at interplanar angle of 18.80 (11)°. The interplanar angles formed between the C1-C6 and C14-C19 phenyl rings with respect to 1,2,4-triazole and 1,2,3-oxadiazole rings are 49.56 (11) and 49.84 (11)°, respectively. The bond lengths and angles are comparable to those closely related structures (Goh et al., 2010a,b,c,d).

In the crystal structure, intermolecular C10—H10A···N1, C15—H15A···N2 and C19—H19A···N2 hydrogen bonds (Table 1) link neighbouring molecules into two-dimensional networks parallel to the bc plane (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular Cg1···Cg1 [3.2935 (11) Å; symmetry code: -x+2, -y+1, -z] and Cg2···Cg3 [3.5590 (12) Å; symmetry code: -x+2, y-1/2, -z+1/2] interactions where Cg1, Cg2 and Cg3 are the centroids of 1,2,4-triazole, 1,2,3-oxadiazole and C14-C19 phenyl rings.

For general background to and applications of materials related to the title triazolothiadiazine compound, see: Kalluraya & Rahiman (1997); Kalluraya et al. (2003); Newton & Ramsden (1982); Wagner & Hill (1974). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For related structures, see: Goh et al. (2010a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids for non-H atoms. The minor disordered component is indicated as open bonds and an intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the a axis, showing a two-dimensional network parallel to the bc plane. Hydrogen atoms not involved in intermolecular interactions (dashed lines) have been omitted for clarity.
4-{3-[(2-isopropyl-5-methylphenoxy)methyl]-7H-1,2,4-triazolo[3,4- b][1,3,4]thiadiazin-6-yl}-3-(4-methylphenyl)-1,2,3-oxadiazol-3-ium- 5-olate top
Crystal data top
C24H24N6O3SF(000) = 1000
Mr = 476.55Dx = 1.338 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3586 reflections
a = 16.7814 (3) Åθ = 3.7–30.0°
b = 7.2901 (1) ŵ = 0.18 mm1
c = 20.2221 (3) ÅT = 100 K
β = 106.991 (1)°Plate, yellow
V = 2365.95 (6) Å30.25 × 0.21 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
6897 independent reflections
Radiation source: fine-focus sealed tube4836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
φ and ω scansθmax = 30.2°, θmin = 3.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2323
Tmin = 0.958, Tmax = 0.988k = 109
20258 measured reflectionsl = 2826
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.8879P]
where P = (Fo2 + 2Fc2)/3
6897 reflections(Δ/σ)max = 0.002
314 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C24H24N6O3SV = 2365.95 (6) Å3
Mr = 476.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.7814 (3) ŵ = 0.18 mm1
b = 7.2901 (1) ÅT = 100 K
c = 20.2221 (3) Å0.25 × 0.21 × 0.07 mm
β = 106.991 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
6897 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4836 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.988Rint = 0.053
20258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.04Δρmax = 0.68 e Å3
6897 reflectionsΔρmin = 0.60 e Å3
314 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.12872 (3)0.84837 (7)0.02404 (3)0.01713 (12)
O10.76141 (9)0.7367 (3)0.02658 (8)0.0334 (4)
O21.15782 (9)1.0448 (2)0.31193 (7)0.0200 (3)
O31.24221 (9)0.9624 (2)0.24693 (8)0.0237 (3)
N10.90823 (10)0.6471 (2)0.06230 (9)0.0171 (3)
N20.98873 (10)0.6914 (2)0.06497 (9)0.0174 (3)
N30.97931 (9)0.7563 (2)0.03891 (8)0.0135 (3)
N40.99250 (10)0.8392 (2)0.10282 (8)0.0146 (3)
N51.07442 (10)1.0591 (2)0.30466 (9)0.0185 (3)
N61.03703 (10)1.0015 (2)0.24167 (8)0.0150 (3)
C10.67088 (12)0.6673 (3)0.04511 (11)0.0240 (4)
H1A0.71440.61280.07880.029*
C20.59151 (13)0.6753 (3)0.05414 (11)0.0232 (4)
C30.52834 (13)0.7576 (3)0.00321 (12)0.0285 (5)
H3A0.47500.76400.00810.034*
C40.54356 (13)0.8308 (4)0.05515 (13)0.0298 (5)
H4A0.49990.88630.08830.036*
C50.62153 (12)0.8244 (3)0.06609 (11)0.0242 (5)
C60.68510 (12)0.7400 (3)0.01377 (10)0.0181 (3)
C70.83038 (11)0.6680 (3)0.02616 (10)0.0178 (4)
H7A0.82190.54000.03540.021*
H7B0.83830.73740.06850.021*
C80.90403 (11)0.6888 (3)0.00054 (10)0.0148 (4)
C91.02919 (11)0.7570 (3)0.00414 (10)0.0149 (4)
C101.14197 (11)0.7915 (3)0.11406 (10)0.0164 (4)
H10A1.14600.65940.11990.020*
H10B1.19340.84510.14260.020*
C111.06984 (12)0.8615 (3)0.13761 (10)0.0181 (3)
C121.09001 (11)0.9487 (3)0.20486 (10)0.0150 (4)
C131.17215 (12)0.9794 (3)0.25034 (10)0.0178 (4)
C140.94665 (11)1.0107 (3)0.22300 (10)0.0148 (4)
C150.90726 (12)0.9404 (3)0.26880 (11)0.0181 (4)
H15A0.93780.88430.30970.022*
C160.82111 (13)0.9555 (3)0.25236 (11)0.0212 (4)
H16A0.79370.90740.28240.025*
C170.77504 (12)1.0416 (3)0.19151 (12)0.0220 (4)
C180.81788 (13)1.1146 (3)0.14753 (11)0.0213 (4)
H18A0.78801.17330.10710.026*
C190.90384 (12)1.1014 (3)0.16288 (10)0.0173 (4)
H19A0.93181.15180.13370.021*
C200.57629 (14)0.5967 (4)0.11855 (13)0.0304 (5)
H20A0.53240.50760.10570.046*
H20B0.56060.69350.14440.046*
H20C0.62630.53920.14640.046*
C210.63844 (15)0.8953 (4)0.13113 (13)0.0365 (6)
H21A0.69570.94170.11800.044*0.715 (4)
H21B0.69270.85690.13220.044*0.285 (4)
C220.5837 (4)1.0436 (9)0.1679 (3)0.0728 (19)0.715 (4)
H22A0.58451.14290.13650.109*0.715 (4)
H22B0.52780.99810.18580.109*0.715 (4)
H22C0.60301.08650.20540.109*0.715 (4)
C230.6338 (3)0.7265 (7)0.1815 (2)0.0531 (11)0.715 (4)
H23A0.64920.76590.22140.080*0.715 (4)
H23B0.57800.67890.19580.080*0.715 (4)
H23C0.67150.63240.15790.080*0.715 (4)
C22X0.6361 (9)1.129 (2)0.1228 (8)0.0728 (19)0.285 (4)
H22D0.65631.18600.15760.109*0.285 (4)
H22E0.67091.16450.07790.109*0.285 (4)
H22F0.58001.16840.12830.109*0.285 (4)
C23X0.5773 (8)0.8472 (19)0.1949 (5)0.0531 (11)0.285 (4)
H23D0.57440.71610.19950.080*0.285 (4)
H23E0.59280.89920.23300.080*0.285 (4)
H23F0.52390.89400.19480.080*0.285 (4)
C240.68205 (13)1.0618 (4)0.17411 (14)0.0315 (5)
H24A0.66140.98170.20300.047*
H24B0.65691.03020.12650.047*
H24C0.66851.18640.18170.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0194 (2)0.0186 (3)0.0151 (2)0.00106 (17)0.00760 (17)0.00018 (19)
O10.0171 (7)0.0642 (13)0.0177 (8)0.0052 (7)0.0031 (6)0.0140 (8)
O20.0215 (7)0.0234 (8)0.0134 (7)0.0021 (5)0.0025 (5)0.0027 (6)
O30.0196 (7)0.0290 (9)0.0212 (8)0.0027 (6)0.0037 (6)0.0027 (7)
N10.0191 (7)0.0171 (9)0.0135 (8)0.0002 (6)0.0024 (6)0.0001 (7)
N20.0214 (7)0.0175 (9)0.0130 (8)0.0004 (6)0.0044 (6)0.0014 (6)
N30.0178 (7)0.0124 (8)0.0106 (7)0.0003 (6)0.0046 (6)0.0008 (6)
N40.0208 (7)0.0140 (8)0.0098 (7)0.0000 (6)0.0058 (6)0.0023 (6)
N50.0224 (8)0.0182 (9)0.0135 (8)0.0013 (6)0.0031 (6)0.0026 (7)
N60.0200 (7)0.0139 (8)0.0108 (7)0.0002 (6)0.0043 (6)0.0001 (6)
C10.0202 (9)0.0315 (12)0.0183 (10)0.0003 (8)0.0025 (8)0.0001 (9)
C20.0239 (9)0.0267 (12)0.0195 (10)0.0044 (8)0.0070 (8)0.0046 (9)
C30.0193 (9)0.0385 (14)0.0282 (12)0.0028 (9)0.0077 (8)0.0007 (11)
C40.0204 (9)0.0417 (15)0.0261 (12)0.0075 (9)0.0053 (8)0.0043 (11)
C50.0211 (9)0.0322 (13)0.0180 (10)0.0014 (8)0.0036 (8)0.0028 (9)
C60.0178 (6)0.0223 (8)0.0137 (6)0.0003 (5)0.0038 (5)0.0003 (6)
C70.0171 (8)0.0220 (11)0.0126 (9)0.0000 (7)0.0018 (7)0.0009 (8)
C80.0168 (8)0.0131 (9)0.0122 (9)0.0004 (6)0.0003 (7)0.0017 (7)
C90.0188 (8)0.0133 (9)0.0132 (9)0.0018 (7)0.0057 (7)0.0016 (7)
C100.0172 (8)0.0193 (10)0.0117 (9)0.0014 (7)0.0025 (7)0.0011 (7)
C110.0178 (6)0.0223 (8)0.0137 (6)0.0003 (5)0.0038 (5)0.0003 (6)
C120.0170 (8)0.0161 (10)0.0110 (8)0.0007 (7)0.0028 (7)0.0005 (7)
C130.0231 (9)0.0168 (10)0.0123 (9)0.0020 (7)0.0033 (7)0.0007 (8)
C140.0170 (8)0.0151 (9)0.0112 (9)0.0011 (7)0.0026 (7)0.0024 (7)
C150.0254 (9)0.0136 (10)0.0164 (9)0.0001 (7)0.0080 (8)0.0016 (8)
C160.0259 (10)0.0196 (11)0.0218 (10)0.0025 (8)0.0125 (8)0.0034 (8)
C170.0209 (9)0.0196 (11)0.0247 (11)0.0000 (7)0.0053 (8)0.0068 (9)
C180.0253 (9)0.0207 (11)0.0176 (10)0.0032 (8)0.0056 (8)0.0033 (8)
C190.0237 (9)0.0156 (10)0.0138 (9)0.0022 (7)0.0074 (7)0.0013 (8)
C200.0279 (10)0.0401 (14)0.0257 (12)0.0037 (10)0.0118 (9)0.0017 (11)
C210.0254 (10)0.0585 (18)0.0252 (12)0.0059 (11)0.0068 (9)0.0161 (12)
C220.075 (3)0.095 (4)0.062 (3)0.051 (3)0.041 (3)0.057 (3)
C230.067 (3)0.069 (3)0.0283 (19)0.009 (2)0.0221 (19)0.003 (2)
C22X0.075 (3)0.095 (4)0.062 (3)0.051 (3)0.041 (3)0.057 (3)
C23X0.067 (3)0.069 (3)0.0283 (19)0.009 (2)0.0221 (19)0.003 (2)
C240.0218 (10)0.0323 (13)0.0406 (14)0.0009 (9)0.0094 (10)0.0063 (11)
Geometric parameters (Å, º) top
S1—C91.7327 (19)C14—C151.384 (3)
S1—C101.816 (2)C14—C191.386 (3)
O1—C61.379 (2)C15—C161.390 (3)
O1—C71.417 (2)C15—H15A0.9300
O2—N51.368 (2)C16—C171.396 (3)
O2—C131.418 (2)C16—H16A0.9300
O3—C131.204 (2)C17—C181.402 (3)
N1—C81.307 (2)C17—C241.503 (3)
N1—N21.405 (2)C18—C191.387 (3)
N2—C91.309 (2)C18—H18A0.9300
N3—C91.373 (2)C19—H19A0.9300
N3—C81.373 (2)C20—H20A0.9600
N3—N41.385 (2)C20—H20B0.9600
N4—C111.293 (2)C20—H20C0.9600
N5—N61.314 (2)C21—C23X1.438 (11)
N6—C121.371 (2)C21—C221.472 (5)
N6—C141.453 (2)C21—C231.585 (5)
C1—C61.387 (3)C21—C22X1.716 (16)
C1—C21.397 (3)C21—H21A0.9800
C1—H1A0.9300C21—H21B0.9600
C2—C31.381 (3)C22—H22A0.9600
C2—C201.511 (3)C22—H22B0.9600
C3—C41.385 (3)C22—H22C0.9600
C3—H3A0.9300C23—H23A0.9600
C4—C51.390 (3)C23—H23B0.9600
C4—H4A0.9300C23—H23C0.9600
C5—C61.406 (3)C22X—H22D0.9600
C5—C211.515 (3)C22X—H22E0.9600
C7—C81.494 (3)C22X—H22F0.9600
C7—H7A0.9700C23X—H23D0.9600
C7—H7B0.9700C23X—H23E0.9600
C10—C111.513 (3)C23X—H23F0.9600
C10—H10A0.9700C24—H24A0.9600
C10—H10B0.9700C24—H24B0.9600
C11—C121.449 (3)C24—H24C0.9600
C12—C131.434 (3)
C9—S1—C1093.77 (9)C14—C15—H15A120.7
C6—O1—C7117.65 (16)C16—C15—H15A120.7
N5—O2—C13111.22 (14)C15—C16—C17121.03 (19)
C8—N1—N2107.70 (15)C15—C16—H16A119.5
C9—N2—N1106.76 (15)C17—C16—H16A119.5
C9—N3—C8105.11 (16)C16—C17—C18118.38 (18)
C9—N3—N4129.02 (15)C16—C17—C24121.3 (2)
C8—N3—N4124.59 (15)C18—C17—C24120.3 (2)
C11—N4—N3115.09 (15)C19—C18—C17121.6 (2)
N6—N5—O2105.30 (15)C19—C18—H18A119.2
N5—N6—C12114.48 (16)C17—C18—H18A119.2
N5—N6—C14113.81 (15)C14—C19—C18117.90 (18)
C12—N6—C14131.68 (16)C14—C19—H19A121.0
C6—C1—C2120.4 (2)C18—C19—H19A121.0
C6—C1—H1A119.8C2—C20—H20A109.5
C2—C1—H1A119.8C2—C20—H20B109.5
C3—C2—C1118.3 (2)H20A—C20—H20B109.5
C3—C2—C20121.42 (19)C2—C20—H20C109.5
C1—C2—C20120.3 (2)H20A—C20—H20C109.5
C2—C3—C4120.7 (2)H20B—C20—H20C109.5
C2—C3—H3A119.7C23X—C21—C5115.5 (5)
C4—C3—H3A119.7C22—C21—C5116.2 (3)
C3—C4—C5122.6 (2)C22—C21—C23109.8 (4)
C3—C4—H4A118.7C5—C21—C23107.9 (3)
C5—C4—H4A118.7C23X—C21—C22X107.5 (8)
C4—C5—C6115.9 (2)C5—C21—C22X103.8 (5)
C4—C5—C21123.4 (2)C22—C21—H21A107.5
C6—C5—C21120.61 (19)C5—C21—H21A107.5
O1—C6—C1123.86 (18)C23—C21—H21A107.5
O1—C6—C5114.11 (18)C23X—C21—H21B109.9
C1—C6—C5122.03 (18)C22—C21—H21B131.2
O1—C7—C8105.79 (16)C5—C21—H21B109.9
O1—C7—H7A110.6C23—C21—H21B68.1
C8—C7—H7A110.6C22X—C21—H21B109.9
O1—C7—H7B110.6C21—C22—H22A109.5
C8—C7—H7B110.6C21—C22—H22B109.5
H7A—C7—H7B108.7C21—C22—H22C109.5
N1—C8—N3109.95 (16)C21—C23—H23A109.5
N1—C8—C7127.09 (17)H21B—C23—H23A94.7
N3—C8—C7122.97 (17)C21—C23—H23B109.5
N2—C9—N3110.46 (16)H21B—C23—H23B144.6
N2—C9—S1129.40 (15)C21—C23—H23C109.5
N3—C9—S1120.04 (14)H21B—C23—H23C85.0
C11—C10—S1111.30 (13)C21—C22X—H22D109.5
C11—C10—H10A109.4C21—C22X—H22E109.5
S1—C10—H10A109.4H22D—C22X—H22E109.5
C11—C10—H10B109.4C21—C22X—H22F109.5
S1—C10—H10B109.4H22D—C22X—H22F109.5
H10A—C10—H10B108.0H22E—C22X—H22F109.5
N4—C11—C12119.20 (17)C21—C23X—H23D109.5
N4—C11—C10123.66 (18)C21—C23X—H23E109.5
C12—C11—C10117.04 (16)H23D—C23X—H23E109.5
N6—C12—C13105.21 (16)C21—C23X—H23F109.5
N6—C12—C11128.48 (17)H23D—C23X—H23F109.5
C13—C12—C11126.00 (17)H23E—C23X—H23F109.5
O3—C13—O2120.25 (17)C17—C24—H24A109.5
O3—C13—C12135.99 (19)C17—C24—H24B109.5
O2—C13—C12103.76 (16)H24A—C24—H24B109.5
C15—C14—C19122.49 (17)C17—C24—H24C109.5
C15—C14—N6118.37 (17)H24A—C24—H24C109.5
C19—C14—N6118.95 (17)H24B—C24—H24C109.5
C14—C15—C16118.53 (19)
C8—N1—N2—C90.3 (2)N3—N4—C11—C104.3 (3)
C9—N3—N4—C1127.6 (3)S1—C10—C11—N447.2 (3)
C8—N3—N4—C11167.24 (18)S1—C10—C11—C12136.52 (16)
C13—O2—N5—N61.3 (2)N5—N6—C12—C130.9 (2)
O2—N5—N6—C120.2 (2)C14—N6—C12—C13176.92 (19)
O2—N5—N6—C14178.43 (15)N5—N6—C12—C11172.90 (19)
C6—C1—C2—C30.2 (3)C14—N6—C12—C119.3 (3)
C6—C1—C2—C20179.7 (2)N4—C11—C12—N65.8 (3)
C1—C2—C3—C40.2 (4)C10—C11—C12—N6170.68 (19)
C20—C2—C3—C4179.3 (2)N4—C11—C12—C13178.4 (2)
C2—C3—C4—C50.6 (4)C10—C11—C12—C131.9 (3)
C3—C4—C5—C60.5 (4)N5—O2—C13—O3178.29 (18)
C3—C4—C5—C21176.9 (3)N5—O2—C13—C121.8 (2)
C7—O1—C6—C15.2 (3)N6—C12—C13—O3178.5 (2)
C7—O1—C6—C5174.8 (2)C11—C12—C13—O37.5 (4)
C2—C1—C6—O1179.7 (2)N6—C12—C13—O21.5 (2)
C2—C1—C6—C50.3 (3)C11—C12—C13—O2172.44 (19)
C4—C5—C6—O1180.0 (2)N5—N6—C14—C1548.2 (2)
C21—C5—C6—O12.5 (3)C12—N6—C14—C15133.9 (2)
C4—C5—C6—C10.1 (3)N5—N6—C14—C19126.9 (2)
C21—C5—C6—C1177.4 (2)C12—N6—C14—C1950.9 (3)
C6—O1—C7—C8177.50 (18)C19—C14—C15—C162.5 (3)
N2—N1—C8—N31.2 (2)N6—C14—C15—C16177.51 (18)
N2—N1—C8—C7179.21 (18)C14—C15—C16—C170.8 (3)
C9—N3—C8—N11.5 (2)C15—C16—C17—C180.7 (3)
N4—N3—C8—N1169.57 (17)C15—C16—C17—C24178.7 (2)
C9—N3—C8—C7178.86 (18)C16—C17—C18—C190.6 (3)
N4—N3—C8—C710.8 (3)C24—C17—C18—C19178.7 (2)
O1—C7—C8—N145.2 (3)C15—C14—C19—C182.6 (3)
O1—C7—C8—N3135.22 (19)N6—C14—C19—C18177.54 (17)
N1—N2—C9—N30.6 (2)C17—C18—C19—C141.0 (3)
N1—N2—C9—S1175.78 (15)C4—C5—C21—C23X43.8 (7)
C8—N3—C9—N21.3 (2)C6—C5—C21—C23X133.5 (7)
N4—N3—C9—N2168.63 (17)C4—C5—C21—C2227.4 (5)
C8—N3—C9—S1175.50 (14)C6—C5—C21—C22155.2 (4)
N4—N3—C9—S18.1 (3)C4—C5—C21—C2396.3 (3)
C10—S1—C9—N2154.3 (2)C6—C5—C21—C2381.0 (3)
C10—S1—C9—N329.67 (17)C4—C5—C21—C22X73.6 (6)
C9—S1—C10—C1151.92 (16)C6—C5—C21—C22X109.1 (6)
N3—N4—C11—C12179.41 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.202.993 (3)138
C10—H10A···N1i0.972.563.393 (3)144
C15—H15A···N2ii0.932.493.377 (3)160
C19—H19A···N2iii0.932.473.397 (3)174
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+2, y+2, z.

Experimental details

Crystal data
Chemical formulaC24H24N6O3S
Mr476.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.7814 (3), 7.2901 (1), 20.2221 (3)
β (°) 106.991 (1)
V3)2365.95 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.25 × 0.21 × 0.07
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.958, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
20258, 6897, 4836
Rint0.053
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.162, 1.04
No. of reflections6897
No. of parameters314
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.60

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O30.972.202.993 (3)138
C10—H10A···N1i0.972.563.393 (3)144
C15—H15A···N2ii0.932.493.377 (3)160
C19—H19A···N2iii0.932.473.397 (3)174
Symmetry codes: (i) x+2, y+1, z; (ii) x, y+3/2, z+1/2; (iii) x+2, y+2, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7576-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394–o1395.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010c). Acta Cryst. E66, o2162-o2163.  Google Scholar
First citationGoh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010d). Acta Cryst. E66, o2178-o2179.  Google Scholar
First citationKalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052.  CAS Google Scholar
First citationKalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356.  CAS Google Scholar
First citationNewton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337–1338.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds