organic compounds
4-{3-[(2-Isopropyl-5-methylphenoxy)methyl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-6-yl}-3-(p-tolyl)sydnone
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my
In the title triazolothiadiazin compound, C24H24N6O3S (systematic name: 4-{3-[(2-isopropyl-5-methylphenoxy)methyl]-7H-1,2,4-triazolo[3,4-b][1,3,4]thiadiazin-6-yl}-3-(4-methylphenyl)-1,2,3-oxadiazol-3-ium-5-olate), an intramolecular C—H⋯O hydrogen bond generates an S(6) ring motif. The two terminal methyl groups of the isopropyl unit are disordered over two sets of positions in a 0.715 (4):0.285 (4) ratio. The mean planes formed through the major and minor disordered isopropyl units are inclined at interplanar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached phenyl ring. The 3,6-dihydro-1,3,4-thiadiazine ring adopts a twist-boat conformation. The interplanar angle formed between 1,2,3-oxadiazole and 1,2,4-triazole rings is 18.80 (11)°. In the crystal, neighbouring molecules are linked into sheets lying parallel to the bc plane by C—H⋯N hydrogen bonds. Weak intermolecular π–π interactions [centroid–centroid distances = 3.2935 (11) and 3.5590 (12) Å] further stabilize the crystal structure.
Related literature
For general background to and applications of materials related to the title triazolothiadiazine compound, see: Kalluraya & Rahiman (1997); Kalluraya et al. (2003); Newton & Ramsden (1982); Wagner & Hill (1974). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For related structures, see: Goh et al. (2010a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810030205/hb5569sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810030205/hb5569Isup2.hkl
A solution of triazole (0.01 mol) and 4-bromoacetyl-3-tolylsydnone (0.01 mol) in absolute ethanol (20 ml) was heated under reflux for 10–12 h. The solution was concentrated, cooled to room temperature and neutrallized with 10 % sodium bicarbonate solution. The solid separated was filtered, washed with water, dried and recrystallized from ethanol. Yellow plates of (I) were obtained from a 1:2 mixture of DMF and ethanol by slow evaporation.
Atoms C22 and C23 are disordered over two sites with a refined occupancy ratio of 0.715 (4):0.285 (4). The same Uij parameters were applied for atom pairs C6/C11, C22/C22X and C23/C23X. All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.97 Å, and refined using a riding model, with Uiso = 1.2 or 1.5 Ueq(C). The rotating group model was used for the methyl groups.
Sydnones are a class of
containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a triazolothiadiazine moiety at the 4-position of the phenylsydnone was introduced. A series of triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).In the title triazolothiadiazine compound, an intramolecular C10—H10B···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The two terminal methyl groups of the isopropyl unit (atoms C22 and C23) were disordered over two positions with refined occupancies of 0.715 (4) and 0.285 (4). The mean planes formed through the major and minor disordered isopropyl units were inclined at interplanar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached C1-C6 phenyl ring. The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts a twist-boat conformation. The puckering parameters are Q = 0.5952 (17) Å, θ = 113.75 (18)° and φ = 146.7 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings were inclined to each other at interplanar angle of 18.80 (11)°. The interplanar angles formed between the C1-C6 and C14-C19 phenyl rings with respect to 1,2,4-triazole and 1,2,3-oxadiazole rings are 49.56 (11) and 49.84 (11)°, respectively. The bond lengths and angles are comparable to those closely related structures (Goh et al., 2010a,b,c,d).
In the
intermolecular C10—H10A···N1, C15—H15A···N2 and C19—H19A···N2 hydrogen bonds (Table 1) link neighbouring molecules into two-dimensional networks parallel to the bc plane (Fig. 2). Further stabilization of the is provided by weak intermolecular Cg1···Cg1 [3.2935 (11) Å; symmetry code: -x+2, -y+1, -z] and Cg2···Cg3 [3.5590 (12) Å; symmetry code: -x+2, y-1/2, -z+1/2] interactions where Cg1, Cg2 and Cg3 are the centroids of 1,2,4-triazole, 1,2,3-oxadiazole and C14-C19 phenyl rings.For general background to and applications of materials related to the title triazolothiadiazine compound, see: Kalluraya & Rahiman (1997); Kalluraya et al. (2003); Newton & Ramsden (1982); Wagner & Hill (1974). For graph-set descriptions of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For ring conformations and ring puckering analysis, see: Cremer & Pople (1975). For related structures, see: Goh et al. (2010a,b,c,d). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C24H24N6O3S | F(000) = 1000 |
Mr = 476.55 | Dx = 1.338 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3586 reflections |
a = 16.7814 (3) Å | θ = 3.7–30.0° |
b = 7.2901 (1) Å | µ = 0.18 mm−1 |
c = 20.2221 (3) Å | T = 100 K |
β = 106.991 (1)° | Plate, yellow |
V = 2365.95 (6) Å3 | 0.25 × 0.21 × 0.07 mm |
Z = 4 |
Bruker SMART APEXII CCD diffractometer | 6897 independent reflections |
Radiation source: fine-focus sealed tube | 4836 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
φ and ω scans | θmax = 30.2°, θmin = 3.5° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −23→23 |
Tmin = 0.958, Tmax = 0.988 | k = −10→9 |
20258 measured reflections | l = −28→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0787P)2 + 0.8879P] where P = (Fo2 + 2Fc2)/3 |
6897 reflections | (Δ/σ)max = 0.002 |
314 parameters | Δρmax = 0.68 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
C24H24N6O3S | V = 2365.95 (6) Å3 |
Mr = 476.55 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.7814 (3) Å | µ = 0.18 mm−1 |
b = 7.2901 (1) Å | T = 100 K |
c = 20.2221 (3) Å | 0.25 × 0.21 × 0.07 mm |
β = 106.991 (1)° |
Bruker SMART APEXII CCD diffractometer | 6897 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 4836 reflections with I > 2σ(I) |
Tmin = 0.958, Tmax = 0.988 | Rint = 0.053 |
20258 measured reflections |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.68 e Å−3 |
6897 reflections | Δρmin = −0.60 e Å−3 |
314 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 1.12872 (3) | 0.84837 (7) | 0.02404 (3) | 0.01713 (12) | |
O1 | 0.76141 (9) | 0.7367 (3) | −0.02658 (8) | 0.0334 (4) | |
O2 | 1.15782 (9) | 1.0448 (2) | 0.31193 (7) | 0.0200 (3) | |
O3 | 1.24221 (9) | 0.9624 (2) | 0.24693 (8) | 0.0237 (3) | |
N1 | 0.90823 (10) | 0.6471 (2) | −0.06230 (9) | 0.0171 (3) | |
N2 | 0.98873 (10) | 0.6914 (2) | −0.06497 (9) | 0.0174 (3) | |
N3 | 0.97931 (9) | 0.7563 (2) | 0.03891 (8) | 0.0135 (3) | |
N4 | 0.99250 (10) | 0.8392 (2) | 0.10282 (8) | 0.0146 (3) | |
N5 | 1.07442 (10) | 1.0591 (2) | 0.30466 (9) | 0.0185 (3) | |
N6 | 1.03703 (10) | 1.0015 (2) | 0.24167 (8) | 0.0150 (3) | |
C1 | 0.67088 (12) | 0.6673 (3) | 0.04511 (11) | 0.0240 (4) | |
H1A | 0.7144 | 0.6128 | 0.0788 | 0.029* | |
C2 | 0.59151 (13) | 0.6753 (3) | 0.05414 (11) | 0.0232 (4) | |
C3 | 0.52834 (13) | 0.7576 (3) | 0.00321 (12) | 0.0285 (5) | |
H3A | 0.4750 | 0.7640 | 0.0081 | 0.034* | |
C4 | 0.54356 (13) | 0.8308 (4) | −0.05515 (13) | 0.0298 (5) | |
H4A | 0.4999 | 0.8863 | −0.0883 | 0.036* | |
C5 | 0.62153 (12) | 0.8244 (3) | −0.06609 (11) | 0.0242 (5) | |
C6 | 0.68510 (12) | 0.7400 (3) | −0.01377 (10) | 0.0181 (3) | |
C7 | 0.83038 (11) | 0.6680 (3) | 0.02616 (10) | 0.0178 (4) | |
H7A | 0.8219 | 0.5400 | 0.0354 | 0.021* | |
H7B | 0.8383 | 0.7374 | 0.0685 | 0.021* | |
C8 | 0.90403 (11) | 0.6888 (3) | −0.00054 (10) | 0.0148 (4) | |
C9 | 1.02919 (11) | 0.7570 (3) | −0.00414 (10) | 0.0149 (4) | |
C10 | 1.14197 (11) | 0.7915 (3) | 0.11406 (10) | 0.0164 (4) | |
H10A | 1.1460 | 0.6594 | 0.1199 | 0.020* | |
H10B | 1.1934 | 0.8451 | 0.1426 | 0.020* | |
C11 | 1.06984 (12) | 0.8615 (3) | 0.13761 (10) | 0.0181 (3) | |
C12 | 1.09001 (11) | 0.9487 (3) | 0.20486 (10) | 0.0150 (4) | |
C13 | 1.17215 (12) | 0.9794 (3) | 0.25034 (10) | 0.0178 (4) | |
C14 | 0.94665 (11) | 1.0107 (3) | 0.22300 (10) | 0.0148 (4) | |
C15 | 0.90726 (12) | 0.9404 (3) | 0.26880 (11) | 0.0181 (4) | |
H15A | 0.9378 | 0.8843 | 0.3097 | 0.022* | |
C16 | 0.82111 (13) | 0.9555 (3) | 0.25236 (11) | 0.0212 (4) | |
H16A | 0.7937 | 0.9074 | 0.2824 | 0.025* | |
C17 | 0.77504 (12) | 1.0416 (3) | 0.19151 (12) | 0.0220 (4) | |
C18 | 0.81788 (13) | 1.1146 (3) | 0.14753 (11) | 0.0213 (4) | |
H18A | 0.7880 | 1.1733 | 0.1071 | 0.026* | |
C19 | 0.90384 (12) | 1.1014 (3) | 0.16288 (10) | 0.0173 (4) | |
H19A | 0.9318 | 1.1518 | 0.1337 | 0.021* | |
C20 | 0.57629 (14) | 0.5967 (4) | 0.11855 (13) | 0.0304 (5) | |
H20A | 0.5324 | 0.5076 | 0.1057 | 0.046* | |
H20B | 0.5606 | 0.6935 | 0.1444 | 0.046* | |
H20C | 0.6263 | 0.5392 | 0.1464 | 0.046* | |
C21 | 0.63844 (15) | 0.8953 (4) | −0.13113 (13) | 0.0365 (6) | |
H21A | 0.6957 | 0.9417 | −0.1180 | 0.044* | 0.715 (4) |
H21B | 0.6927 | 0.8569 | −0.1322 | 0.044* | 0.285 (4) |
C22 | 0.5837 (4) | 1.0436 (9) | −0.1679 (3) | 0.0728 (19) | 0.715 (4) |
H22A | 0.5845 | 1.1429 | −0.1365 | 0.109* | 0.715 (4) |
H22B | 0.5278 | 0.9981 | −0.1858 | 0.109* | 0.715 (4) |
H22C | 0.6030 | 1.0865 | −0.2054 | 0.109* | 0.715 (4) |
C23 | 0.6338 (3) | 0.7265 (7) | −0.1815 (2) | 0.0531 (11) | 0.715 (4) |
H23A | 0.6492 | 0.7659 | −0.2214 | 0.080* | 0.715 (4) |
H23B | 0.5780 | 0.6789 | −0.1958 | 0.080* | 0.715 (4) |
H23C | 0.6715 | 0.6324 | −0.1579 | 0.080* | 0.715 (4) |
C22X | 0.6361 (9) | 1.129 (2) | −0.1228 (8) | 0.0728 (19) | 0.285 (4) |
H22D | 0.6563 | 1.1860 | −0.1576 | 0.109* | 0.285 (4) |
H22E | 0.6709 | 1.1645 | −0.0779 | 0.109* | 0.285 (4) |
H22F | 0.5800 | 1.1684 | −0.1283 | 0.109* | 0.285 (4) |
C23X | 0.5773 (8) | 0.8472 (19) | −0.1949 (5) | 0.0531 (11) | 0.285 (4) |
H23D | 0.5744 | 0.7161 | −0.1995 | 0.080* | 0.285 (4) |
H23E | 0.5928 | 0.8992 | −0.2330 | 0.080* | 0.285 (4) |
H23F | 0.5239 | 0.8940 | −0.1948 | 0.080* | 0.285 (4) |
C24 | 0.68205 (13) | 1.0618 (4) | 0.17411 (14) | 0.0315 (5) | |
H24A | 0.6614 | 0.9817 | 0.2030 | 0.047* | |
H24B | 0.6569 | 1.0302 | 0.1265 | 0.047* | |
H24C | 0.6685 | 1.1864 | 0.1817 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0194 (2) | 0.0186 (3) | 0.0151 (2) | −0.00106 (17) | 0.00760 (17) | 0.00018 (19) |
O1 | 0.0171 (7) | 0.0642 (13) | 0.0177 (8) | 0.0052 (7) | 0.0031 (6) | 0.0140 (8) |
O2 | 0.0215 (7) | 0.0234 (8) | 0.0134 (7) | −0.0021 (5) | 0.0025 (5) | −0.0027 (6) |
O3 | 0.0196 (7) | 0.0290 (9) | 0.0212 (8) | −0.0027 (6) | 0.0037 (6) | −0.0027 (7) |
N1 | 0.0191 (7) | 0.0171 (9) | 0.0135 (8) | −0.0002 (6) | 0.0024 (6) | −0.0001 (7) |
N2 | 0.0214 (7) | 0.0175 (9) | 0.0130 (8) | 0.0004 (6) | 0.0044 (6) | −0.0014 (6) |
N3 | 0.0178 (7) | 0.0124 (8) | 0.0106 (7) | 0.0003 (6) | 0.0046 (6) | −0.0008 (6) |
N4 | 0.0208 (7) | 0.0140 (8) | 0.0098 (7) | 0.0000 (6) | 0.0058 (6) | −0.0023 (6) |
N5 | 0.0224 (8) | 0.0182 (9) | 0.0135 (8) | −0.0013 (6) | 0.0031 (6) | −0.0026 (7) |
N6 | 0.0200 (7) | 0.0139 (8) | 0.0108 (7) | −0.0002 (6) | 0.0043 (6) | −0.0001 (6) |
C1 | 0.0202 (9) | 0.0315 (12) | 0.0183 (10) | 0.0003 (8) | 0.0025 (8) | 0.0001 (9) |
C2 | 0.0239 (9) | 0.0267 (12) | 0.0195 (10) | −0.0044 (8) | 0.0070 (8) | −0.0046 (9) |
C3 | 0.0193 (9) | 0.0385 (14) | 0.0282 (12) | 0.0028 (9) | 0.0077 (8) | 0.0007 (11) |
C4 | 0.0204 (9) | 0.0417 (15) | 0.0261 (12) | 0.0075 (9) | 0.0053 (8) | 0.0043 (11) |
C5 | 0.0211 (9) | 0.0322 (13) | 0.0180 (10) | 0.0014 (8) | 0.0036 (8) | 0.0028 (9) |
C6 | 0.0178 (6) | 0.0223 (8) | 0.0137 (6) | −0.0003 (5) | 0.0038 (5) | 0.0003 (6) |
C7 | 0.0171 (8) | 0.0220 (11) | 0.0126 (9) | 0.0000 (7) | 0.0018 (7) | 0.0009 (8) |
C8 | 0.0168 (8) | 0.0131 (9) | 0.0122 (9) | 0.0004 (6) | 0.0003 (7) | 0.0017 (7) |
C9 | 0.0188 (8) | 0.0133 (9) | 0.0132 (9) | 0.0018 (7) | 0.0057 (7) | 0.0016 (7) |
C10 | 0.0172 (8) | 0.0193 (10) | 0.0117 (9) | 0.0014 (7) | 0.0025 (7) | −0.0011 (7) |
C11 | 0.0178 (6) | 0.0223 (8) | 0.0137 (6) | −0.0003 (5) | 0.0038 (5) | 0.0003 (6) |
C12 | 0.0170 (8) | 0.0161 (10) | 0.0110 (8) | −0.0007 (7) | 0.0028 (7) | 0.0005 (7) |
C13 | 0.0231 (9) | 0.0168 (10) | 0.0123 (9) | −0.0020 (7) | 0.0033 (7) | −0.0007 (8) |
C14 | 0.0170 (8) | 0.0151 (9) | 0.0112 (9) | 0.0011 (7) | 0.0026 (7) | −0.0024 (7) |
C15 | 0.0254 (9) | 0.0136 (10) | 0.0164 (9) | −0.0001 (7) | 0.0080 (8) | −0.0016 (8) |
C16 | 0.0259 (10) | 0.0196 (11) | 0.0218 (10) | −0.0025 (8) | 0.0125 (8) | −0.0034 (8) |
C17 | 0.0209 (9) | 0.0196 (11) | 0.0247 (11) | 0.0000 (7) | 0.0053 (8) | −0.0068 (9) |
C18 | 0.0253 (9) | 0.0207 (11) | 0.0176 (10) | 0.0032 (8) | 0.0056 (8) | −0.0033 (8) |
C19 | 0.0237 (9) | 0.0156 (10) | 0.0138 (9) | 0.0022 (7) | 0.0074 (7) | −0.0013 (8) |
C20 | 0.0279 (10) | 0.0401 (14) | 0.0257 (12) | −0.0037 (10) | 0.0118 (9) | 0.0017 (11) |
C21 | 0.0254 (10) | 0.0585 (18) | 0.0252 (12) | 0.0059 (11) | 0.0068 (9) | 0.0161 (12) |
C22 | 0.075 (3) | 0.095 (4) | 0.062 (3) | 0.051 (3) | 0.041 (3) | 0.057 (3) |
C23 | 0.067 (3) | 0.069 (3) | 0.0283 (19) | −0.009 (2) | 0.0221 (19) | −0.003 (2) |
C22X | 0.075 (3) | 0.095 (4) | 0.062 (3) | 0.051 (3) | 0.041 (3) | 0.057 (3) |
C23X | 0.067 (3) | 0.069 (3) | 0.0283 (19) | −0.009 (2) | 0.0221 (19) | −0.003 (2) |
C24 | 0.0218 (10) | 0.0323 (13) | 0.0406 (14) | −0.0009 (9) | 0.0094 (10) | −0.0063 (11) |
S1—C9 | 1.7327 (19) | C14—C15 | 1.384 (3) |
S1—C10 | 1.816 (2) | C14—C19 | 1.386 (3) |
O1—C6 | 1.379 (2) | C15—C16 | 1.390 (3) |
O1—C7 | 1.417 (2) | C15—H15A | 0.9300 |
O2—N5 | 1.368 (2) | C16—C17 | 1.396 (3) |
O2—C13 | 1.418 (2) | C16—H16A | 0.9300 |
O3—C13 | 1.204 (2) | C17—C18 | 1.402 (3) |
N1—C8 | 1.307 (2) | C17—C24 | 1.503 (3) |
N1—N2 | 1.405 (2) | C18—C19 | 1.387 (3) |
N2—C9 | 1.309 (2) | C18—H18A | 0.9300 |
N3—C9 | 1.373 (2) | C19—H19A | 0.9300 |
N3—C8 | 1.373 (2) | C20—H20A | 0.9600 |
N3—N4 | 1.385 (2) | C20—H20B | 0.9600 |
N4—C11 | 1.293 (2) | C20—H20C | 0.9600 |
N5—N6 | 1.314 (2) | C21—C23X | 1.438 (11) |
N6—C12 | 1.371 (2) | C21—C22 | 1.472 (5) |
N6—C14 | 1.453 (2) | C21—C23 | 1.585 (5) |
C1—C6 | 1.387 (3) | C21—C22X | 1.716 (16) |
C1—C2 | 1.397 (3) | C21—H21A | 0.9800 |
C1—H1A | 0.9300 | C21—H21B | 0.9600 |
C2—C3 | 1.381 (3) | C22—H22A | 0.9600 |
C2—C20 | 1.511 (3) | C22—H22B | 0.9600 |
C3—C4 | 1.385 (3) | C22—H22C | 0.9600 |
C3—H3A | 0.9300 | C23—H23A | 0.9600 |
C4—C5 | 1.390 (3) | C23—H23B | 0.9600 |
C4—H4A | 0.9300 | C23—H23C | 0.9600 |
C5—C6 | 1.406 (3) | C22X—H22D | 0.9600 |
C5—C21 | 1.515 (3) | C22X—H22E | 0.9600 |
C7—C8 | 1.494 (3) | C22X—H22F | 0.9600 |
C7—H7A | 0.9700 | C23X—H23D | 0.9600 |
C7—H7B | 0.9700 | C23X—H23E | 0.9600 |
C10—C11 | 1.513 (3) | C23X—H23F | 0.9600 |
C10—H10A | 0.9700 | C24—H24A | 0.9600 |
C10—H10B | 0.9700 | C24—H24B | 0.9600 |
C11—C12 | 1.449 (3) | C24—H24C | 0.9600 |
C12—C13 | 1.434 (3) | ||
C9—S1—C10 | 93.77 (9) | C14—C15—H15A | 120.7 |
C6—O1—C7 | 117.65 (16) | C16—C15—H15A | 120.7 |
N5—O2—C13 | 111.22 (14) | C15—C16—C17 | 121.03 (19) |
C8—N1—N2 | 107.70 (15) | C15—C16—H16A | 119.5 |
C9—N2—N1 | 106.76 (15) | C17—C16—H16A | 119.5 |
C9—N3—C8 | 105.11 (16) | C16—C17—C18 | 118.38 (18) |
C9—N3—N4 | 129.02 (15) | C16—C17—C24 | 121.3 (2) |
C8—N3—N4 | 124.59 (15) | C18—C17—C24 | 120.3 (2) |
C11—N4—N3 | 115.09 (15) | C19—C18—C17 | 121.6 (2) |
N6—N5—O2 | 105.30 (15) | C19—C18—H18A | 119.2 |
N5—N6—C12 | 114.48 (16) | C17—C18—H18A | 119.2 |
N5—N6—C14 | 113.81 (15) | C14—C19—C18 | 117.90 (18) |
C12—N6—C14 | 131.68 (16) | C14—C19—H19A | 121.0 |
C6—C1—C2 | 120.4 (2) | C18—C19—H19A | 121.0 |
C6—C1—H1A | 119.8 | C2—C20—H20A | 109.5 |
C2—C1—H1A | 119.8 | C2—C20—H20B | 109.5 |
C3—C2—C1 | 118.3 (2) | H20A—C20—H20B | 109.5 |
C3—C2—C20 | 121.42 (19) | C2—C20—H20C | 109.5 |
C1—C2—C20 | 120.3 (2) | H20A—C20—H20C | 109.5 |
C2—C3—C4 | 120.7 (2) | H20B—C20—H20C | 109.5 |
C2—C3—H3A | 119.7 | C23X—C21—C5 | 115.5 (5) |
C4—C3—H3A | 119.7 | C22—C21—C5 | 116.2 (3) |
C3—C4—C5 | 122.6 (2) | C22—C21—C23 | 109.8 (4) |
C3—C4—H4A | 118.7 | C5—C21—C23 | 107.9 (3) |
C5—C4—H4A | 118.7 | C23X—C21—C22X | 107.5 (8) |
C4—C5—C6 | 115.9 (2) | C5—C21—C22X | 103.8 (5) |
C4—C5—C21 | 123.4 (2) | C22—C21—H21A | 107.5 |
C6—C5—C21 | 120.61 (19) | C5—C21—H21A | 107.5 |
O1—C6—C1 | 123.86 (18) | C23—C21—H21A | 107.5 |
O1—C6—C5 | 114.11 (18) | C23X—C21—H21B | 109.9 |
C1—C6—C5 | 122.03 (18) | C22—C21—H21B | 131.2 |
O1—C7—C8 | 105.79 (16) | C5—C21—H21B | 109.9 |
O1—C7—H7A | 110.6 | C23—C21—H21B | 68.1 |
C8—C7—H7A | 110.6 | C22X—C21—H21B | 109.9 |
O1—C7—H7B | 110.6 | C21—C22—H22A | 109.5 |
C8—C7—H7B | 110.6 | C21—C22—H22B | 109.5 |
H7A—C7—H7B | 108.7 | C21—C22—H22C | 109.5 |
N1—C8—N3 | 109.95 (16) | C21—C23—H23A | 109.5 |
N1—C8—C7 | 127.09 (17) | H21B—C23—H23A | 94.7 |
N3—C8—C7 | 122.97 (17) | C21—C23—H23B | 109.5 |
N2—C9—N3 | 110.46 (16) | H21B—C23—H23B | 144.6 |
N2—C9—S1 | 129.40 (15) | C21—C23—H23C | 109.5 |
N3—C9—S1 | 120.04 (14) | H21B—C23—H23C | 85.0 |
C11—C10—S1 | 111.30 (13) | C21—C22X—H22D | 109.5 |
C11—C10—H10A | 109.4 | C21—C22X—H22E | 109.5 |
S1—C10—H10A | 109.4 | H22D—C22X—H22E | 109.5 |
C11—C10—H10B | 109.4 | C21—C22X—H22F | 109.5 |
S1—C10—H10B | 109.4 | H22D—C22X—H22F | 109.5 |
H10A—C10—H10B | 108.0 | H22E—C22X—H22F | 109.5 |
N4—C11—C12 | 119.20 (17) | C21—C23X—H23D | 109.5 |
N4—C11—C10 | 123.66 (18) | C21—C23X—H23E | 109.5 |
C12—C11—C10 | 117.04 (16) | H23D—C23X—H23E | 109.5 |
N6—C12—C13 | 105.21 (16) | C21—C23X—H23F | 109.5 |
N6—C12—C11 | 128.48 (17) | H23D—C23X—H23F | 109.5 |
C13—C12—C11 | 126.00 (17) | H23E—C23X—H23F | 109.5 |
O3—C13—O2 | 120.25 (17) | C17—C24—H24A | 109.5 |
O3—C13—C12 | 135.99 (19) | C17—C24—H24B | 109.5 |
O2—C13—C12 | 103.76 (16) | H24A—C24—H24B | 109.5 |
C15—C14—C19 | 122.49 (17) | C17—C24—H24C | 109.5 |
C15—C14—N6 | 118.37 (17) | H24A—C24—H24C | 109.5 |
C19—C14—N6 | 118.95 (17) | H24B—C24—H24C | 109.5 |
C14—C15—C16 | 118.53 (19) | ||
C8—N1—N2—C9 | 0.3 (2) | N3—N4—C11—C10 | −4.3 (3) |
C9—N3—N4—C11 | −27.6 (3) | S1—C10—C11—N4 | 47.2 (3) |
C8—N3—N4—C11 | 167.24 (18) | S1—C10—C11—C12 | −136.52 (16) |
C13—O2—N5—N6 | 1.3 (2) | N5—N6—C12—C13 | −0.9 (2) |
O2—N5—N6—C12 | −0.2 (2) | C14—N6—C12—C13 | 176.92 (19) |
O2—N5—N6—C14 | −178.43 (15) | N5—N6—C12—C11 | 172.90 (19) |
C6—C1—C2—C3 | −0.2 (3) | C14—N6—C12—C11 | −9.3 (3) |
C6—C1—C2—C20 | −179.7 (2) | N4—C11—C12—N6 | 5.8 (3) |
C1—C2—C3—C4 | −0.2 (4) | C10—C11—C12—N6 | −170.68 (19) |
C20—C2—C3—C4 | 179.3 (2) | N4—C11—C12—C13 | 178.4 (2) |
C2—C3—C4—C5 | 0.6 (4) | C10—C11—C12—C13 | 1.9 (3) |
C3—C4—C5—C6 | −0.5 (4) | N5—O2—C13—O3 | 178.29 (18) |
C3—C4—C5—C21 | 176.9 (3) | N5—O2—C13—C12 | −1.8 (2) |
C7—O1—C6—C1 | −5.2 (3) | N6—C12—C13—O3 | −178.5 (2) |
C7—O1—C6—C5 | 174.8 (2) | C11—C12—C13—O3 | 7.5 (4) |
C2—C1—C6—O1 | −179.7 (2) | N6—C12—C13—O2 | 1.5 (2) |
C2—C1—C6—C5 | 0.3 (3) | C11—C12—C13—O2 | −172.44 (19) |
C4—C5—C6—O1 | −180.0 (2) | N5—N6—C14—C15 | −48.2 (2) |
C21—C5—C6—O1 | 2.5 (3) | C12—N6—C14—C15 | 133.9 (2) |
C4—C5—C6—C1 | 0.1 (3) | N5—N6—C14—C19 | 126.9 (2) |
C21—C5—C6—C1 | −177.4 (2) | C12—N6—C14—C19 | −50.9 (3) |
C6—O1—C7—C8 | −177.50 (18) | C19—C14—C15—C16 | 2.5 (3) |
N2—N1—C8—N3 | −1.2 (2) | N6—C14—C15—C16 | 177.51 (18) |
N2—N1—C8—C7 | 179.21 (18) | C14—C15—C16—C17 | −0.8 (3) |
C9—N3—C8—N1 | 1.5 (2) | C15—C16—C17—C18 | −0.7 (3) |
N4—N3—C8—N1 | 169.57 (17) | C15—C16—C17—C24 | −178.7 (2) |
C9—N3—C8—C7 | −178.86 (18) | C16—C17—C18—C19 | 0.6 (3) |
N4—N3—C8—C7 | −10.8 (3) | C24—C17—C18—C19 | 178.7 (2) |
O1—C7—C8—N1 | −45.2 (3) | C15—C14—C19—C18 | −2.6 (3) |
O1—C7—C8—N3 | 135.22 (19) | N6—C14—C19—C18 | −177.54 (17) |
N1—N2—C9—N3 | 0.6 (2) | C17—C18—C19—C14 | 1.0 (3) |
N1—N2—C9—S1 | −175.78 (15) | C4—C5—C21—C23X | −43.8 (7) |
C8—N3—C9—N2 | −1.3 (2) | C6—C5—C21—C23X | 133.5 (7) |
N4—N3—C9—N2 | −168.63 (17) | C4—C5—C21—C22 | 27.4 (5) |
C8—N3—C9—S1 | 175.50 (14) | C6—C5—C21—C22 | −155.2 (4) |
N4—N3—C9—S1 | 8.1 (3) | C4—C5—C21—C23 | −96.3 (3) |
C10—S1—C9—N2 | −154.3 (2) | C6—C5—C21—C23 | 81.0 (3) |
C10—S1—C9—N3 | 29.67 (17) | C4—C5—C21—C22X | 73.6 (6) |
C9—S1—C10—C11 | −51.92 (16) | C6—C5—C21—C22X | −109.1 (6) |
N3—N4—C11—C12 | 179.41 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O3 | 0.97 | 2.20 | 2.993 (3) | 138 |
C10—H10A···N1i | 0.97 | 2.56 | 3.393 (3) | 144 |
C15—H15A···N2ii | 0.93 | 2.49 | 3.377 (3) | 160 |
C19—H19A···N2iii | 0.93 | 2.47 | 3.397 (3) | 174 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+2, −z. |
Experimental details
Crystal data | |
Chemical formula | C24H24N6O3S |
Mr | 476.55 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 100 |
a, b, c (Å) | 16.7814 (3), 7.2901 (1), 20.2221 (3) |
β (°) | 106.991 (1) |
V (Å3) | 2365.95 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.18 |
Crystal size (mm) | 0.25 × 0.21 × 0.07 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.958, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 20258, 6897, 4836 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.707 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.162, 1.04 |
No. of reflections | 6897 |
No. of parameters | 314 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.68, −0.60 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···O3 | 0.97 | 2.20 | 2.993 (3) | 138 |
C10—H10A···N1i | 0.97 | 2.56 | 3.393 (3) | 144 |
C15—H15A···N2ii | 0.93 | 2.49 | 3.377 (3) | 160 |
C19—H19A···N2iii | 0.93 | 2.47 | 3.397 (3) | 174 |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) x, −y+3/2, z+1/2; (iii) −x+2, −y+2, −z. |
Acknowledgements
The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant (No. 1001/PFIZIK/811012). JHG also thanks USM for the award of a USM fellowship.
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010a). Acta Cryst. E66, o1303. Google Scholar
Goh, J. H., Fun, H.-K., Nithinchandra, & Kalluraya, B. (2010b). Acta Cryst. E66, o1394–o1395. Google Scholar
Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010c). Acta Cryst. E66, o2162-o2163. Google Scholar
Goh, J. H., Fun, H.-K., Nithinchandra & Kalluraya, B. (2010d). Acta Cryst. E66, o2178-o2179. Google Scholar
Kalluraya, B. & Rahiman, A. M. (1997). Pol. J. Chem. 71, 1049–1052. CAS Google Scholar
Kalluraya, B., Vishwanatha, P., Hedge, J. C., Priya, V. F. & Rai, G. (2003). Indian J. Heterocycl. Chem. 12, 355–356. CAS Google Scholar
Newton, C. G. & Ramsden, C. A. (1982). Tetrahedron, 38, 2965–3011. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wagner, H. & Hill, J. B. (1974). J. Med. Chem. 17, 1337–1338. CrossRef CAS PubMed Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Sydnones are a class of mesoionic compounds containing a 1,2,3-oxadiazole ring system. A number of sydnone derivatives have shown diverse biological activities such as anti-inflammatory, analgesic and anti-arthritic (Newton & Ramsden, 1982; Wagner & Hill, 1974) properties. Sydnones possessing heterocyclic moieties at the 4-position are also known for a wide range of biological properties (Kalluraya & Rahiman, 1997). Encouraged by these reports and in continuation of our research for biologically active nitrogen containing heterocycles, a triazolothiadiazine moiety at the 4-position of the phenylsydnone was introduced. A series of triazolothiadiazines were synthesized by the condensation of 4-bromoacetyl-3-arylsydnones with 3-aryloxymethyl-4-amino-5-mercapto-1,2,4-triazoles. 4-Bromoacetyl-3-arylsydnones were in turn obtained by the photochemical bromination of 4-acetyl-3-arylsydnones (Kalluraya et al., 2003).
In the title triazolothiadiazine compound, an intramolecular C10—H10B···O3 hydrogen bond (Table 1) generates a six-membered ring, producing an S(6) hydrogen bond ring motif (Fig. 1, Bernstein et al., 1995). The two terminal methyl groups of the isopropyl unit (atoms C22 and C23) were disordered over two positions with refined occupancies of 0.715 (4) and 0.285 (4). The mean planes formed through the major and minor disordered isopropyl units were inclined at interplanar angles of 73.1 (4) and 86.6 (8)°, respectively, with the attached C1-C6 phenyl ring. The 3,6-dihydro-1,3,4-thiadiazine ring (C9-C11/N3/N4/S1) adopts a twist-boat conformation. The puckering parameters are Q = 0.5952 (17) Å, θ = 113.75 (18)° and φ = 146.7 (2)° (Cremer & Pople, 1975). The essentially planar 1,2,3-oxadiazole (C12/C13/O2/N5/N6) and 1,2,4-triazole (C8/N1/N2/C9/N3) rings were inclined to each other at interplanar angle of 18.80 (11)°. The interplanar angles formed between the C1-C6 and C14-C19 phenyl rings with respect to 1,2,4-triazole and 1,2,3-oxadiazole rings are 49.56 (11) and 49.84 (11)°, respectively. The bond lengths and angles are comparable to those closely related structures (Goh et al., 2010a,b,c,d).
In the crystal structure, intermolecular C10—H10A···N1, C15—H15A···N2 and C19—H19A···N2 hydrogen bonds (Table 1) link neighbouring molecules into two-dimensional networks parallel to the bc plane (Fig. 2). Further stabilization of the crystal structure is provided by weak intermolecular Cg1···Cg1 [3.2935 (11) Å; symmetry code: -x+2, -y+1, -z] and Cg2···Cg3 [3.5590 (12) Å; symmetry code: -x+2, y-1/2, -z+1/2] interactions where Cg1, Cg2 and Cg3 are the centroids of 1,2,4-triazole, 1,2,3-oxadiazole and C14-C19 phenyl rings.