organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7′-Methyl-5′-oxo-2′,3′-di­hydro­spiro­[1,3-dioxolane-2,1′(5′H)-indolizine]-6′-carbo­nitrile

aState Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bState Key Laboratory of Materials-Oriented Chemical Engineering, College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: chemywg@126.com

(Received 22 July 2010; accepted 16 August 2010; online 28 August 2010)

In the title compound, C12H12N2O3, the five-membered ring attached to the aromatic ring adopts an envelope conformation with a C atom in the flap position. The spiro-linked five-membered ring adopts a twisted conformation. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into C(5) chains propagating in [001].

Related literature

For medicinal background, see: Takimoto & Calvo (2008[Takimoto, C. H. & Calvo, E. (2008). Principles of Oncologic Pharmacotherapy. In Cancer Management: A Multidisciplinary Approach, 11 ed., edited by R. Pazdur, L. D. Wagman, K. A.Camphausen & W. J. Hoskins. New York: Cmp United Business Media.]). For further synthetic details, see: Wani et al. (1980[Wani, M. C., Ronman, P. E., Lindley, J. T. & Wall, M. E. (1980). J. Med. Chem. 23, 554-560.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2O3

  • Mr = 232.24

  • Orthorhombic, P n a 21

  • a = 7.9460 (16) Å

  • b = 25.945 (5) Å

  • c = 5.3430 (11) Å

  • V = 1101.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 2217 measured reflections

  • 1123 independent reflections

  • 821 reflections with I > 2σ(I)

  • Rint = 0.035

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.112

  • S = 1.00

  • 1123 reflections

  • 155 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯O3i 0.97 2.49 3.275 (5) 138
Symmetry code: (i) [-x+1, -y+1, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Camptothecin(CPT), with the chemical name (S)-4-ethyl-4-hydroxy-1H-pyr- ano[3',4':6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione, is a pentacyclic alkaloid. Two CPT analogues, topotecan and irinotecan, have been approved and are used in cancer chemotherapy (Takimoto & Calvo, 2008). As part of our studies into the synthesis of Camptothecin, the title compound, (I), was synthesized (Wani et al., 1980). We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, C—H···O hydrogen bonds link the molecules (Fig. 2), based on the geometrically positioned H5B atom, in which they may be effective in the stabilization of the structure.

Related literature top

For medicinal background, see: Takimoto & Calvo (2008). For further synthetic details, see: Wani et al. (1980). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 1,2,3,5-tetrahydro-7-methyl-1,5-dioxo-6- Indolizinecarbonitrile, (13.0 g,0.069 mol), ethylene glycol (210 ml), and p-toluenesulfonic acid (1.1 g) in toluene (1.0 L) was refluxed using a Dean-Stark trap for 5 h. The toluene layer was decanted and another liter of toluene was added. The reaction mixture was refluxed for an additional 5 h and the toluene layer decanted as before. After repeating this procedure two more times, the toluene layers were combined, washed with brine, dried, and evaporated to yield the crude product, which was crystallized from MeOH to give the title compound (93%) (Wani et al., 1980). Colourless blocks of (I) were obtained by slow evaporation of an MeOH solution.

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. H atoms were positioned geometrically with C—H = 0.93, 0.98 and 0.97 Å for aromatic, methine and methylene H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (or 1.5 for methyl groups) times Ueq(C).

Structure description top

Camptothecin(CPT), with the chemical name (S)-4-ethyl-4-hydroxy-1H-pyr- ano[3',4':6,7]indolizino[1,2-b]quinoline-3,14-(4H,12H)-dione, is a pentacyclic alkaloid. Two CPT analogues, topotecan and irinotecan, have been approved and are used in cancer chemotherapy (Takimoto & Calvo, 2008). As part of our studies into the synthesis of Camptothecin, the title compound, (I), was synthesized (Wani et al., 1980). We report herein the crystal structure of the title compound.

In the molecule of the title compound, (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. In the crystal structure, C—H···O hydrogen bonds link the molecules (Fig. 2), based on the geometrically positioned H5B atom, in which they may be effective in the stabilization of the structure.

For medicinal background, see: Takimoto & Calvo (2008). For further synthetic details, see: Wani et al. (1980). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids are drawn at 30% probability levels.
[Figure 2] Fig. 2. A practical packing diagram of the title compound. Hydron bonds are shown as dashed lines.
7'-Methyl-5'-oxo-2',3'-dihydrospiro[1,3-dioxolane-2,1'(5'H)- indolizine]-6'-carbonitrile top
Crystal data top
C12H12N2O3Dx = 1.400 Mg m3
Mr = 232.24Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 25 reflections
a = 7.9460 (16) Åθ = 9–12°
b = 25.945 (5) ŵ = 0.10 mm1
c = 5.3430 (11) ÅT = 293 K
V = 1101.5 (4) Å3Block, colorless
Z = 40.30 × 0.10 × 0.10 mm
F(000) = 488
Data collection top
Enraf–Nonius CAD-4
diffractometer
821 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 3131
Tmin = 0.970, Tmax = 0.990l = 06
2217 measured reflections3 standard reflections every 200 reflections
1123 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1123 reflectionsΔρmax = 0.20 e Å3
155 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.047 (6)
Crystal data top
C12H12N2O3V = 1101.5 (4) Å3
Mr = 232.24Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.9460 (16) ŵ = 0.10 mm1
b = 25.945 (5) ÅT = 293 K
c = 5.3430 (11) Å0.30 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
821 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.035
Tmin = 0.970, Tmax = 0.9903 standard reflections every 200 reflections
2217 measured reflections intensity decay: 1%
1123 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.112H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
1123 reflectionsΔρmin = 0.20 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6878 (4)0.41701 (10)0.1075 (7)0.0350 (8)
O11.0548 (3)0.42931 (10)0.0779 (6)0.0432 (7)
C11.1570 (5)0.39063 (18)0.1891 (10)0.0523 (12)
H1A1.14990.35860.09630.063*
H1B1.27370.40150.19650.063*
O20.9270 (3)0.41052 (10)0.4426 (6)0.0464 (8)
C21.0842 (5)0.38466 (17)0.4486 (10)0.0532 (12)
H2A1.15790.40010.57240.064*
H2B1.06900.34850.48920.064*
N20.3916 (5)0.29581 (15)0.6093 (9)0.0675 (12)
O30.5035 (3)0.42382 (11)0.4332 (7)0.0551 (8)
C30.8959 (5)0.42629 (15)0.1938 (8)0.0382 (9)
C40.7840 (4)0.38909 (13)0.0515 (8)0.0330 (8)
C50.7124 (5)0.47294 (14)0.0789 (9)0.0435 (10)
H5A0.78000.48680.21420.052*
H5B0.60550.49100.07350.052*
C60.8043 (5)0.47679 (15)0.1705 (9)0.0465 (11)
H6A0.72540.48130.30720.056*
H6B0.88280.50540.17010.056*
C70.7736 (4)0.33684 (13)0.0581 (8)0.0378 (9)
H7A0.83640.31820.17360.045*
C80.6665 (4)0.31108 (13)0.1120 (8)0.0361 (9)
C90.5774 (4)0.34061 (15)0.2809 (8)0.0384 (9)
C100.5825 (5)0.39580 (15)0.2880 (8)0.0411 (10)
C110.6517 (5)0.25394 (13)0.1031 (9)0.0484 (11)
H11A0.57470.24260.23010.073*
H11B0.76020.23870.13180.073*
H11C0.61070.24360.05830.073*
C120.4728 (5)0.31630 (16)0.4644 (10)0.0451 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0381 (16)0.0350 (16)0.0320 (18)0.0017 (13)0.0036 (16)0.0016 (17)
O10.0423 (14)0.0509 (14)0.0365 (15)0.0026 (13)0.0029 (16)0.0031 (14)
C10.049 (2)0.059 (3)0.049 (3)0.006 (2)0.006 (3)0.006 (3)
O20.0522 (16)0.0618 (18)0.0252 (14)0.0076 (14)0.0057 (15)0.0018 (14)
C20.061 (3)0.057 (2)0.042 (2)0.009 (2)0.018 (2)0.000 (2)
N20.065 (2)0.081 (3)0.056 (3)0.017 (2)0.022 (3)0.002 (2)
O30.0598 (18)0.0526 (16)0.0528 (18)0.0025 (14)0.0263 (18)0.0127 (17)
C30.043 (2)0.044 (2)0.027 (2)0.0000 (17)0.003 (2)0.0032 (19)
C40.0313 (18)0.0400 (19)0.0276 (18)0.0043 (16)0.0004 (19)0.003 (2)
C50.054 (2)0.038 (2)0.038 (2)0.0027 (18)0.009 (2)0.000 (2)
C60.055 (2)0.042 (2)0.042 (2)0.003 (2)0.006 (2)0.010 (2)
C70.040 (2)0.039 (2)0.034 (2)0.0055 (16)0.009 (2)0.004 (2)
C80.0340 (18)0.041 (2)0.033 (2)0.0011 (16)0.001 (2)0.002 (2)
C90.037 (2)0.043 (2)0.034 (2)0.0003 (18)0.003 (2)0.001 (2)
C100.039 (2)0.046 (2)0.038 (2)0.0061 (18)0.001 (2)0.004 (2)
C110.053 (2)0.042 (2)0.050 (3)0.0047 (17)0.008 (3)0.004 (3)
C120.041 (2)0.052 (2)0.043 (3)0.0045 (19)0.005 (2)0.000 (2)
Geometric parameters (Å, º) top
N1—C41.353 (5)C4—C71.359 (5)
N1—C101.390 (5)C5—C61.523 (6)
N1—C51.472 (4)C5—H5A0.9700
O1—C31.408 (5)C5—H5B0.9700
O1—C11.421 (5)C6—H6A0.9700
C1—C21.510 (7)C6—H6B0.9700
C1—H1A0.9700C7—C81.413 (5)
C1—H1B0.9700C7—H7A0.9300
O2—C31.413 (5)C8—C91.379 (6)
O2—C21.419 (5)C8—C111.488 (5)
C2—H2A0.9700C9—C121.432 (6)
C2—H2B0.9700C9—C101.433 (5)
N2—C121.140 (5)C11—H11A0.9600
O3—C101.235 (5)C11—H11B0.9600
C3—C61.504 (6)C11—H11C0.9600
C3—C41.517 (6)
C4—N1—C10124.3 (3)N1—C5—H5B111.2
C4—N1—C5112.8 (3)C6—C5—H5B111.2
C10—N1—C5122.8 (3)H5A—C5—H5B109.1
C3—O1—C1106.8 (3)C3—C6—C5104.3 (3)
O1—C1—C2103.7 (4)C3—C6—H6A110.9
O1—C1—H1A111.0C5—C6—H6A110.9
C2—C1—H1A111.0C3—C6—H6B110.9
O1—C1—H1B111.0C5—C6—H6B110.9
C2—C1—H1B111.0H6A—C6—H6B108.9
H1A—C1—H1B109.0C4—C7—C8119.5 (4)
C3—O2—C2108.2 (3)C4—C7—H7A120.3
O2—C2—C1105.6 (4)C8—C7—H7A120.3
O2—C2—H2A110.6C9—C8—C7117.9 (3)
C1—C2—H2A110.6C9—C8—C11122.3 (4)
O2—C2—H2B110.6C7—C8—C11119.9 (4)
C1—C2—H2B110.6C8—C9—C12120.1 (3)
H2A—C2—H2B108.8C8—C9—C10123.9 (4)
O1—C3—O2105.9 (3)C12—C9—C10116.0 (4)
O1—C3—C6110.4 (3)O3—C10—N1120.6 (3)
O2—C3—C6114.5 (4)O3—C10—C9126.2 (4)
O1—C3—C4109.9 (3)N1—C10—C9113.2 (3)
O2—C3—C4112.9 (3)C8—C11—H11A109.5
C6—C3—C4103.2 (3)C8—C11—H11B109.5
N1—C4—C7121.1 (4)H11A—C11—H11B109.5
N1—C4—C3107.8 (3)C8—C11—H11C109.5
C7—C4—C3131.1 (4)H11A—C11—H11C109.5
N1—C5—C6102.7 (3)H11B—C11—H11C109.5
N1—C5—H5A111.2N2—C12—C9178.3 (5)
C6—C5—H5A111.2
C3—O1—C1—C228.0 (4)O1—C3—C6—C587.6 (4)
C3—O2—C2—C15.9 (5)O2—C3—C6—C5153.0 (3)
O1—C1—C2—O213.4 (5)C4—C3—C6—C529.8 (4)
C1—O1—C3—O232.5 (4)N1—C5—C6—C327.3 (4)
C1—O1—C3—C6157.0 (4)N1—C4—C7—C83.0 (6)
C1—O1—C3—C489.8 (4)C3—C4—C7—C8174.6 (4)
C2—O2—C3—O123.4 (4)C4—C7—C8—C90.6 (6)
C2—O2—C3—C6145.3 (3)C4—C7—C8—C11178.8 (4)
C2—O2—C3—C496.9 (4)C7—C8—C9—C12177.3 (4)
C10—N1—C4—C75.3 (6)C11—C8—C9—C123.3 (6)
C5—N1—C4—C7177.6 (4)C7—C8—C9—C102.3 (6)
C10—N1—C4—C3172.8 (3)C11—C8—C9—C10177.1 (4)
C5—N1—C4—C34.3 (5)C4—N1—C10—O3177.2 (4)
O1—C3—C4—N196.2 (4)C5—N1—C10—O30.4 (6)
O2—C3—C4—N1145.8 (3)C4—N1—C10—C93.5 (6)
C6—C3—C4—N121.6 (4)C5—N1—C10—C9179.8 (3)
O1—C3—C4—C781.7 (5)C8—C9—C10—O3179.0 (4)
O2—C3—C4—C736.3 (6)C12—C9—C10—O31.5 (6)
C6—C3—C4—C7160.5 (4)C8—C9—C10—N10.4 (6)
C4—N1—C5—C614.6 (4)C12—C9—C10—N1179.2 (3)
C10—N1—C5—C6168.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O3i0.972.493.275 (5)138
Symmetry code: (i) x+1, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC12H12N2O3
Mr232.24
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)293
a, b, c (Å)7.9460 (16), 25.945 (5), 5.3430 (11)
V3)1101.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2217, 1123, 821
Rint0.035
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.112, 1.00
No. of reflections1123
No. of parameters155
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.20

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5B···O3i0.972.493.275 (5)138
Symmetry code: (i) x+1, y+1, z1/2.
 

Acknowledgements

This research work was supported financially by the Department of Science and Technology of Jiangsu Province (BE200830457) and the `863' project (2007 A A02Z211) of the Ministry of Science and Technology of China.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakimoto, C. H. & Calvo, E. (2008). Principles of Oncologic Pharmacotherapy. In Cancer Management: A Multidisciplinary Approach, 11 ed., edited by R. Pazdur, L. D. Wagman, K. A.Camphausen & W. J. Hoskins. New York: Cmp United Business Media.  Google Scholar
First citationWani, M. C., Ronman, P. E., Lindley, J. T. & Wall, M. E. (1980). J. Med. Chem. 23, 554–560.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds