organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-4-meth­­oxy­benzaldehyde thio­semicarbazone

aDepartment of Chemistry, Baicheng Normal University, Baicheng 137000, People's Republic of China
*Correspondence e-mail: jyxygzb@163.com

(Received 24 July 2010; accepted 25 July 2010; online 4 August 2010)

The title Schiff base compound, C9H11N3O2S, was prepared by the reaction of equimolar quanti­ties of 2-hy­droxy-4-meth­oxy­benzaldehyde with thio­semicarbazide in methanol. The mol­ecule adopts a trans configuration with respect to the azo­methine group and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O and N—H⋯S hydrogen bonds, forming a three-dimensional network.

Related literature

For a related structure and background references, see: Hao (2010[Hao, Y.-M. (2010). Acta Cryst. E66, o1177.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3O2S

  • Mr = 225.27

  • Monoclinic, P 21 /n

  • a = 4.929 (1) Å

  • b = 10.519 (2) Å

  • c = 20.357 (3) Å

  • β = 92.838 (2)°

  • V = 1054.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.952, Tmax = 0.966

  • 5879 measured reflections

  • 2247 independent reflections

  • 1650 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.04

  • 2247 reflections

  • 147 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O2i 0.89 (1) 2.26 (2) 2.998 (3) 141 (2)
N3—H3A⋯O1ii 0.88 (1) 2.23 (1) 3.076 (3) 162 (2)
N2—H2⋯S1iii 0.90 (1) 2.48 (1) 3.366 (3) 168 (2)
O1—H1⋯N1 0.82 1.99 2.700 (2) 145
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+2, -y, -z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a continuation of our structural studies of Schiff bases (Hao, 2010), in this paper, the title new Schiff base compound, (I), Fig. 1, is reported.

The molecule of the title compound adopts a trans configuration with respect to the azomethine group. All the bond lengths are within normal values (Allen et al., 1987). There is an intramolecular O—H···N hydrogen bond (Table 1) in the molecule. In the crystal structure, molecules are linked through intermolecular N—H···O and N—H···S hydrogen bonds (Table 1), forming a 3D network (Fig. 2).

Related literature top

For a related structure and background references, see: Hao (2010). For reference structural data, see: Allen et al. (1987).

Experimental top

2-Hydroxy-4-methoxybenzaldehyde (0.1 mmol, 15.2 mg) and thiosemicarbazide (0.1 mmol, 9.1 mg) were refluxed in a 30 ml methanol solution for 30 min to give a clear colorless solution. Colorless blocks of (I) were formed by slow evaporation of the solvent over several days at room temperature.

Refinement top

H2, H3A and H3B were located from a difference Fourier map and refined isotropically, with the N—H and H···H distances restrained to 0.90 (1) Å and 1.53 (2) Å, respectively, and with Uiso restrained to 0.08Å2. Other H atoms were constrained to ideal geometries, with d(C—H) = 0.93-0.96Å, d(O—H) = 0.82Å, and with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O1 and C7).

Structure description top

As a continuation of our structural studies of Schiff bases (Hao, 2010), in this paper, the title new Schiff base compound, (I), Fig. 1, is reported.

The molecule of the title compound adopts a trans configuration with respect to the azomethine group. All the bond lengths are within normal values (Allen et al., 1987). There is an intramolecular O—H···N hydrogen bond (Table 1) in the molecule. In the crystal structure, molecules are linked through intermolecular N—H···O and N—H···S hydrogen bonds (Table 1), forming a 3D network (Fig. 2).

For a related structure and background references, see: Hao (2010). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability ellipsoids. Intramolecular hydrogen bond is drawn as a dashed line.
[Figure 2] Fig. 2. Molecular packing of the title compound with hydrogen bonds drawn as dashed lines.
2-Hydroxy-4-methoxybenzaldehyde thiosemicarbazone top
Crystal data top
C9H11N3O2SF(000) = 472
Mr = 225.27Dx = 1.420 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1566 reflections
a = 4.929 (1) Åθ = 2.8–26.2°
b = 10.519 (2) ŵ = 0.29 mm1
c = 20.357 (3) ÅT = 298 K
β = 92.838 (2)°Block, colorless
V = 1054.2 (3) Å30.17 × 0.13 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2247 independent reflections
Radiation source: fine-focus sealed tube1650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.952, Tmax = 0.966k = 1311
5879 measured reflectionsl = 2025
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.1092P]
where P = (Fo2 + 2Fc2)/3
2247 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.18 e Å3
4 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H11N3O2SV = 1054.2 (3) Å3
Mr = 225.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.929 (1) ŵ = 0.29 mm1
b = 10.519 (2) ÅT = 298 K
c = 20.357 (3) Å0.17 × 0.13 × 0.12 mm
β = 92.838 (2)°
Data collection top
Bruker SMART CCD
diffractometer
2247 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1650 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.966Rint = 0.030
5879 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.18 e Å3
2247 reflectionsΔρmin = 0.23 e Å3
147 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6185 (3)0.11719 (14)0.11874 (8)0.0391 (4)
N20.7882 (3)0.04027 (15)0.08411 (7)0.0420 (4)
N30.9140 (4)0.06702 (18)0.17762 (8)0.0528 (5)
O10.4001 (3)0.22381 (13)0.22458 (6)0.0520 (4)
H10.49090.17140.20550.078*
O20.2624 (3)0.53431 (13)0.19151 (6)0.0483 (4)
S11.12828 (11)0.14847 (5)0.06920 (2)0.0530 (2)
C10.2729 (4)0.27756 (17)0.11180 (9)0.0370 (4)
C20.2464 (4)0.29172 (18)0.17967 (9)0.0371 (4)
C30.0662 (4)0.37755 (18)0.20376 (9)0.0419 (5)
H30.05210.38550.24900.050*
C40.0943 (4)0.45216 (17)0.16165 (9)0.0381 (4)
C50.0757 (4)0.43980 (18)0.09409 (9)0.0425 (5)
H50.18350.48910.06520.051*
C60.1059 (4)0.35287 (19)0.07061 (9)0.0445 (5)
H60.11710.34430.02540.053*
C70.4289 (4)0.61772 (19)0.15119 (11)0.0536 (6)
H7A0.31540.67260.12670.080*
H7B0.54020.66810.17850.080*
H7C0.54290.56840.12130.080*
C80.4607 (4)0.18930 (18)0.08365 (9)0.0420 (5)
H80.46670.18490.03810.050*
C90.9333 (4)0.05273 (18)0.11353 (9)0.0382 (4)
H20.799 (5)0.058 (2)0.0411 (5)0.080*
H3A0.998 (4)0.1287 (16)0.1999 (10)0.080*
H3B0.830 (4)0.0115 (18)0.2022 (10)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0443 (9)0.0365 (9)0.0377 (9)0.0007 (7)0.0136 (7)0.0049 (7)
N20.0523 (10)0.0419 (9)0.0331 (9)0.0090 (7)0.0157 (8)0.0006 (7)
N30.0661 (12)0.0616 (12)0.0315 (9)0.0130 (9)0.0107 (8)0.0032 (8)
O10.0617 (9)0.0581 (9)0.0365 (8)0.0216 (7)0.0051 (6)0.0001 (6)
O20.0500 (8)0.0493 (8)0.0463 (8)0.0142 (6)0.0110 (7)0.0011 (6)
S10.0681 (4)0.0523 (3)0.0400 (3)0.0193 (3)0.0167 (3)0.0030 (2)
C10.0411 (10)0.0370 (10)0.0336 (10)0.0025 (8)0.0084 (8)0.0039 (8)
C20.0380 (10)0.0402 (10)0.0333 (10)0.0004 (8)0.0049 (8)0.0005 (8)
C30.0472 (11)0.0478 (12)0.0314 (10)0.0040 (9)0.0085 (9)0.0041 (8)
C40.0367 (10)0.0380 (10)0.0404 (11)0.0010 (8)0.0085 (8)0.0007 (8)
C50.0460 (11)0.0430 (11)0.0386 (11)0.0049 (9)0.0025 (9)0.0045 (9)
C60.0545 (12)0.0485 (12)0.0311 (10)0.0008 (10)0.0072 (9)0.0017 (8)
C70.0537 (13)0.0443 (12)0.0631 (14)0.0107 (10)0.0073 (11)0.0033 (10)
C80.0510 (12)0.0427 (11)0.0332 (10)0.0005 (9)0.0114 (9)0.0039 (8)
C90.0416 (11)0.0401 (11)0.0333 (10)0.0046 (8)0.0077 (8)0.0021 (8)
Geometric parameters (Å, º) top
N1—C81.279 (2)C1—C21.402 (3)
N1—N21.382 (2)C1—C81.449 (3)
N2—C91.336 (2)C2—C31.374 (3)
N2—H20.899 (10)C3—C41.382 (3)
N3—C91.321 (2)C3—H30.9300
N3—H3A0.882 (9)C4—C51.389 (3)
N3—H3B0.886 (9)C5—C61.381 (3)
O1—C21.361 (2)C5—H50.9300
O1—H10.8200C6—H60.9300
O2—C41.361 (2)C7—H7A0.9600
O2—C71.432 (2)C7—H7B0.9600
S1—C91.685 (2)C7—H7C0.9600
C1—C61.393 (3)C8—H80.9300
C8—N1—N2115.42 (16)C3—C4—C5119.83 (17)
C9—N2—N1121.62 (16)C6—C5—C4118.70 (17)
C9—N2—H2122.0 (15)C6—C5—H5120.7
N1—N2—H2116.4 (15)C4—C5—H5120.7
C9—N3—H3A122.4 (15)C5—C6—C1122.82 (18)
C9—N3—H3B122.7 (15)C5—C6—H6118.6
H3A—N3—H3B114.6 (18)C1—C6—H6118.6
C2—O1—H1109.5O2—C7—H7A109.5
C4—O2—C7118.50 (16)O2—C7—H7B109.5
C6—C1—C2116.84 (17)H7A—C7—H7B109.5
C6—C1—C8119.77 (17)O2—C7—H7C109.5
C2—C1—C8123.39 (17)H7A—C7—H7C109.5
O1—C2—C3116.95 (16)H7B—C7—H7C109.5
O1—C2—C1122.03 (16)N1—C8—C1122.81 (18)
C3—C2—C1121.00 (17)N1—C8—H8118.6
C2—C3—C4120.80 (17)C1—C8—H8118.6
C2—C3—H3119.6N3—C9—N2117.57 (17)
C4—C3—H3119.6N3—C9—S1122.11 (15)
O2—C4—C3115.21 (17)N2—C9—S1120.31 (14)
O2—C4—C5124.97 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2i0.89 (1)2.26 (2)2.998 (3)141 (2)
N3—H3A···O1ii0.88 (1)2.23 (1)3.076 (3)162 (2)
N2—H2···S1iii0.90 (1)2.48 (1)3.366 (3)168 (2)
O1—H1···N10.821.992.700 (2)145
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC9H11N3O2S
Mr225.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)4.929 (1), 10.519 (2), 20.357 (3)
β (°) 92.838 (2)
V3)1054.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.17 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.966
No. of measured, independent and
observed [I > 2σ(I)] reflections
5879, 2247, 1650
Rint0.030
(sin θ/λ)max1)0.636
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.101, 1.04
No. of reflections2247
No. of parameters147
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.23

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O2i0.886 (9)2.258 (17)2.998 (3)141.0 (19)
N3—H3A···O1ii0.882 (9)2.225 (12)3.076 (3)162 (2)
N2—H2···S1iii0.899 (10)2.482 (11)3.366 (3)168 (2)
O1—H1···N10.821.992.700 (2)145
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+2, y, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHao, Y.-M. (2010). Acta Cryst. E66, o1177.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds