organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Chloro­phen­yl)-3-(3,4-di­methyl­phen­yl)prop-2-en-1-one

aMicroscale Science Institute, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: ffjian2008@163.com

(Received 24 July 2010; accepted 9 August 2010; online 18 August 2010)

The title compound, C17H15ClO, was prepared from 3,4-dimethyl­benzaldehyde and 4-chloro­hypnone by Aldol condensation. The dihedral angle formed by the two benzene rings is 48.91 (8)°. Only van der Waals forces affect the packing.

Related literature

For background to the aplications of chalcones, see: Anto et al. (1994[Anto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73-80.]); Hsieh et al. (1998[Hsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39-46.]). For a related structure, see: Zhou (2010[Zhou, Y. (2010). Acta Cryst. E66, o1412.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15ClO

  • Mr = 270.74

  • Triclinic, [P \overline 1]

  • a = 5.9621 (12) Å

  • b = 7.7369 (15) Å

  • c = 15.513 (3) Å

  • α = 98.30 (3)°

  • β = 99.96 (3)°

  • γ = 95.23 (3)°

  • V = 692.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • 6689 measured reflections

  • 3141 independent reflections

  • 2643 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.188

  • S = 1.08

  • 3141 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.52 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological actions which include antiinflammatory (Hsieh et al.,1998) and antioxidant (Anto et al.,1994). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure herein.

In the crystal structure of compound(I)(Fig.1),the dihedral angle between the two benzene rings(C1—C6) and (C10—C15) is 48.91 (8)°. All of the bond lengths and bond angles are in normal ranges and comparable to those in a related structure (Zhou,2010).

Related literature top

For background to the aplications of chalcones, see: Anto et al. (1994); Hsieh et al. (1998). For a related structure, see: Zhou (2010).

Experimental top

A mixture of the 4-chlorohypnone (0.01 mol) and 3,4-dimethylbenzaldehyde(0.01 mol) and 10% NaOH (10 ml) was stirred in ethanol (30 ml) for 3 h to afford the title compound (yield 65%). Yellow bars of (I) were obtailed by recrystallization from ethyl acetate at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances of 0.93–0.96 Å, and with Uiso(H) = 1.2-1.5Ueq of the parent atoms.

Structure description top

Among flavonoids, chalcones have been identified as interesting compounds having multiple biological actions which include antiinflammatory (Hsieh et al.,1998) and antioxidant (Anto et al.,1994). As part of our search for new biologically active compounds we synthesized the title compound (I) and report its crystal structure herein.

In the crystal structure of compound(I)(Fig.1),the dihedral angle between the two benzene rings(C1—C6) and (C10—C15) is 48.91 (8)°. All of the bond lengths and bond angles are in normal ranges and comparable to those in a related structure (Zhou,2010).

For background to the aplications of chalcones, see: Anto et al. (1994); Hsieh et al. (1998). For a related structure, see: Zhou (2010).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.
1-(4-Chlorophenyl)-3-(3,4-dimethylphenyl)prop-2-en-1-one top
Crystal data top
C17H15ClOZ = 2
Mr = 270.74F(000) = 284
Triclinic, P1Dx = 1.299 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9621 (12) ÅCell parameters from 2643 reflections
b = 7.7369 (15) Åθ = 3.2–27.5°
c = 15.513 (3) ŵ = 0.26 mm1
α = 98.30 (3)°T = 293 K
β = 99.96 (3)°Bar, yellow
γ = 95.23 (3)°0.25 × 0.20 × 0.18 mm
V = 692.5 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
2643 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 3.2°
phi and ω scansh = 77
6689 measured reflectionsk = 1010
3141 independent reflectionsl = 2018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1287P)2 + 0.0873P]
where P = (Fo2 + 2Fc2)/3
3141 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.52 e Å3
Crystal data top
C17H15ClOγ = 95.23 (3)°
Mr = 270.74V = 692.5 (2) Å3
Triclinic, P1Z = 2
a = 5.9621 (12) ÅMo Kα radiation
b = 7.7369 (15) ŵ = 0.26 mm1
c = 15.513 (3) ÅT = 293 K
α = 98.30 (3)°0.25 × 0.20 × 0.18 mm
β = 99.96 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2643 reflections with I > 2σ(I)
6689 measured reflectionsRint = 0.030
3141 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.08Δρmax = 0.54 e Å3
3141 reflectionsΔρmin = 0.52 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06653 (10)0.43200 (7)0.40023 (3)0.0645 (2)
C20.2286 (3)0.4248 (2)0.22733 (12)0.0442 (4)
H2A0.36750.47590.23700.053*
C150.3097 (3)0.2253 (2)0.26373 (11)0.0398 (4)
H15A0.18220.27630.27740.048*
C100.3326 (3)0.1916 (2)0.17512 (11)0.0372 (4)
C10.0394 (3)0.3865 (2)0.29529 (11)0.0419 (4)
C90.1543 (3)0.2354 (2)0.10668 (11)0.0405 (4)
H9A0.01940.26440.12450.049*
C70.0361 (3)0.2764 (2)0.04009 (11)0.0417 (4)
C60.1707 (3)0.3131 (2)0.28266 (12)0.0476 (4)
H6A0.29590.28770.32930.057*
O10.2265 (2)0.2775 (2)0.02091 (9)0.0582 (4)
C110.5261 (3)0.1151 (2)0.15544 (12)0.0425 (4)
H11A0.54900.09420.09720.051*
C80.1647 (3)0.2382 (2)0.02181 (12)0.0449 (4)
H8A0.29870.21610.00130.054*
C40.0022 (3)0.3133 (2)0.12946 (10)0.0369 (4)
C30.2072 (3)0.3857 (2)0.14451 (11)0.0425 (4)
H3A0.33400.40810.09850.051*
C120.6825 (3)0.0710 (2)0.22314 (12)0.0445 (4)
H12A0.80840.01810.20920.053*
C140.4693 (3)0.1859 (2)0.33241 (11)0.0412 (4)
C130.6579 (3)0.1031 (2)0.31155 (12)0.0417 (4)
C50.1902 (3)0.2784 (2)0.19930 (12)0.0441 (4)
H5A0.33090.23110.18950.053*
C170.4398 (4)0.2300 (4)0.42722 (13)0.0626 (6)
H17A0.56470.19380.46570.094*
H17B0.29770.16970.43430.094*
H17C0.43810.35460.44220.094*
C160.8291 (4)0.0483 (3)0.38260 (15)0.0594 (5)
H16A0.94480.00630.35620.089*
H16B0.75250.03380.41190.089*
H16C0.89940.14990.42500.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0855 (4)0.0709 (4)0.0412 (3)0.0036 (3)0.0171 (2)0.0203 (2)
C20.0418 (8)0.0477 (9)0.0442 (9)0.0002 (7)0.0126 (7)0.0093 (7)
C150.0371 (7)0.0445 (8)0.0399 (8)0.0054 (6)0.0118 (6)0.0086 (7)
C100.0372 (7)0.0368 (7)0.0384 (8)0.0012 (6)0.0094 (6)0.0085 (6)
C10.0527 (9)0.0393 (8)0.0353 (8)0.0056 (7)0.0108 (7)0.0087 (6)
C90.0418 (8)0.0423 (8)0.0391 (8)0.0037 (6)0.0106 (6)0.0094 (6)
C70.0433 (8)0.0462 (8)0.0369 (8)0.0062 (6)0.0105 (6)0.0067 (7)
C60.0450 (8)0.0537 (10)0.0407 (9)0.0009 (7)0.0002 (7)0.0092 (7)
O10.0451 (7)0.0882 (10)0.0464 (7)0.0088 (6)0.0163 (5)0.0177 (7)
C110.0449 (8)0.0433 (8)0.0411 (9)0.0041 (7)0.0150 (7)0.0052 (7)
C80.0457 (8)0.0541 (10)0.0383 (8)0.0103 (7)0.0119 (7)0.0116 (7)
C40.0385 (7)0.0377 (7)0.0353 (8)0.0056 (6)0.0084 (6)0.0058 (6)
C30.0371 (7)0.0493 (9)0.0390 (8)0.0010 (6)0.0049 (6)0.0053 (7)
C120.0410 (8)0.0414 (8)0.0527 (10)0.0064 (6)0.0139 (7)0.0056 (7)
C140.0397 (8)0.0463 (8)0.0387 (8)0.0012 (6)0.0108 (6)0.0090 (7)
C130.0384 (8)0.0386 (8)0.0475 (9)0.0010 (6)0.0058 (7)0.0102 (7)
C50.0374 (8)0.0494 (9)0.0443 (9)0.0002 (7)0.0058 (7)0.0093 (7)
C170.0549 (10)0.0958 (16)0.0399 (9)0.0154 (10)0.0116 (8)0.0130 (10)
C160.0561 (10)0.0655 (12)0.0585 (12)0.0147 (9)0.0040 (9)0.0194 (10)
Geometric parameters (Å, º) top
Cl1—C11.7455 (17)C11—H11A0.9300
C2—C11.382 (3)C8—H8A0.9300
C2—C31.386 (3)C4—C31.392 (2)
C2—H2A0.9300C4—C51.394 (2)
C15—C141.389 (2)C3—H3A0.9300
C15—C101.394 (2)C12—C131.394 (2)
C15—H15A0.9300C12—H12A0.9300
C10—C111.403 (2)C14—C131.406 (2)
C10—C91.467 (2)C14—C171.505 (3)
C1—C61.385 (3)C13—C161.504 (2)
C9—C81.332 (2)C5—H5A0.9300
C9—H9A0.9300C17—H17A0.9600
C7—O11.222 (2)C17—H17B0.9600
C7—C81.481 (2)C17—H17C0.9600
C7—C41.499 (2)C16—H16A0.9600
C6—C51.380 (3)C16—H16B0.9600
C6—H6A0.9300C16—H16C0.9600
C11—C121.383 (3)
C1—C2—C3118.67 (15)C5—C4—C7118.34 (15)
C1—C2—H2A120.7C2—C3—C4120.69 (15)
C3—C2—H2A120.7C2—C3—H3A119.7
C14—C15—C10122.73 (15)C4—C3—H3A119.7
C14—C15—H15A118.6C11—C12—C13122.25 (15)
C10—C15—H15A118.6C11—C12—H12A118.9
C15—C10—C11118.03 (15)C13—C12—H12A118.9
C15—C10—C9119.14 (14)C15—C14—C13118.70 (15)
C11—C10—C9122.83 (15)C15—C14—C17120.56 (15)
C2—C1—C6122.03 (16)C13—C14—C17120.74 (16)
C2—C1—Cl1118.89 (13)C12—C13—C14118.63 (15)
C6—C1—Cl1119.08 (13)C12—C13—C16120.30 (16)
C8—C9—C10127.04 (15)C14—C13—C16121.07 (16)
C8—C9—H9A116.5C6—C5—C4121.01 (16)
C10—C9—H9A116.5C6—C5—H5A119.5
O1—C7—C8122.36 (16)C4—C5—H5A119.5
O1—C7—C4119.56 (16)C14—C17—H17A109.5
C8—C7—C4118.08 (14)C14—C17—H17B109.5
C5—C6—C1118.51 (15)H17A—C17—H17B109.5
C5—C6—H6A120.7C14—C17—H17C109.5
C1—C6—H6A120.7H17A—C17—H17C109.5
C12—C11—C10119.58 (15)H17B—C17—H17C109.5
C12—C11—H11A120.2C13—C16—H16A109.5
C10—C11—H11A120.2C13—C16—H16B109.5
C9—C8—C7120.28 (16)H16A—C16—H16B109.5
C9—C8—H8A119.9C13—C16—H16C109.5
C7—C8—H8A119.9H16A—C16—H16C109.5
C3—C4—C5119.06 (15)H16B—C16—H16C109.5
C3—C4—C7122.57 (14)

Experimental details

Crystal data
Chemical formulaC17H15ClO
Mr270.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.9621 (12), 7.7369 (15), 15.513 (3)
α, β, γ (°)98.30 (3), 99.96 (3), 95.23 (3)
V3)692.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6689, 3141, 2643
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.188, 1.08
No. of reflections3141
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.54, 0.52

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The author thanks the National Natural Science Foundation of Shandong (Y2008B29) and Weifang University for research grants.

References

First citationAnto, R. J., Kuttan, G., Kuttan, R., Sathyanarayana, K. & Rao, M. N. A. (1994). J. Clin. Biochem. Nutr. 17, 73–80.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHsieh, H. K., Lee, T. H., Wang, J. P., Wang, J. J. & Lin, C. N. (1998). Pharm. Res. 15, 39–46.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, Y. (2010). Acta Cryst. E66, o1412.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds