organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-{4-[(5-Methyl­isoxazol-3-yl)sulfamo­yl]phen­yl}benzamide

aDepartment of Chemistry, University of Gujrat, Gujrat 50700, Pakistan, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, and cMaterials Chemistry Laboratory, Department of Chemistry, Government College University, Lahore 54000, Pakistan
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 27 July 2010; accepted 3 August 2010; online 11 August 2010)

In the title compound, C17H15N3O4S, the five-membered isoxazole ring makes dihedral angles of 80.5 (2) and 81.3 (2)° with the two benzene rings, which form a dihedral angle of 39.81 (18)° with each other. A short intra­molecular C—H⋯O contact occurs. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds, which generate [001] chains, and further consolidated by weak C—H⋯O inter­actions.

Related literature

The N-alkyl­ated moiety is present in many natural products as well as in drugs, see: Wijayanti et al. (2010[Wijayanti, M. A., Sholikhah, E. N., Hadanu, R., Jumina, J., Supargiyono, S. & Mustofa, M. (2010). Malaria Res. Treatment, doi:10.4061/2010/540786.]). For the synthesis and the biological properties of amide derivatives of sulfonamide-type drugs, see: Hussain (2009[Hussain, A. (2009). Acta Pol. Pharm. Drug Res. 66, 513-521.]). For the crystal structures of similar sulfonamides, see: Shad et al. (2008[Shad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.], 2009[Shad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98-o99.]); Chohan et al. (2008a[Chohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008a). Acta Cryst. E64, o725.],b[Chohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008b). Acta Cryst. E64, o648.]); Tahir et al. (2008[Tahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.]).

[Scheme 1]

Experimental

Crystal data
  • C17H15N3O4S

  • Mr = 357.39

  • Monoclinic, P 21 /c

  • a = 8.2407 (6) Å

  • b = 23.5069 (16) Å

  • c = 8.5199 (6) Å

  • β = 92.155 (3)°

  • V = 1649.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.34 × 0.17 × 0.07 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • 12756 measured reflections

  • 2865 independent reflections

  • 1544 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.135

  • S = 0.99

  • 2865 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O4i 0.86 2.21 2.788 (4) 124
N3—H3N⋯O3ii 0.86 2.27 3.075 (4) 156
C7—H7⋯O4 0.93 2.26 2.832 (4) 119
C10—H10⋯O2iii 0.93 2.44 3.130 (4) 131
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x, y, z+1; (iii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

N-alkylated moiety is present in many natural products as well as in drugs (Wijayanti et al., 2010). Amide derivative of sulfonamide type drugs has been synthesized and biologicaly evaluated (Hussain, 2009). The title compound (I), a new benzamide derivative of sulfamethaxazole, was synthesized by the condensation reaction of sulfamethaxazole with benzoyl chloride.

In (I), (Fig. 1), the bond lengths and bond angles of the molecule are in good agreement with those determined in the similar compounds (Shad et al., 2009; Chohan et al., 2008a,b; Shad et al., 2008; Tahir et al., 2008). The five-membered isoxazole ring (O1/N1/C2–C4) make dihedral angles of 80.5 (2) and 81.3 (2)° with the two benzene rings (C5–C10) and (C12–C17) which form a dihedral angle of 39.81 (18)° with each other. In (I), The torsion angles C1—C2–C3–C4, O4—C11—C12—C13, C1—N2—S1—C5 and C8—N3—C11—C12 are -177.5 (5), -16.4 (5), -69.4 (3) and 167.0 (3)°, respectively.

The crystal packing of (I) is stabilized by intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1, Fig. 2), forming an extended supramolecular network.

Related literature top

The N-alkylated moiety is present in many natural products as well as in drugs, see: Wijayanti et al. (2010). For the synthesis and the biological properties of amide derivatives of sulfonamide-type drugs, see: Hussain (2009). For the crystal structures of similar sulfonamides, see: Shad et al. (2009); Chohan et al. (2008a,b); Shad et al. (2008); Tahir et al. (2008).

Experimental top

Sulfamethaxazole (100 mg, 0.39 mmol) was dissolved in methanol (10 ml) and then benzoyl chloride (45 ml, 0.39 mmol) was added dropwise. The mixture was refluxed for 2 h at temperature ~353 K. The pH of the reaction was maintained at 7–8 by adding pyridine to neuterlize the produced HCl. White precipitates were formed. The precipitates were filtered, washed with plenty of distilled water and crystallized with acetone to yield off-white blocks of (I).

Refinement top

All H atoms bound to N and O atoms were placed in idealized positions and refined using a riding model with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,N).

Structure description top

N-alkylated moiety is present in many natural products as well as in drugs (Wijayanti et al., 2010). Amide derivative of sulfonamide type drugs has been synthesized and biologicaly evaluated (Hussain, 2009). The title compound (I), a new benzamide derivative of sulfamethaxazole, was synthesized by the condensation reaction of sulfamethaxazole with benzoyl chloride.

In (I), (Fig. 1), the bond lengths and bond angles of the molecule are in good agreement with those determined in the similar compounds (Shad et al., 2009; Chohan et al., 2008a,b; Shad et al., 2008; Tahir et al., 2008). The five-membered isoxazole ring (O1/N1/C2–C4) make dihedral angles of 80.5 (2) and 81.3 (2)° with the two benzene rings (C5–C10) and (C12–C17) which form a dihedral angle of 39.81 (18)° with each other. In (I), The torsion angles C1—C2–C3–C4, O4—C11—C12—C13, C1—N2—S1—C5 and C8—N3—C11—C12 are -177.5 (5), -16.4 (5), -69.4 (3) and 167.0 (3)°, respectively.

The crystal packing of (I) is stabilized by intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1, Fig. 2), forming an extended supramolecular network.

The N-alkylated moiety is present in many natural products as well as in drugs, see: Wijayanti et al. (2010). For the synthesis and the biological properties of amide derivatives of sulfonamide-type drugs, see: Hussain (2009). For the crystal structures of similar sulfonamides, see: Shad et al. (2009); Chohan et al. (2008a,b); Shad et al. (2008); Tahir et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial view of the packing of (I), showing the N—H ··· O and C—H ··· O hydrogen-bonding interactions (dashed lines) between the molecules. Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
N-{4-[(5-Methylisoxazol-3-yl)sulfamoyl]phenyl}benzamide top
Crystal data top
C17H15N3O4SF(000) = 744
Mr = 357.39Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 886 reflections
a = 8.2407 (6) Åθ = 2.5–19.0°
b = 23.5069 (16) ŵ = 0.22 mm1
c = 8.5199 (6) ÅT = 296 K
β = 92.155 (3)°Block, off-white
V = 1649.3 (2) Å30.34 × 0.17 × 0.07 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1544 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.099
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
phi and ω scansh = 99
12756 measured reflectionsk = 2727
2865 independent reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0555P)2]
where P = (Fo2 + 2Fc2)/3
2865 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C17H15N3O4SV = 1649.3 (2) Å3
Mr = 357.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.2407 (6) ŵ = 0.22 mm1
b = 23.5069 (16) ÅT = 296 K
c = 8.5199 (6) Å0.34 × 0.17 × 0.07 mm
β = 92.155 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1544 reflections with I > 2σ(I)
12756 measured reflectionsRint = 0.099
2865 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 0.99Δρmax = 0.26 e Å3
2865 reflectionsΔρmin = 0.33 e Å3
227 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43740 (12)0.83329 (4)0.22084 (11)0.0386 (4)
O11.0003 (4)0.81880 (17)0.0861 (4)0.0844 (17)
O20.4214 (3)0.77361 (9)0.1980 (3)0.0496 (10)
O30.3429 (3)0.86108 (10)0.3422 (3)0.0496 (10)
O40.3631 (3)1.03832 (10)0.3334 (3)0.0510 (10)
N10.8855 (5)0.85441 (16)0.1611 (5)0.0704 (17)
N20.6255 (4)0.84586 (12)0.2644 (3)0.0437 (11)
N30.3130 (4)0.94599 (12)0.3837 (3)0.0404 (11)
C11.0426 (6)0.7243 (2)0.0112 (7)0.108 (3)
C20.9324 (7)0.7675 (2)0.0637 (5)0.070 (2)
C30.7813 (6)0.76770 (19)0.1215 (5)0.0652 (19)
C40.7578 (5)0.82254 (18)0.1798 (4)0.0452 (16)
C50.4049 (4)0.86758 (14)0.0421 (4)0.0323 (12)
C60.3831 (4)0.92538 (14)0.0387 (4)0.0363 (12)
C70.3562 (4)0.95266 (15)0.0996 (4)0.0372 (14)
C80.3494 (4)0.92116 (15)0.2385 (4)0.0344 (12)
C90.3738 (5)0.86339 (15)0.2337 (4)0.0414 (14)
C100.4019 (4)0.83617 (15)0.0942 (4)0.0417 (14)
C110.3098 (4)1.00198 (16)0.4204 (4)0.0364 (12)
C120.2330 (4)1.01807 (15)0.5708 (4)0.0367 (12)
C130.2608 (5)1.07230 (17)0.6286 (4)0.0495 (17)
C140.1852 (6)1.09083 (19)0.7601 (5)0.0651 (19)
C150.0811 (5)1.0556 (2)0.8348 (5)0.0610 (19)
C160.0515 (5)1.00162 (19)0.7787 (4)0.0528 (17)
C170.1291 (4)0.98271 (16)0.6476 (4)0.0430 (14)
H1A1.090400.739500.106800.1620*
H1B1.126800.714800.059200.1620*
H1C0.981700.690700.034300.1620*
H2N0.643700.867800.342600.0530*
H30.707300.737800.123000.0780*
H3N0.290200.922800.457800.0480*
H60.386600.946200.131300.0430*
H70.342500.991900.101400.0450*
H90.371200.842300.326000.0500*
H100.418800.797100.092100.0500*
H130.331301.096400.578000.0600*
H140.204701.127300.798200.0780*
H150.030201.068100.924000.0730*
H160.020500.977900.828800.0630*
H170.111100.945900.611000.0510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0542 (7)0.0308 (6)0.0309 (6)0.0024 (5)0.0013 (4)0.0030 (5)
O10.066 (3)0.095 (3)0.091 (3)0.007 (2)0.0124 (19)0.007 (2)
O20.075 (2)0.0238 (14)0.0500 (18)0.0059 (13)0.0019 (14)0.0043 (12)
O30.068 (2)0.0470 (17)0.0330 (16)0.0020 (13)0.0096 (13)0.0012 (13)
O40.078 (2)0.0357 (16)0.0409 (17)0.0104 (14)0.0217 (14)0.0015 (13)
N10.057 (3)0.063 (3)0.090 (3)0.003 (2)0.013 (2)0.007 (2)
N20.051 (2)0.045 (2)0.0359 (19)0.0010 (16)0.0138 (16)0.0054 (15)
N30.059 (2)0.0325 (19)0.0302 (18)0.0013 (15)0.0085 (15)0.0036 (14)
C10.067 (4)0.142 (5)0.116 (5)0.039 (4)0.008 (3)0.046 (4)
C20.066 (4)0.090 (4)0.055 (3)0.021 (3)0.015 (3)0.016 (3)
C30.049 (3)0.068 (3)0.079 (4)0.009 (2)0.006 (3)0.023 (3)
C40.045 (3)0.050 (3)0.041 (2)0.003 (2)0.009 (2)0.010 (2)
C50.040 (2)0.029 (2)0.028 (2)0.0013 (17)0.0020 (17)0.0018 (17)
C60.041 (2)0.039 (2)0.029 (2)0.0008 (18)0.0010 (17)0.0069 (18)
C70.051 (3)0.026 (2)0.035 (2)0.0019 (17)0.0062 (18)0.0030 (17)
C80.041 (2)0.036 (2)0.026 (2)0.0044 (17)0.0004 (16)0.0011 (17)
C90.061 (3)0.029 (2)0.034 (2)0.0002 (18)0.0012 (19)0.0085 (18)
C100.063 (3)0.024 (2)0.038 (2)0.0000 (19)0.0026 (19)0.0013 (18)
C110.037 (2)0.040 (2)0.032 (2)0.0011 (18)0.0022 (17)0.0021 (19)
C120.035 (2)0.046 (2)0.029 (2)0.0032 (18)0.0004 (17)0.0007 (18)
C130.054 (3)0.050 (3)0.045 (3)0.008 (2)0.008 (2)0.008 (2)
C140.079 (4)0.066 (3)0.051 (3)0.003 (3)0.011 (3)0.024 (3)
C150.066 (3)0.077 (4)0.041 (3)0.008 (3)0.015 (2)0.009 (3)
C160.049 (3)0.071 (3)0.039 (3)0.005 (2)0.008 (2)0.005 (2)
C170.046 (3)0.043 (2)0.040 (2)0.0046 (19)0.000 (2)0.0013 (19)
Geometric parameters (Å, º) top
S1—O21.423 (2)C9—C101.377 (5)
S1—O31.429 (3)C11—C121.499 (5)
S1—N21.634 (3)C12—C171.376 (5)
S1—C51.753 (4)C12—C131.383 (5)
O1—N11.400 (5)C13—C141.373 (6)
O1—C21.346 (6)C14—C151.367 (6)
O4—C111.223 (4)C15—C161.375 (6)
N1—C41.297 (6)C16—C171.381 (5)
N2—C41.396 (5)C1—H1A0.9600
N3—C81.410 (4)C1—H1B0.9600
N3—C111.353 (5)C1—H1C0.9600
N2—H2N0.8600C3—H30.9300
N3—H3N0.8600C6—H60.9300
C1—C21.490 (7)C7—H70.9300
C2—C31.322 (7)C9—H90.9300
C3—C41.392 (6)C10—H100.9300
C5—C101.377 (5)C13—H130.9300
C5—C61.371 (5)C14—H140.9300
C6—C71.367 (5)C15—H150.9300
C7—C81.399 (5)C16—H160.9300
C8—C91.374 (5)C17—H170.9300
O2—S1—O3119.92 (15)C11—C12—C13117.9 (3)
O2—S1—N2107.63 (15)C11—C12—C17123.0 (3)
O2—S1—C5108.46 (16)C13—C12—C17119.0 (3)
O3—S1—N2104.41 (15)C12—C13—C14120.6 (4)
O3—S1—C5108.76 (16)C13—C14—C15120.0 (4)
N2—S1—C5106.94 (15)C14—C15—C16120.3 (4)
N1—O1—C2108.9 (4)C15—C16—C17119.8 (4)
O1—N1—C4104.0 (3)C12—C17—C16120.4 (4)
S1—N2—C4122.7 (2)C2—C1—H1A109.00
C8—N3—C11127.7 (3)C2—C1—H1B110.00
C4—N2—H2N119.00C2—C1—H1C109.00
S1—N2—H2N119.00H1A—C1—H1B109.00
C8—N3—H3N116.00H1A—C1—H1C109.00
C11—N3—H3N116.00H1B—C1—H1C109.00
C1—C2—C3135.4 (5)C2—C3—H3128.00
O1—C2—C3109.6 (4)C4—C3—H3128.00
O1—C2—C1114.9 (5)C5—C6—H6120.00
C2—C3—C4104.6 (4)C7—C6—H6120.00
N1—C4—N2116.8 (4)C6—C7—H7120.00
N1—C4—C3112.9 (4)C8—C7—H7120.00
N2—C4—C3130.0 (4)C8—C9—H9120.00
S1—C5—C6119.9 (3)C10—C9—H9119.00
S1—C5—C10119.6 (3)C5—C10—H10120.00
C6—C5—C10120.5 (3)C9—C10—H10120.00
C5—C6—C7120.6 (3)C12—C13—H13120.00
C6—C7—C8119.6 (3)C14—C13—H13120.00
N3—C8—C7122.7 (3)C13—C14—H14120.00
N3—C8—C9118.1 (3)C15—C14—H14120.00
C7—C8—C9119.2 (3)C14—C15—H15120.00
C8—C9—C10121.0 (3)C16—C15—H15120.00
C5—C10—C9119.2 (3)C15—C16—H16120.00
O4—C11—C12121.0 (3)C17—C16—H16120.00
N3—C11—C12117.1 (3)C12—C17—H17120.00
O4—C11—N3121.9 (3)C16—C17—H17120.00
O2—S1—N2—C447.0 (3)C2—C3—C4—N2174.6 (4)
O3—S1—N2—C4175.5 (3)S1—C5—C6—C7179.4 (3)
C5—S1—N2—C469.4 (3)C10—C5—C6—C70.8 (5)
O2—S1—C5—C6167.7 (3)S1—C5—C10—C9179.0 (3)
O2—S1—C5—C1012.5 (3)C6—C5—C10—C91.2 (5)
O3—S1—C5—C635.7 (3)C5—C6—C7—C80.6 (5)
O3—S1—C5—C10144.5 (3)C6—C7—C8—N3176.3 (3)
N2—S1—C5—C676.5 (3)C6—C7—C8—C91.5 (5)
N2—S1—C5—C10103.3 (3)N3—C8—C9—C10176.8 (3)
C2—O1—N1—C40.4 (5)C7—C8—C9—C101.1 (6)
N1—O1—C2—C1178.2 (4)C8—C9—C10—C50.2 (6)
N1—O1—C2—C30.8 (5)O4—C11—C12—C1316.4 (5)
O1—N1—C4—N2175.0 (3)O4—C11—C12—C17159.5 (3)
O1—N1—C4—C30.0 (5)N3—C11—C12—C13165.4 (3)
S1—N2—C4—N1143.7 (3)N3—C11—C12—C1718.7 (5)
S1—N2—C4—C342.4 (5)C11—C12—C13—C14175.7 (4)
C11—N3—C8—C713.4 (6)C17—C12—C13—C140.4 (6)
C11—N3—C8—C9168.7 (4)C11—C12—C17—C16174.6 (3)
C8—N3—C11—O411.1 (6)C13—C12—C17—C161.2 (5)
C8—N3—C11—C12167.0 (3)C12—C13—C14—C150.2 (7)
O1—C2—C3—C40.7 (5)C13—C14—C15—C160.1 (7)
C1—C2—C3—C4177.5 (5)C14—C15—C16—C170.9 (6)
C2—C3—C4—N10.5 (5)C15—C16—C17—C121.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4i0.862.212.788 (4)124
N3—H3N···O3ii0.862.273.075 (4)156
C7—H7···O40.932.262.832 (4)119
C10—H10···O2iii0.932.443.130 (4)131
Symmetry codes: (i) x+1, y+2, z; (ii) x, y, z+1; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H15N3O4S
Mr357.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.2407 (6), 23.5069 (16), 8.5199 (6)
β (°) 92.155 (3)
V3)1649.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.34 × 0.17 × 0.07
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12756, 2865, 1544
Rint0.099
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.135, 0.99
No. of reflections2865
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.33

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O4i0.862.212.788 (4)124
N3—H3N···O3ii0.862.273.075 (4)156
C7—H7···O40.932.262.832 (4)119
C10—H10···O2iii0.932.443.130 (4)131
Symmetry codes: (i) x+1, y+2, z; (ii) x, y, z+1; (iii) x, y+3/2, z+1/2.
 

Footnotes

Additional corresponding author, e-mail: iukhan.gcu@gmail.com.

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support to purchase the diffractometer.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H., Shad, H. A., Tahir, M. N. & Khan, I. U. (2008a). Acta Cryst. E64, o725.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChohan, Z. H., Tahir, M. N., Shad, H. A. & Khan, I. U. (2008b). Acta Cryst. E64, o648.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHussain, A. (2009). Acta Pol. Pharm. Drug Res. 66, 513–521.  Google Scholar
First citationShad, H. A., Chohan, Z. H., Tahir, M. N. & Khan, I. U. (2008). Acta Cryst. E64, o635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Chohan, Z. H., Shad, H. A. & Khan, I. U. (2008). Acta Cryst. E64, o720.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWijayanti, M. A., Sholikhah, E. N., Hadanu, R., Jumina, J., Supargiyono, S. & Mustofa, M. (2010). Malaria Res. Treatment, doi:10.4061/2010/540786.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds