organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 4-(di­methyl­amino)­pyridinium tribromide

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 28 July 2010; accepted 30 July 2010; online 11 August 2010)

In the title salt, C7H11N2+·Br3, the essentially planar cation (r.m.s. deviation = 0.006 Å) forms an N—H⋯Br hydrogen bond to one of the Br atoms of the almost linear anion [Br—Br—Br = 179.31 (2)°]. The crystal studied was found to be a racemic twin. The whole-mol­ecule disorder of the cation and anion about a twofold rotation axis described earlier [Ng (2009). Acta Cryst. E65, o1276] is an artifact of halving one of the axes of the ortho­rhom­bic unit cell.

Related literature

For the refinement based on a unit cell half as large, see: Ng (2009[Ng, S. W. (2009). Acta Cryst. E65, o1276.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11N2+·Br3

  • Mr = 362.91

  • Orthorhombic, P 21 21 2

  • a = 14.7253 (2) Å

  • b = 17.6696 (3) Å

  • c = 4.1689 (1) Å

  • V = 1084.71 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.11 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.215, Tmax = 0.403

  • 10364 measured reflections

  • 2502 independent reflections

  • 2300 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.040

  • S = 0.98

  • 2502 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 999 Friedel pairs

  • Flack parameter: 0.51 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.92 (3) 2.41 (3) 3.323 (2) 171 (3)

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Dimethylaminopyridinium tribromide (I) was refined as a whole-molecule-disordered cation and anion that was disordered about a crystallographic twofold rotation axis (Ng, 2009) in the orthorhombic P2221 space group [unit cell parameters 4.1688 (1), 8.8349 (2), 14.7255 (4) Å]. The automatic cell-searching program had, in fact, missed some weaker reflections, so that the true b-axis should be doubled, so that the space group would be P22121 [4.1689 (1), 17.6696 (3), 14.7253 (2) Å]. In the standard P21212 setting, the structure refines smoothly, without disorder, to a final R index of 0.019 (Fig. 1). The disorder is an artifact of halving one of the axis, and a chemically reasonable model coincidentally arose owing to the nature of both the planar cation and linear anion.

Related literature top

For the refinement based on a unit cell half as large, see: Ng (2009).

Experimental top

The diffraction measurements were those used in the previous study (Ng, 2009). Measurements on another different specimen gave the same refinement results, especially with respect to the 0.5 Flack parameter.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å for the aromatic H-atoms and 0.98 Å for the methyl H-atoms) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The ammonium H-atom was located in a difference Fourier map, and was refined without a restraint.

The structure is a racemic twin; the Flack parameter was refined on 999 Friedel pairs.

Structure description top

Dimethylaminopyridinium tribromide (I) was refined as a whole-molecule-disordered cation and anion that was disordered about a crystallographic twofold rotation axis (Ng, 2009) in the orthorhombic P2221 space group [unit cell parameters 4.1688 (1), 8.8349 (2), 14.7255 (4) Å]. The automatic cell-searching program had, in fact, missed some weaker reflections, so that the true b-axis should be doubled, so that the space group would be P22121 [4.1689 (1), 17.6696 (3), 14.7253 (2) Å]. In the standard P21212 setting, the structure refines smoothly, without disorder, to a final R index of 0.019 (Fig. 1). The disorder is an artifact of halving one of the axis, and a chemically reasonable model coincidentally arose owing to the nature of both the planar cation and linear anion.

For the refinement based on a unit cell half as large, see: Ng (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
4-(dimethylamino)pyridinium tribromide top
Crystal data top
C7H11N2+·Br3F(000) = 688
Mr = 362.91Dx = 2.222 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 4074 reflections
a = 14.7253 (2) Åθ = 2.7–28.3°
b = 17.6696 (3) ŵ = 11.11 mm1
c = 4.1689 (1) ÅT = 100 K
V = 1084.71 (4) Å3Block, colorless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2502 independent reflections
Radiation source: fine-focus sealed tube2300 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.215, Tmax = 0.403k = 2222
10364 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040 w = 1/[σ2(Fo2) + (0.0204P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
2502 reflectionsΔρmax = 0.38 e Å3
116 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack (1983), 999 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.51 (2)
Crystal data top
C7H11N2+·Br3V = 1084.71 (4) Å3
Mr = 362.91Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 14.7253 (2) ŵ = 11.11 mm1
b = 17.6696 (3) ÅT = 100 K
c = 4.1689 (1) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2502 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2300 reflections with I > 2σ(I)
Tmin = 0.215, Tmax = 0.403Rint = 0.029
10364 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.019H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.040Δρmax = 0.38 e Å3
S = 0.98Δρmin = 0.31 e Å3
2502 reflectionsAbsolute structure: Flack (1983), 999 Friedel pairs
116 parametersAbsolute structure parameter: 0.51 (2)
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.422049 (17)0.112471 (15)0.72575 (7)0.01934 (7)
Br20.261320 (17)0.120225 (14)0.47003 (7)0.01501 (7)
Br30.106438 (17)0.127359 (14)0.23133 (7)0.01826 (7)
N10.60669 (15)0.13040 (13)0.2738 (6)0.0196 (5)
H10.553 (2)0.1299 (18)0.387 (8)0.038 (10)*
N20.85347 (15)0.12901 (12)0.1849 (6)0.0162 (5)
C10.6420 (2)0.06411 (16)0.1723 (7)0.0218 (7)
H1A0.60950.01850.20930.026*
C20.72305 (19)0.06148 (15)0.0185 (7)0.0182 (6)
H20.74680.01430.05200.022*
C30.77231 (17)0.12906 (14)0.0370 (6)0.0148 (5)
C40.73201 (19)0.19758 (15)0.0729 (7)0.0179 (6)
H40.76210.24450.03960.021*
C50.65084 (18)0.19580 (14)0.2248 (8)0.0200 (6)
H50.62460.24180.29820.024*
C60.89406 (19)0.05789 (14)0.2953 (8)0.0221 (7)
H6A0.90210.02370.11240.033*
H6B0.95320.06830.39360.033*
H6C0.85400.03410.45380.033*
C70.90234 (17)0.19907 (14)0.2435 (9)0.0215 (6)
H7A0.86530.23240.37820.032*
H7B0.95970.18790.35320.032*
H7C0.91500.22420.03870.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01273 (13)0.02577 (14)0.01951 (15)0.00074 (11)0.00148 (13)0.00173 (13)
Br20.01278 (13)0.01445 (12)0.01779 (13)0.00072 (11)0.00346 (11)0.00043 (11)
Br30.01313 (13)0.02064 (13)0.02101 (14)0.00046 (11)0.00112 (13)0.00002 (14)
N10.0121 (11)0.0263 (12)0.0204 (13)0.0014 (10)0.0026 (12)0.0015 (13)
N20.0133 (11)0.0125 (10)0.0228 (13)0.0005 (9)0.0026 (10)0.0024 (10)
C10.0188 (16)0.0211 (15)0.0255 (18)0.0030 (13)0.0007 (14)0.0025 (12)
C20.0195 (15)0.0157 (13)0.0196 (16)0.0012 (11)0.0001 (15)0.0015 (12)
C30.0135 (13)0.0170 (12)0.0140 (12)0.0004 (12)0.0034 (12)0.0014 (12)
C40.0154 (14)0.0157 (13)0.0225 (16)0.0005 (12)0.0018 (14)0.0014 (11)
C50.0177 (14)0.0186 (13)0.0236 (17)0.0051 (11)0.0038 (17)0.0030 (14)
C60.0183 (15)0.0178 (13)0.0303 (19)0.0030 (12)0.0047 (18)0.0008 (14)
C70.0141 (14)0.0179 (13)0.0323 (18)0.0011 (11)0.0072 (18)0.0024 (15)
Geometric parameters (Å, º) top
Br1—Br22.5994 (4)C2—H20.9500
Br2—Br32.4915 (4)C3—C41.424 (4)
N1—C51.342 (3)C4—C51.353 (4)
N1—C11.350 (4)C4—H40.9500
N1—H10.92 (3)C5—H50.9500
N2—C31.345 (3)C6—H6A0.9800
N2—C71.453 (3)C6—H6B0.9800
N2—C61.466 (3)C6—H6C0.9800
C1—C21.356 (4)C7—H7A0.9800
C1—H1A0.9500C7—H7B0.9800
C2—C31.416 (4)C7—H7C0.9800
Br3—Br2—Br1179.314 (16)C5—C4—H4120.0
C5—N1—C1120.9 (2)C3—C4—H4120.0
C5—N1—H1120 (2)N1—C5—C4121.3 (3)
C1—N1—H1119 (2)N1—C5—H5119.4
C3—N2—C7121.1 (2)C4—C5—H5119.4
C3—N2—C6120.5 (2)N2—C6—H6A109.5
C7—N2—C6118.4 (2)N2—C6—H6B109.5
N1—C1—C2121.2 (3)H6A—C6—H6B109.5
N1—C1—H1A119.4N2—C6—H6C109.5
C2—C1—H1A119.4H6A—C6—H6C109.5
C1—C2—C3119.9 (3)H6B—C6—H6C109.5
C1—C2—H2120.0N2—C7—H7A109.5
C3—C2—H2120.0N2—C7—H7B109.5
N2—C3—C2122.0 (2)H7A—C7—H7B109.5
N2—C3—C4121.2 (2)N2—C7—H7C109.5
C2—C3—C4116.8 (2)H7A—C7—H7C109.5
C5—C4—C3119.9 (3)H7B—C7—H7C109.5
C5—N1—C1—C20.1 (5)C1—C2—C3—N2179.1 (3)
N1—C1—C2—C30.2 (4)C1—C2—C3—C40.6 (4)
C7—N2—C3—C2179.1 (3)N2—C3—C4—C5179.1 (3)
C6—N2—C3—C20.1 (4)C2—C3—C4—C50.6 (4)
C7—N2—C3—C41.2 (4)C1—N1—C5—C40.1 (5)
C6—N2—C3—C4179.8 (3)C3—C4—C5—N10.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.92 (3)2.41 (3)3.323 (2)171 (3)

Experimental details

Crystal data
Chemical formulaC7H11N2+·Br3
Mr362.91
Crystal system, space groupOrthorhombic, P21212
Temperature (K)100
a, b, c (Å)14.7253 (2), 17.6696 (3), 4.1689 (1)
V3)1084.71 (4)
Z4
Radiation typeMo Kα
µ (mm1)11.11
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.215, 0.403
No. of measured, independent and
observed [I > 2σ(I)] reflections
10364, 2502, 2300
Rint0.029
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.040, 0.98
No. of reflections2502
No. of parameters116
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.31
Absolute structureFlack (1983), 999 Friedel pairs
Absolute structure parameter0.51 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Br1—Br22.5994 (4)Br2—Br32.4915 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.92 (3)2.41 (3)3.323 (2)171 (3)
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNg, S. W. (2009). Acta Cryst. E65, o1276.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds