metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­{[N-(4-chloro­phen­yl)-4-methyl­pyridin-2-amine-κN1]copper(II)}

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 29 July 2010; accepted 29 July 2010; online 4 August 2010)

In the crystal structure of the title complex, [Cu2(CH3COO)4(C12H11ClN2)2], the complete binuclear mol­ecule is generated by a crystallographic centre of inversion; the four acetate groups each bridge a pair of CuII atoms. The coordination of the metal atom is distorted octa­hedral within a donor set defined by four O atoms, the heterocyclic N atom and the second Cu atom. The pyridine ring is twisted with respect to the benzene ring, forming a dihedral angle of 33.9 (2)°. An intra­molecular N—H⋯O hydrogen bond is present between the amino group and a carboxyl O atom. Inter­molecular inter­actions of the C—H⋯π type link mol­ecules in the crystal structure.

Related literature

For examples of tetra­kis­acetato­bis­[(substituted 2-amino­pyrid­yl)copper] complexes, see: Barquín et al. (2004[Barquín, M., González Garmendia, M. J., Pacheco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230-3236.]); Seco et al. (2004[Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457-464.]); Sieroń (2004[Sieroń, L. (2004). Acta Cryst. E60, m577-m578.]); Fairuz et al. (2009[Fairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, m1690.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C12H11ClN2)2]

  • Mr = 800.61

  • Monoclinic, P 21 /c

  • a = 11.7430 (17) Å

  • b = 15.619 (2) Å

  • c = 9.9866 (14) Å

  • β = 109.901 (2)°

  • V = 1722.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.45 mm−1

  • T = 296 K

  • 0.35 × 0.25 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.632, Tmax = 0.931

  • 11432 measured reflections

  • 3951 independent reflections

  • 2460 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 1.04

  • 3951 reflections

  • 224 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O3i 1.967 (3)
Cu1—O1i 1.975 (3)
Cu1—O2 1.983 (3)
Cu1—O4 1.984 (3)
Cu1—N1 2.220 (3)
Cu1—Cu1i 2.6431 (10)
Symmetry code: (i) -x+2, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C5–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.85 (4) 2.30 (2) 3.101 (5) 156 (4)
C4—H4a⋯Cg1ii 0.96 2.83 3.650 (5) 144
Symmetry code: (ii) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The binuclear title complex, (I), was studied in connection with the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al., 2004; Seco et al., 2004; Sieroń, 2004; Fairuz et al., 2009). The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two Cu atoms bridged by four acetate groups. The Cu–O bond distances lie in the experimentally equivalent range 1.967 (3) to 1.984 (3) Å, Table 1. The coordination environment for each Cu atom is completed by a N atom derived from the N-4-chloroanilino-4-picoline ligand and the second Cu atom [Cu···Cui = 2.6431 (10) Å]. The resulting hexa-coordinated geometry is based on an octahedron. An intramolecular N1–H···O4 interaction is noted, Table 2. The N-heterocycle is non-planar with the dihedral angle formed between the pyridine and benzene rings being 33.9 (2) °. The major twist in the molecule occurs around the amine group as seen in the value of the C9–N2–C11–C12 torsion angle of 24.1 (8) °. The most obvious intermolecular contact operating in the crystal structure is of the type C–H···π and occurs between methyl-H and pyridine rings, Table 2. These link complex molecules that stack in columns along the a axis, Fig. 2.

Related literature top

For examples of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al. (2004); Seco et al. (2004); Sieroń (2004); Fairuz et al. (2009).

Experimental top

A mixture of N-(4-chlorophenyl)-4-methylpyridin-2-amine (0.2408 g, 1.1 mmol) in acetonitrile (15 ml) and trimethyl orthoformate (10 ml) was heated to 328 K. Copper acetate (0.1 g, 0.5 mmol) dissolved in acetonitrile (15 ml) was added drop wise to the ligand solution. The green solution was left at room temperature and green plates of (I) were collected after a few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined

Structure description top

The binuclear title complex, (I), was studied in connection with the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al., 2004; Seco et al., 2004; Sieroń, 2004; Fairuz et al., 2009). The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two Cu atoms bridged by four acetate groups. The Cu–O bond distances lie in the experimentally equivalent range 1.967 (3) to 1.984 (3) Å, Table 1. The coordination environment for each Cu atom is completed by a N atom derived from the N-4-chloroanilino-4-picoline ligand and the second Cu atom [Cu···Cui = 2.6431 (10) Å]. The resulting hexa-coordinated geometry is based on an octahedron. An intramolecular N1–H···O4 interaction is noted, Table 2. The N-heterocycle is non-planar with the dihedral angle formed between the pyridine and benzene rings being 33.9 (2) °. The major twist in the molecule occurs around the amine group as seen in the value of the C9–N2–C11–C12 torsion angle of 24.1 (8) °. The most obvious intermolecular contact operating in the crystal structure is of the type C–H···π and occurs between methyl-H and pyridine rings, Table 2. These link complex molecules that stack in columns along the a axis, Fig. 2.

For examples of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al. (2004); Seco et al. (2004); Sieroń (2004); Fairuz et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 35% probability level. Symmetry code: (i) 2–x, 1–y, 1–z.
[Figure 2] Fig. 2. Unit-cell contents shown in projection down the a axis in (I). The C–H···π contacts are shown as purple dashed lines.
Tetra-µ-acetato-κ8O:O'-bis{[N-(4-chlorophenyl)-4- methylpyridin-2-amine-κN1]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C12H11ClN2)2]F(000) = 820
Mr = 800.61Dx = 1.544 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2098 reflections
a = 11.7430 (17) Åθ = 2.5–23.4°
b = 15.619 (2) ŵ = 1.45 mm1
c = 9.9866 (14) ÅT = 296 K
β = 109.901 (2)°Plate, green
V = 1722.3 (4) Å30.35 × 0.25 × 0.05 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3951 independent reflections
Radiation source: fine-focus sealed tube2460 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω scanθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1513
Tmin = 0.632, Tmax = 0.931k = 1920
11432 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.064P)2 + 1.063P]
where P = (Fo2 + 2Fc2)/3
3951 reflections(Δ/σ)max = 0.001
224 parametersΔρmax = 0.49 e Å3
1 restraintΔρmin = 0.77 e Å3
Crystal data top
[Cu2(C2H3O2)4(C12H11ClN2)2]V = 1722.3 (4) Å3
Mr = 800.61Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.7430 (17) ŵ = 1.45 mm1
b = 15.619 (2) ÅT = 296 K
c = 9.9866 (14) Å0.35 × 0.25 × 0.05 mm
β = 109.901 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3951 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2460 reflections with I > 2σ(I)
Tmin = 0.632, Tmax = 0.931Rint = 0.065
11432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0521 restraint
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.49 e Å3
3951 reflectionsΔρmin = 0.77 e Å3
224 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.92999 (4)0.47727 (4)0.57325 (5)0.03790 (19)
Cl10.17644 (11)0.30281 (12)0.10013 (15)0.0756 (5)
N10.8173 (3)0.4410 (2)0.7033 (3)0.0359 (8)
N20.6604 (3)0.3905 (3)0.5143 (4)0.0514 (11)
H20.712 (3)0.386 (3)0.472 (4)0.054 (14)*
O10.9185 (3)0.5697 (2)0.2909 (3)0.0520 (8)
O20.7991 (2)0.5312 (2)0.4143 (3)0.0526 (9)
O31.0247 (3)0.4097 (2)0.3375 (3)0.0502 (8)
O40.9027 (3)0.3711 (2)0.4573 (4)0.0539 (9)
C10.8177 (4)0.5643 (3)0.3087 (5)0.0424 (10)
C20.7092 (4)0.6009 (4)0.1941 (5)0.0656 (15)
H2A0.63750.57130.19390.098*
H2B0.71910.59420.10320.098*
H2C0.70180.66070.21220.098*
C30.9545 (3)0.3572 (3)0.3661 (4)0.0408 (10)
C40.9312 (4)0.2732 (3)0.2895 (5)0.0569 (13)
H4A0.88690.23650.33120.085*
H4B1.00700.24680.29710.085*
H4C0.88490.28250.19090.085*
C50.8690 (4)0.4552 (3)0.8442 (5)0.0490 (12)
H50.94570.47980.87640.059*
C60.8160 (4)0.4360 (4)0.9428 (5)0.0531 (13)
H60.85550.44741.03880.064*
C70.7010 (4)0.3986 (3)0.8961 (4)0.0456 (11)
C80.6464 (3)0.3833 (3)0.7531 (4)0.0417 (11)
H80.57000.35840.71930.050*
C90.7059 (3)0.4054 (3)0.6584 (4)0.0350 (9)
C100.6402 (5)0.3728 (4)1.0011 (5)0.0710 (17)
H10A0.58330.41621.00440.107*
H10B0.70020.36621.09390.107*
H10C0.59840.31950.97180.107*
C110.5429 (3)0.3694 (3)0.4227 (4)0.0375 (10)
C120.4356 (4)0.3881 (3)0.4500 (4)0.0414 (10)
H120.44000.41490.53470.050*
C130.3230 (4)0.3668 (3)0.3517 (5)0.0447 (11)
H130.25260.37760.37170.054*
C140.3172 (4)0.3294 (3)0.2243 (5)0.0436 (11)
C150.4220 (4)0.3123 (3)0.1936 (5)0.0500 (12)
H150.41710.28770.10700.060*
C160.5334 (4)0.3321 (3)0.2928 (5)0.0474 (12)
H160.60340.32020.27250.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0227 (2)0.0514 (4)0.0388 (3)0.0041 (2)0.00946 (19)0.0002 (3)
Cl10.0348 (6)0.1143 (13)0.0618 (8)0.0131 (7)0.0044 (5)0.0148 (8)
N10.0246 (15)0.050 (2)0.0316 (17)0.0048 (15)0.0081 (13)0.0007 (16)
N20.0275 (17)0.091 (3)0.037 (2)0.021 (2)0.0132 (15)0.011 (2)
O10.0338 (15)0.075 (2)0.0466 (18)0.0082 (16)0.0124 (14)0.0134 (17)
O20.0260 (14)0.080 (3)0.0495 (18)0.0036 (15)0.0100 (13)0.0128 (17)
O30.0449 (17)0.058 (2)0.0533 (19)0.0118 (16)0.0234 (15)0.0082 (16)
O40.0485 (18)0.058 (2)0.064 (2)0.0131 (16)0.0299 (17)0.0089 (17)
C10.031 (2)0.049 (3)0.043 (2)0.001 (2)0.0071 (18)0.005 (2)
C20.043 (3)0.085 (4)0.056 (3)0.023 (3)0.002 (2)0.010 (3)
C30.0264 (18)0.050 (3)0.041 (2)0.0003 (19)0.0048 (17)0.003 (2)
C40.053 (3)0.052 (3)0.061 (3)0.012 (2)0.013 (2)0.008 (3)
C50.033 (2)0.074 (4)0.039 (2)0.017 (2)0.0113 (18)0.007 (2)
C60.042 (2)0.081 (4)0.036 (2)0.017 (3)0.0125 (19)0.011 (2)
C70.033 (2)0.069 (3)0.036 (2)0.004 (2)0.0133 (17)0.005 (2)
C80.0242 (18)0.059 (3)0.041 (2)0.0074 (19)0.0093 (17)0.006 (2)
C90.0247 (17)0.043 (3)0.033 (2)0.0035 (17)0.0049 (15)0.0015 (18)
C100.051 (3)0.121 (5)0.045 (3)0.016 (3)0.021 (2)0.005 (3)
C110.0256 (18)0.049 (3)0.035 (2)0.0080 (18)0.0068 (16)0.0046 (19)
C120.033 (2)0.054 (3)0.037 (2)0.002 (2)0.0110 (18)0.004 (2)
C130.0257 (19)0.056 (3)0.050 (3)0.005 (2)0.0102 (18)0.003 (2)
C140.030 (2)0.051 (3)0.044 (2)0.004 (2)0.0039 (17)0.001 (2)
C150.039 (2)0.065 (3)0.041 (2)0.000 (2)0.0069 (19)0.006 (2)
C160.030 (2)0.073 (4)0.040 (2)0.004 (2)0.0140 (18)0.001 (2)
Geometric parameters (Å, º) top
Cu1—O3i1.967 (3)C4—H4B0.9600
Cu1—O1i1.975 (3)C4—H4C0.9600
Cu1—O21.983 (3)C5—C61.366 (6)
Cu1—O41.984 (3)C5—H50.9300
Cu1—N12.220 (3)C6—C71.397 (6)
Cu1—Cu1i2.6431 (10)C6—H60.9300
Cl1—C141.745 (4)C7—C81.373 (6)
N1—C91.350 (5)C7—C101.511 (6)
N1—C51.348 (5)C8—C91.397 (5)
N2—C91.373 (5)C8—H80.9300
N2—C111.411 (5)C10—H10A0.9600
N2—H20.85 (4)C10—H10B0.9600
O1—C11.258 (5)C10—H10C0.9600
O1—Cu1i1.975 (3)C11—C161.392 (6)
O2—C11.259 (5)C11—C121.407 (6)
O3—C31.262 (5)C12—C131.393 (5)
O3—Cu1i1.967 (3)C12—H120.9300
O4—C31.274 (5)C13—C141.380 (6)
C1—C21.506 (6)C13—H130.9300
C2—H2A0.9600C14—C151.392 (6)
C2—H2B0.9600C15—C161.381 (6)
C2—H2C0.9600C15—H150.9300
C3—C41.497 (6)C16—H160.9300
C4—H4A0.9600
O3i—Cu1—O1i88.89 (14)H4A—C4—H4C109.5
O3i—Cu1—O289.88 (14)H4B—C4—H4C109.5
O1i—Cu1—O2168.34 (12)N1—C5—C6124.2 (4)
O3i—Cu1—O4168.17 (12)N1—C5—H5117.9
O1i—Cu1—O491.08 (15)C6—C5—H5117.9
O2—Cu1—O487.76 (14)C5—C6—C7118.5 (4)
O3i—Cu1—N195.02 (13)C5—C6—H6120.7
O1i—Cu1—N194.59 (12)C7—C6—H6120.7
O2—Cu1—N197.06 (12)C8—C7—C6118.4 (4)
O4—Cu1—N196.77 (13)C8—C7—C10120.8 (4)
O3i—Cu1—Cu1i83.47 (9)C6—C7—C10120.8 (4)
O1i—Cu1—Cu1i84.00 (9)C7—C8—C9119.8 (4)
O2—Cu1—Cu1i84.35 (9)C7—C8—H8120.1
O4—Cu1—Cu1i84.76 (9)C9—C8—H8120.1
N1—Cu1—Cu1i177.94 (9)N1—C9—N2113.9 (3)
C9—N1—C5117.2 (3)N1—C9—C8121.9 (3)
C9—N1—Cu1127.9 (3)N2—C9—C8124.2 (4)
C5—N1—Cu1115.0 (3)C7—C10—H10A109.5
C9—N2—C11131.6 (3)C7—C10—H10B109.5
C9—N2—H2116 (3)H10A—C10—H10B109.5
C11—N2—H2111 (3)C7—C10—H10C109.5
C1—O1—Cu1i123.3 (3)H10A—C10—H10C109.5
C1—O2—Cu1122.5 (3)H10B—C10—H10C109.5
C3—O3—Cu1i125.2 (3)C16—C11—N2116.9 (4)
C3—O4—Cu1122.5 (3)C16—C11—C12118.3 (4)
O1—C1—O2125.9 (4)N2—C11—C12124.6 (4)
O1—C1—C2117.4 (4)C13—C12—C11120.8 (4)
O2—C1—C2116.7 (4)C13—C12—H12119.6
C1—C2—H2A109.5C11—C12—H12119.6
C1—C2—H2B109.5C14—C13—C12119.2 (4)
H2A—C2—H2B109.5C14—C13—H13120.4
C1—C2—H2C109.5C12—C13—H13120.4
H2A—C2—H2C109.5C13—C14—C15120.9 (4)
H2B—C2—H2C109.5C13—C14—Cl1119.6 (3)
O3—C3—O4123.9 (4)C15—C14—Cl1119.5 (3)
O3—C3—C4118.2 (4)C16—C15—C14119.5 (4)
O4—C3—C4117.8 (4)C16—C15—H15120.3
C3—C4—H4A109.5C14—C15—H15120.3
C3—C4—H4B109.5C15—C16—C11121.2 (4)
H4A—C4—H4B109.5C15—C16—H16119.4
C3—C4—H4C109.5C11—C16—H16119.4
O3i—Cu1—N1—C9134.2 (4)Cu1—N1—C5—C6178.7 (4)
O1i—Cu1—N1—C9136.5 (4)N1—C5—C6—C70.3 (8)
O2—Cu1—N1—C943.7 (4)C5—C6—C7—C80.3 (8)
O4—Cu1—N1—C944.9 (4)C5—C6—C7—C10177.6 (5)
O3i—Cu1—N1—C547.1 (3)C6—C7—C8—C90.2 (7)
O1i—Cu1—N1—C542.2 (3)C10—C7—C8—C9178.1 (5)
O2—Cu1—N1—C5137.6 (3)C5—N1—C9—N2178.3 (4)
O4—Cu1—N1—C5133.8 (3)Cu1—N1—C9—N20.4 (6)
O3i—Cu1—O2—C184.2 (4)C5—N1—C9—C80.6 (6)
O1i—Cu1—O2—C10.3 (9)Cu1—N1—C9—C8178.0 (3)
O4—Cu1—O2—C184.2 (4)C11—N2—C9—N1167.2 (5)
N1—Cu1—O2—C1179.2 (4)C11—N2—C9—C815.3 (8)
Cu1i—Cu1—O2—C10.8 (4)C7—C8—C9—N10.7 (7)
O3i—Cu1—O4—C37.9 (9)C7—C8—C9—N2178.1 (5)
O1i—Cu1—O4—C381.8 (3)C9—N2—C11—C16159.9 (5)
O2—Cu1—O4—C386.6 (3)C9—N2—C11—C1224.1 (8)
N1—Cu1—O4—C3176.6 (3)C16—C11—C12—C132.3 (7)
Cu1i—Cu1—O4—C32.0 (3)N2—C11—C12—C13178.3 (4)
Cu1i—O1—C1—O22.0 (7)C11—C12—C13—C142.1 (7)
Cu1i—O1—C1—C2178.3 (3)C12—C13—C14—C150.5 (7)
Cu1—O2—C1—O11.8 (7)C12—C13—C14—Cl1179.8 (4)
Cu1—O2—C1—C2178.5 (3)C13—C14—C15—C160.8 (8)
Cu1i—O3—C3—O40.4 (6)Cl1—C14—C15—C16178.9 (4)
Cu1i—O3—C3—C4179.1 (3)C14—C15—C16—C110.5 (8)
Cu1—O4—C3—O32.1 (6)N2—C11—C16—C15177.3 (4)
Cu1—O4—C3—C4177.4 (3)C12—C11—C16—C151.0 (7)
C9—N1—C5—C60.1 (7)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.85 (4)2.30 (2)3.101 (5)156 (4)
C4—H4a···Cg1ii0.962.833.650 (5)144
Symmetry code: (ii) x, y1/2, z3/2.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C12H11ClN2)2]
Mr800.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.7430 (17), 15.619 (2), 9.9866 (14)
β (°) 109.901 (2)
V3)1722.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.35 × 0.25 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.632, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
11432, 3951, 2460
Rint0.065
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.04
No. of reflections3951
No. of parameters224
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.49, 0.77

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O3i1.967 (3)Cu1—O41.984 (3)
Cu1—O1i1.975 (3)Cu1—N12.220 (3)
Cu1—O21.983 (3)Cu1—Cu1i2.6431 (10)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.85 (4)2.30 (2)3.101 (5)156 (4)
C4—H4a···Cg1ii0.962.833.650 (5)144
Symmetry code: (ii) x, y1/2, z3/2.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

Z. Abullulah thanks the Ministry of Higher Education, Malaysia, for research grants (RG027/09AFR and PS374/2009B). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBarquín, M., González Garmendia, M. J., Pacheco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230–3236.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, m1690.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457–464.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2004). Acta Cryst. E60, m577–m578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds