metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-acetato-κ8O:O′-bis­­{[4-methyl-N-(4-methyl­phen­yl)pyridin-2-amine-κN1]copper(II)}

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 30 July 2010; accepted 3 August 2010; online 11 August 2010)

The title complex, [Cu2(CH3COO)4(C13H14N2)2], features a binuclear mol­ecule, which lies about a crystallographic centre of inversion; the four acetate ions each bridge a pair of CuII atoms. The coordination of the metal atom is distorted octa­hedral within a donor set defined by four O atoms, the heterocyclic N atom and the second Cu atom. The pyridine ring is twisted with respect to the tolyl ring and forms a dihedral angle of 35.34 (9)°. A bifurcated N—H⋯(O,O) hydrogen bond is present, linking the amine group to two carboxyl­ate O atoms derived from different acetate ions. In the crystal, C—H⋯π inter­actions link mol­ecules into a supra­molecular array in the bc plane.

Related literature

For examples of tetra­kis­acetato­bis­[(substituted 2-amino­pyrid­yl)copper(II) complexes, see: Barquín et al. (2004[Barquín, M., González Garmendia, M. J., Pacheco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230-3236.]); Seco et al. (2004[Seco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457-464.]); Sieroń (2004[Sieroń, L. (2004). Acta Cryst. E60, m577-m578.]); Fairuz et al. (2010[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1049-m1050.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C2H3O2)4(C13H14N2)2]

  • Mr = 759.78

  • Monoclinic, P 21 /c

  • a = 11.7519 (6) Å

  • b = 15.5822 (8) Å

  • c = 9.9050 (5) Å

  • β = 110.5698 (6)°

  • V = 1698.17 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.31 mm−1

  • T = 293 K

  • 0.40 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.648, Tmax = 0.746

  • 16009 measured reflections

  • 3890 independent reflections

  • 3462 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.083

  • S = 1.01

  • 3890 reflections

  • 225 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2i 1.9701 (13)
Cu1—O3 1.9702 (14)
Cu1—O4i 1.9713 (14)
Cu1—O1 1.9759 (13)
Cu1—N1 2.2016 (14)
Cu1—Cu1i 2.6480 (4)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C5–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2n⋯O1 0.85 (3) 2.36 (2) 3.117 (3) 149 (2)
N2—H2n⋯O4i 0.85 (3) 2.46 (3) 3.047 (2) 127 (2)
C2—H2a⋯Cg1ii 0.96 2.80 3.566 (2) 138
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In connection with on-going studies into the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al., 2004; Seco et al., 2004; Sieroń, 2004; Fairuz et al., 2010), the binuclear title complex, (I), was investigated.

The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two CuII atoms bridged by four acetate groups. The Cu–O bond distances lie in a narrow range, i.e. 1.9701 (13) to 1.9759 (13) Å, Table 1. The distorted octahedral coordination environment for the Cu atom is completed by a pyridine-N atom derived from the 4-methyl-N-p-tolylpyridin-2-amine ligand and the second Cu atom [Cu···Cui = 2.6480 (4) Å for i: 1 - x, 1 - y, 1 - z]. Two intramolecular N1–H···O interactions are noted in which the amine-H spans carboxylate-O atoms derived from different ligands, Table 2. The dihedral angle formed between the pyridine and benzene rings of 35.34 (9) ° indicates the N-heterocycle is non-planar. The major twist in the molecule occurs around the amine group as seen in the value of the C9–N2–C11–C12 torsion angle of -27.2 (3) °. In the crystal packing, contacts of the type C–H···π occur between methyl-H and pyridine rings, Table 2, and lead to the formation of supramolecular arrays in the bc plane, Fig. 2. Layers thus formed stack along the a axis, Fig. 3.

Related literature top

For examples of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al. (2004); Seco et al. (2004); Sieroń (2004); Fairuz et al. (2010).

Experimental top

Copper acetate (0.1 g, 0.5 mmol) dissolved in acetonitrile (15 ml) was added to a mixture of 4-methyl-N-p-tolylpyridin-2-amine (0.2183 g, 1.1 mmol) and trimethyl orthoformate (10 ml). The mixture was heated at 323 K, the green precipitate was collected and recrystallization from its acetonitrile solution yielded green prisms of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.96 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The N-bound H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.86±0.01 Å; the Uiso value was freely refined

Structure description top

In connection with on-going studies into the structural characterization of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al., 2004; Seco et al., 2004; Sieroń, 2004; Fairuz et al., 2010), the binuclear title complex, (I), was investigated.

The binuclear copper(II) complex, Fig. 1, is situated about a centre of inversion and features two CuII atoms bridged by four acetate groups. The Cu–O bond distances lie in a narrow range, i.e. 1.9701 (13) to 1.9759 (13) Å, Table 1. The distorted octahedral coordination environment for the Cu atom is completed by a pyridine-N atom derived from the 4-methyl-N-p-tolylpyridin-2-amine ligand and the second Cu atom [Cu···Cui = 2.6480 (4) Å for i: 1 - x, 1 - y, 1 - z]. Two intramolecular N1–H···O interactions are noted in which the amine-H spans carboxylate-O atoms derived from different ligands, Table 2. The dihedral angle formed between the pyridine and benzene rings of 35.34 (9) ° indicates the N-heterocycle is non-planar. The major twist in the molecule occurs around the amine group as seen in the value of the C9–N2–C11–C12 torsion angle of -27.2 (3) °. In the crystal packing, contacts of the type C–H···π occur between methyl-H and pyridine rings, Table 2, and lead to the formation of supramolecular arrays in the bc plane, Fig. 2. Layers thus formed stack along the a axis, Fig. 3.

For examples of tetrakisacetatobis[(substituted 2-aminopyridyl)copper] complexes, see: Barquín et al. (2004); Seco et al. (2004); Sieroń (2004); Fairuz et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level. Symmetry code: (i) 1 - x, 1 - y, 1 - z.
[Figure 2] Fig. 2. Supramolecular arrays in the bc plane in (I) mediated by C–H···π interactions shown as purple dashed lines.
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the c axis in (I) showing the stacking of layers along a. The C–H···π contacts are shown as purple dashed lines.
Tetra-µ-acetato-κ8O:O'-bis{[4-methyl-N-(4- methylphenyl)pyridin-2-amine-κN1]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C13H14N2)2]F(000) = 788
Mr = 759.78Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8249 reflections
a = 11.7519 (6) Åθ = 4.3–28.2°
b = 15.5822 (8) ŵ = 1.31 mm1
c = 9.9050 (5) ÅT = 293 K
β = 110.5698 (6)°Prism, green
V = 1698.17 (15) Å30.40 × 0.20 × 0.10 mm
Z = 2
Data collection top
Bruker SMART APEX CCD
diffractometer
3890 independent reflections
Radiation source: fine-focus sealed tube3462 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scanθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1415
Tmin = 0.648, Tmax = 0.746k = 2019
16009 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.7683P]
where P = (Fo2 + 2Fc2)/3
3890 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
[Cu2(C2H3O2)4(C13H14N2)2]V = 1698.17 (15) Å3
Mr = 759.78Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.7519 (6) ŵ = 1.31 mm1
b = 15.5822 (8) ÅT = 293 K
c = 9.9050 (5) Å0.40 × 0.20 × 0.10 mm
β = 110.5698 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3890 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3462 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.746Rint = 0.019
16009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.32 e Å3
3890 reflectionsΔρmin = 0.26 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.566326 (17)0.523188 (13)0.42225 (2)0.02759 (8)
N10.67899 (13)0.56104 (9)0.29545 (15)0.0288 (3)
N20.83831 (15)0.60834 (13)0.48943 (17)0.0431 (4)
H2n0.7883 (19)0.6036 (17)0.533 (3)0.060 (8)*
O10.59163 (14)0.62952 (9)0.53779 (16)0.0456 (3)
O20.47897 (13)0.59061 (9)0.66720 (15)0.0416 (3)
O30.41276 (12)0.56868 (10)0.28515 (15)0.0449 (3)
O40.30200 (12)0.52953 (10)0.41638 (16)0.0444 (3)
C10.54512 (15)0.64284 (11)0.63233 (19)0.0319 (4)
C20.5712 (2)0.72788 (14)0.7088 (3)0.0476 (5)
H2A0.64110.75350.69620.071*
H2B0.58700.71940.80980.071*
H2C0.50230.76510.66940.071*
C30.31446 (16)0.56196 (12)0.30683 (19)0.0343 (4)
C40.2011 (2)0.59515 (18)0.1922 (3)0.0570 (6)
H4A0.13090.57140.20670.086*
H4B0.20130.57860.09890.086*
H4C0.19890.65660.19790.086*
C50.62691 (17)0.54835 (13)0.1533 (2)0.0376 (4)
H50.54910.52500.11930.045*
C60.68042 (18)0.56738 (15)0.0545 (2)0.0426 (5)
H60.64050.55640.04310.051*
C70.79636 (18)0.60370 (13)0.1037 (2)0.0381 (4)
C80.85144 (16)0.61737 (12)0.24918 (19)0.0342 (4)
H80.92860.64170.28480.041*
C90.79178 (15)0.59485 (11)0.34396 (18)0.0287 (3)
C100.8574 (2)0.6289 (2)0.0006 (2)0.0594 (7)
H10A0.93300.59860.02250.089*
H10B0.87250.68950.00590.089*
H10C0.80560.61460.09690.089*
C110.95658 (16)0.62975 (12)0.58042 (17)0.0313 (4)
C121.06199 (17)0.60942 (12)0.5541 (2)0.0351 (4)
H121.05730.58080.47000.042*
C131.17443 (17)0.63203 (13)0.6539 (2)0.0383 (4)
H131.24410.61970.63350.046*
C141.18612 (17)0.67236 (13)0.7825 (2)0.0391 (4)
C151.07993 (18)0.69041 (14)0.8091 (2)0.0422 (4)
H151.08480.71650.89540.051*
C160.96734 (17)0.67014 (14)0.7092 (2)0.0382 (4)
H160.89760.68380.72860.046*
C171.3088 (2)0.69482 (19)0.8908 (3)0.0605 (6)
H17A1.35910.71830.84160.091*
H17B1.34640.64410.94230.091*
H17C1.29930.73640.95750.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02400 (12)0.03200 (13)0.02806 (12)0.00382 (8)0.01077 (8)0.00001 (7)
N10.0256 (7)0.0335 (7)0.0283 (7)0.0050 (6)0.0107 (5)0.0009 (6)
N20.0290 (8)0.0746 (12)0.0281 (7)0.0196 (8)0.0129 (6)0.0065 (7)
O10.0547 (9)0.0384 (7)0.0547 (8)0.0154 (6)0.0331 (7)0.0131 (6)
O20.0451 (8)0.0390 (7)0.0475 (8)0.0118 (6)0.0248 (6)0.0106 (6)
O30.0342 (7)0.0612 (9)0.0396 (7)0.0082 (7)0.0133 (6)0.0156 (7)
O40.0285 (7)0.0626 (10)0.0407 (7)0.0018 (6)0.0102 (6)0.0122 (6)
C10.0273 (8)0.0305 (8)0.0353 (9)0.0009 (7)0.0076 (7)0.0028 (7)
C20.0500 (12)0.0361 (10)0.0557 (12)0.0078 (9)0.0172 (10)0.0128 (9)
C30.0299 (9)0.0369 (9)0.0320 (8)0.0046 (7)0.0057 (7)0.0001 (7)
C40.0399 (11)0.0736 (16)0.0467 (12)0.0173 (11)0.0017 (9)0.0116 (11)
C50.0312 (9)0.0492 (10)0.0314 (9)0.0133 (8)0.0097 (7)0.0049 (8)
C60.0404 (10)0.0600 (13)0.0270 (8)0.0120 (9)0.0114 (7)0.0047 (8)
C70.0368 (9)0.0497 (11)0.0326 (9)0.0042 (8)0.0183 (8)0.0027 (8)
C80.0265 (8)0.0438 (10)0.0334 (8)0.0072 (7)0.0120 (7)0.0038 (7)
C90.0261 (8)0.0316 (8)0.0291 (8)0.0032 (6)0.0107 (6)0.0002 (6)
C100.0529 (13)0.0952 (19)0.0381 (11)0.0155 (13)0.0260 (10)0.0041 (12)
C110.0277 (8)0.0370 (9)0.0283 (8)0.0073 (7)0.0086 (6)0.0016 (6)
C120.0355 (9)0.0372 (9)0.0335 (9)0.0017 (7)0.0133 (7)0.0034 (7)
C130.0276 (8)0.0427 (10)0.0445 (10)0.0012 (8)0.0125 (8)0.0025 (8)
C140.0301 (9)0.0421 (10)0.0386 (9)0.0039 (8)0.0041 (7)0.0025 (8)
C150.0406 (10)0.0513 (11)0.0316 (9)0.0028 (9)0.0090 (8)0.0080 (8)
C160.0299 (9)0.0535 (11)0.0333 (9)0.0021 (8)0.0135 (7)0.0029 (8)
C170.0357 (11)0.0785 (17)0.0535 (13)0.0105 (11)0.0015 (10)0.0050 (12)
Geometric parameters (Å, º) top
Cu1—O2i1.9701 (13)C5—C61.368 (3)
Cu1—O31.9702 (14)C5—H50.9300
Cu1—O4i1.9713 (14)C6—C71.396 (3)
Cu1—O11.9759 (13)C6—H60.9300
Cu1—N12.2016 (14)C7—C81.373 (3)
Cu1—Cu1i2.6480 (4)C7—C101.502 (3)
N1—C51.339 (2)C8—C91.400 (2)
N1—C91.348 (2)C8—H80.9300
N2—C91.366 (2)C10—H10A0.9600
N2—C111.405 (2)C10—H10B0.9600
N2—H2n0.85 (3)C10—H10C0.9600
O1—C11.256 (2)C11—C161.388 (2)
O2—C11.255 (2)C11—C121.389 (3)
O2—Cu1i1.9701 (13)C12—C131.389 (3)
O3—C31.251 (2)C12—H120.9300
O4—C31.251 (2)C13—C141.384 (3)
O4—Cu1i1.9713 (14)C13—H130.9300
C1—C21.504 (3)C14—C151.391 (3)
C2—H2A0.9600C14—C171.505 (3)
C2—H2B0.9600C15—C161.382 (3)
C2—H2C0.9600C15—H150.9300
C3—C41.506 (3)C16—H160.9300
C4—H4A0.9600C17—H17A0.9600
C4—H4B0.9600C17—H17B0.9600
C4—H4C0.9600C17—H17C0.9600
O2i—Cu1—O388.66 (7)N1—C5—H5117.8
O2i—Cu1—O4i90.04 (7)C6—C5—H5117.8
O3—Cu1—O4i167.64 (6)C5—C6—C7118.40 (17)
O2i—Cu1—O1167.72 (6)C5—C6—H6120.8
O3—Cu1—O190.72 (7)C7—C6—H6120.8
O4i—Cu1—O187.95 (7)C8—C7—C6118.17 (16)
O2i—Cu1—N196.10 (5)C8—C7—C10121.22 (18)
O3—Cu1—N195.70 (5)C6—C7—C10120.60 (18)
O4i—Cu1—N196.67 (6)C7—C8—C9120.16 (16)
O1—Cu1—N196.17 (5)C7—C8—H8119.9
O2i—Cu1—Cu1i83.96 (4)C9—C8—H8119.9
O3—Cu1—Cu1i85.14 (4)N1—C9—N2114.53 (14)
O4i—Cu1—Cu1i82.50 (4)N1—C9—C8121.36 (15)
O1—Cu1—Cu1i83.77 (4)N2—C9—C8124.04 (16)
N1—Cu1—Cu1i179.17 (4)C7—C10—H10A109.5
C5—N1—C9117.49 (14)C7—C10—H10B109.5
C5—N1—Cu1114.60 (11)H10A—C10—H10B109.5
C9—N1—Cu1127.91 (11)C7—C10—H10C109.5
C9—N2—C11130.71 (15)H10A—C10—H10C109.5
C9—N2—H2n115.7 (18)H10B—C10—H10C109.5
C11—N2—H2n113.6 (18)C16—C11—C12118.46 (16)
C1—O1—Cu1123.64 (12)C16—C11—N2116.57 (16)
C1—O2—Cu1i123.75 (12)C12—C11—N2124.87 (16)
C3—O3—Cu1121.93 (12)C13—C12—C11119.80 (17)
C3—O4—Cu1i125.01 (12)C13—C12—H12120.1
O1—C1—O2124.88 (16)C11—C12—H12120.1
O1—C1—C2117.13 (17)C12—C13—C14122.15 (18)
O2—C1—C2117.99 (17)C12—C13—H13118.9
C1—C2—H2A109.5C14—C13—H13118.9
C1—C2—H2B109.5C13—C14—C15117.41 (17)
H2A—C2—H2B109.5C13—C14—C17121.47 (19)
C1—C2—H2C109.5C15—C14—C17121.1 (2)
H2A—C2—H2C109.5C16—C15—C14121.02 (18)
H2B—C2—H2C109.5C16—C15—H15119.5
O4—C3—O3125.38 (17)C14—C15—H15119.5
O4—C3—C4116.79 (18)C15—C16—C11121.12 (18)
O3—C3—C4117.83 (18)C15—C16—H16119.4
C3—C4—H4A109.5C11—C16—H16119.4
C3—C4—H4B109.5C14—C17—H17A109.5
H4A—C4—H4B109.5C14—C17—H17B109.5
C3—C4—H4C109.5H17A—C17—H17B109.5
H4A—C4—H4C109.5C14—C17—H17C109.5
H4B—C4—H4C109.5H17A—C17—H17C109.5
N1—C5—C6124.41 (17)H17B—C17—H17C109.5
O2i—Cu1—N1—C548.27 (14)C9—N1—C5—C60.0 (3)
O3—Cu1—N1—C540.99 (15)Cu1—N1—C5—C6179.90 (18)
O4i—Cu1—N1—C5139.02 (14)N1—C5—C6—C71.0 (3)
O1—Cu1—N1—C5132.33 (14)C5—C6—C7—C80.9 (3)
Cu1i—Cu1—N1—C5142 (3)C5—C6—C7—C10177.7 (2)
O2i—Cu1—N1—C9131.83 (15)C6—C7—C8—C90.2 (3)
O3—Cu1—N1—C9138.92 (15)C10—C7—C8—C9178.8 (2)
O4i—Cu1—N1—C941.07 (15)C5—N1—C9—N2178.27 (18)
O1—Cu1—N1—C947.58 (15)Cu1—N1—C9—N21.6 (2)
Cu1i—Cu1—N1—C938 (3)C5—N1—C9—C81.2 (3)
O2i—Cu1—O1—C12.9 (4)Cu1—N1—C9—C8178.74 (13)
O3—Cu1—O1—C184.09 (16)C11—N2—C9—N1169.2 (2)
O4i—Cu1—O1—C183.62 (16)C11—N2—C9—C813.8 (3)
N1—Cu1—O1—C1179.90 (16)C7—C8—C9—N11.3 (3)
Cu1i—Cu1—O1—C10.94 (15)C7—C8—C9—N2178.1 (2)
O2i—Cu1—O3—C382.85 (16)C9—N2—C11—C16156.4 (2)
O4i—Cu1—O3—C31.2 (4)C9—N2—C11—C1227.2 (3)
O1—Cu1—O3—C384.89 (16)C16—C11—C12—C132.0 (3)
N1—Cu1—O3—C3178.84 (16)N2—C11—C12—C13178.34 (18)
Cu1i—Cu1—O3—C31.20 (15)C11—C12—C13—C142.0 (3)
Cu1—O1—C1—O21.2 (3)C12—C13—C14—C150.4 (3)
Cu1—O1—C1—C2178.81 (14)C12—C13—C14—C17178.7 (2)
Cu1i—O2—C1—O10.6 (3)C13—C14—C15—C161.2 (3)
Cu1i—O2—C1—C2179.40 (14)C17—C14—C15—C16179.7 (2)
Cu1i—O4—C3—O32.7 (3)C14—C15—C16—C111.2 (3)
Cu1i—O4—C3—C4177.10 (15)C12—C11—C16—C150.4 (3)
Cu1—O3—C3—O42.6 (3)N2—C11—C16—C15177.08 (19)
Cu1—O3—C3—C4177.18 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.85 (3)2.36 (2)3.117 (3)149 (2)
N2—H2n···O4i0.85 (3)2.46 (3)3.047 (2)127 (2)
C2—H2a···Cg1ii0.962.803.566 (2)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C13H14N2)2]
Mr759.78
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.7519 (6), 15.5822 (8), 9.9050 (5)
β (°) 110.5698 (6)
V3)1698.17 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.31
Crystal size (mm)0.40 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.648, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
16009, 3890, 3462
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.083, 1.01
No. of reflections3890
No. of parameters225
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.26

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O2i1.9701 (13)Cu1—O11.9759 (13)
Cu1—O31.9702 (14)Cu1—N12.2016 (14)
Cu1—O4i1.9713 (14)Cu1—Cu1i2.6480 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the N1,C5–C9 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2n···O10.85 (3)2.36 (2)3.117 (3)149 (2)
N2—H2n···O4i0.85 (3)2.46 (3)3.047 (2)127 (2)
C2—H2a···Cg1ii0.962.803.566 (2)138
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

Z. Abdullah thanks the Ministry of Higher Education, Malaysia, for research grants (RG027/09AFR and PS374/2009B). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBarquín, M., González Garmendia, M. J., Pacheco, S., Pinilla, E., Quintela, S., Seco, J. M. & Torres, M. R. (2004). Inorg. Chim. Acta, 357, 3230–3236.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, m1049–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSeco, J. M., González Garmendia, M. J., Pinilla, E. & Torres, M. R. (2004). Polyhedron, 21, 457–464.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. (2004). Acta Cryst. E60, m577–m578.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds