organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl-5α-cholest-2-ene

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 31 July 2010; accepted 4 August 2010; online 11 August 2010)

In the title cholestane derivative, C28H48 [systematic name: (1S,2S,7R,10R,11R,14R,15R)-2,5,10,15-tetra­methyl-14-[(2R)-6-methyl­heptan-2-yl]tetra­cyclo­[8.7.0.02,7.011,15]hepta­dec-4-ene], the cyclo­hexene ring adopts a half-chair conformation. The parent 5α-cholest-2-ene and the equivalent fragment of the title compound are almost superimposable (r.m.s. deviation = 0.033 Å).

Related literature

For background to this study, see: Ketuly & Hadi (2010[Ketuly, K. A. & Hadi, A. H. A. (2010). Molecules, 15, 2347-2356.]). For the synthesis, see: Barton et al. (1956[Barton, D. H. R., Campos-Neves, S. & Cookson, R. C. (1956). J. Chem. Soc. pp. 3500-3506.]). For a discussion of the structural features of cholestane derivatives, see: Rajnikant et al. (2006[Rajnikant, Dinesh & Bhavnaish, C. (2006). Acta Cryst. A62, 136-145.]). For the structure of 5α-cholest-2-ene, see: Kemlo et al. (1979[Kemlo, W. S., van Niekerk, J. C. & Nassimbeni, L. R. (1979). Cryst. Struct. Commun. 8, 107-114.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C28H48

  • Mr = 384.66

  • Monoclinic, C 2

  • a = 22.216 (3) Å

  • b = 11.7576 (15) Å

  • c = 9.6335 (13) Å

  • β = 106.652 (2)°

  • V = 2410.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 100 K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.786, Tmax = 0.862

  • 11615 measured reflections

  • 2902 independent reflections

  • 2379 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.121

  • S = 1.02

  • 2902 reflections

  • 253 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and Qmol (Gans & Shalloway, 2001[Gans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557-559.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound, 3-methyl-5α-cholest-2-ene, (I), has been prepared previously (Barton et al., 1956) as a precursor for the synthesis of steroidal boronic acids and boronates (Ketuly et al., 2010). The geometric and structural features for a series of cholestane derivatives has been described (Rajnikant et al., 2006).

In the structure of (I), Fig. 1, the cyclohexene has a half-chair conformation: the ring-puckering parameters are q2 = 0.387 (3) Å, q3 = -0.318 (3) Å, QT = 0.501 (3) Å, φ2 = 149.2 (5) ° (Cremer & Pople, 1975). With the exception of a small difference in orientation of the terminal residues, the structure of (I) is virtually super-imposable upon the structure of the parent 5α-cholest-2-ene structure (Kemlo et al., 1979). The r.m.s. deviation between the two molecules is 0.033 Å (Gans & Shalloway, 2001).

Related literature top

For background to this study, see: Ketuly & Hadi (2010). For the synthesis, see: Barton et al. (1956). For a discussion on the structural features of cholestane derivatives, see: Rajnikant et al. (2006). For the structure of 5α-cholest-2-ene, see: Kemlo et al. (1979). For ring conformational analysis, see: Cremer & Pople (1975).

Experimental top

The synthesis of the title compound is a modified version of the literature procedure (Barton et al., 1956). 5α-cholestan-3-one (3 g, 8 mmol) in dry ether (40 ml) was added to methylmagnesium iodide [prepared by by the gradual addition of methyl iodide (1.2 ml, 20 mmol) in dry ether (15 ml) to magnesium (0.5 g, 21 mmol) in dry ether (10 ml) during 30 min. with continuous stirring and cooling] and the resulting solution was refluxed for 3 h. The reaction mixture was poured on to ice, then a solution of H2SO4 (1.52 g) and water (10 ml) added with stirring. The mixture was extracted three times with ether and washed with saturated NaHCO3, then with water until neutral. Extracts were dried and evaporated, yielding a white crystalline product (2.92 g, 94% of the mixture isomers: 3α-hydroxy-3β-methyl-5α-cholestane and 3β-hydroxy-3α-methyl-5α-cholestane, m.p. 368–373 K. The mixture of these stereoisomeric alchohols (2 g) was dissolved in glacial acetic acid (25 ml) on warming, then perchloric acid (72%, w/w, 10 drops) was added and the solution heated in hot bath (253–263 K) for 30 min. The solvent and excess reagent were evaporated azeotropically. The yellow solid residue was dissolved in ether, washed with NaHCO3 then with water, until neutral; each washing was back-extracted three times with ether. The extracts were combined; dried and evaporated. A yellow oily residue, which gradually crystallized was recovered (1.81 g, 95%), mp. 342–346 K. This was recrystallized from ether-MeOH, giving (1.739 g, 91%) of the title compound, mp. 348–350 K. This was further recrystallized and colourless blocks of (I) were grown from carbon ethanol:ether (8:1,v/v), m.p. 354–355 K (Lit. Barton et al. (1956) 356–357 K from light petroleum).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 1.00 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). In the absence of significant anomalous scattering effects, 2599 Friedel pairs were averaged in the final refinement. However, the absolute configuration was assigned on the basis of the known chiralty of the 5α-cholestan-3-one starting material (C1 S, C7 S, C9 S, C10 S, C15 R, C17 S, C20 R, C21 R)

Structure description top

The title compound, 3-methyl-5α-cholest-2-ene, (I), has been prepared previously (Barton et al., 1956) as a precursor for the synthesis of steroidal boronic acids and boronates (Ketuly et al., 2010). The geometric and structural features for a series of cholestane derivatives has been described (Rajnikant et al., 2006).

In the structure of (I), Fig. 1, the cyclohexene has a half-chair conformation: the ring-puckering parameters are q2 = 0.387 (3) Å, q3 = -0.318 (3) Å, QT = 0.501 (3) Å, φ2 = 149.2 (5) ° (Cremer & Pople, 1975). With the exception of a small difference in orientation of the terminal residues, the structure of (I) is virtually super-imposable upon the structure of the parent 5α-cholest-2-ene structure (Kemlo et al., 1979). The r.m.s. deviation between the two molecules is 0.033 Å (Gans & Shalloway, 2001).

For background to this study, see: Ketuly & Hadi (2010). For the synthesis, see: Barton et al. (1956). For a discussion on the structural features of cholestane derivatives, see: Rajnikant et al. (2006). For the structure of 5α-cholest-2-ene, see: Kemlo et al. (1979). For ring conformational analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Overlay diagram of (I), shown in blue, with the parent 5α-cholest-2-ene, shown in red.
(1S,2S,7R,10R,11R,14R,15R)- 2,5,10,15-tetramethyl-14-[(2R)-6-methylheptan-2- yl]tetracyclo[8.7.0.02,7.011,15]heptadec-4-ene top
Crystal data top
C28H48F(000) = 864
Mr = 384.66Dx = 1.060 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 1712 reflections
a = 22.216 (3) Åθ = 2.5–22.9°
b = 11.7576 (15) ŵ = 0.06 mm1
c = 9.6335 (13) ÅT = 100 K
β = 106.652 (2)°Prism, colourless
V = 2410.9 (5) Å30.35 × 0.15 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2902 independent reflections
Radiation source: fine-focus sealed tube2379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ω scanθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2828
Tmin = 0.786, Tmax = 0.862k = 1515
11615 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0616P)2 + 0.7202P]
where P = (Fo2 + 2Fc2)/3
2902 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.24 e Å3
1 restraintΔρmin = 0.20 e Å3
Crystal data top
C28H48V = 2410.9 (5) Å3
Mr = 384.66Z = 4
Monoclinic, C2Mo Kα radiation
a = 22.216 (3) ŵ = 0.06 mm1
b = 11.7576 (15) ÅT = 100 K
c = 9.6335 (13) Å0.35 × 0.15 × 0.05 mm
β = 106.652 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2902 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2379 reflections with I > 2σ(I)
Tmin = 0.786, Tmax = 0.862Rint = 0.060
11615 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.121H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2902 reflectionsΔρmin = 0.20 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25641 (12)0.4995 (2)0.1799 (3)0.0211 (6)
H1A0.23700.51790.07520.025*
C20.22521 (14)0.3904 (3)0.2106 (3)0.0259 (6)
H2A0.22760.33220.13820.031*
H2B0.24880.36140.30740.031*
C30.15797 (13)0.4068 (3)0.2063 (3)0.0226 (6)
C40.12007 (14)0.3006 (3)0.2017 (3)0.0289 (7)
H4A0.07710.32100.20020.043*
H4B0.13920.25430.28760.043*
H4C0.11910.25720.11420.043*
C50.13404 (13)0.5112 (3)0.2097 (3)0.0241 (6)
H5A0.09090.51720.20520.029*
C60.17105 (12)0.6191 (3)0.2201 (3)0.0226 (6)
H6A0.15980.67040.29020.027*
H6B0.15880.65720.12450.027*
C70.24280 (12)0.6016 (2)0.2674 (3)0.0178 (5)
C80.26358 (13)0.5758 (3)0.4308 (3)0.0238 (6)
H8A0.24210.50730.44980.036*
H8B0.25270.64020.48370.036*
H8C0.30910.56360.46310.036*
C90.27602 (13)0.7082 (2)0.2307 (3)0.0175 (6)
H9A0.25650.72240.12500.021*
C100.34646 (12)0.6901 (2)0.2494 (3)0.0181 (6)
H10A0.36790.67500.35410.022*
C110.35657 (12)0.5880 (2)0.1617 (3)0.0233 (6)
H11A0.33870.60450.05720.028*
H11B0.40220.57470.18040.028*
C120.32603 (13)0.4813 (2)0.1997 (3)0.0224 (6)
H12A0.33160.41780.13690.027*
H12B0.34700.46000.30150.027*
C130.26474 (12)0.8173 (2)0.3085 (3)0.0204 (6)
H13A0.21890.83020.28680.025*
H13B0.28190.80640.41440.025*
C140.29511 (12)0.9230 (2)0.2637 (3)0.0193 (6)
H14A0.27480.93930.16000.023*
H14B0.28830.98920.32070.023*
C150.36558 (12)0.9056 (2)0.2883 (3)0.0173 (6)
C160.39946 (13)0.8959 (3)0.4510 (3)0.0222 (6)
H16A0.44460.88530.46510.033*
H16B0.38280.83070.49150.033*
H16C0.39260.96560.50030.033*
C170.37381 (12)0.7980 (2)0.2051 (3)0.0169 (5)
H17A0.34990.81190.10160.020*
C180.44307 (12)0.7989 (2)0.2104 (3)0.0210 (6)
H18A0.45040.75470.12920.025*
H18B0.46960.76760.30310.025*
C190.45632 (13)0.9275 (2)0.1962 (3)0.0217 (6)
H19A0.49540.95000.27050.026*
H19B0.46140.94370.09930.026*
C200.39944 (12)0.9943 (2)0.2177 (3)0.0189 (6)
H20A0.37081.01200.11930.023*
C210.41998 (12)1.1083 (3)0.2951 (3)0.0216 (6)
H21A0.45191.09100.38940.026*
C220.36660 (14)1.1740 (3)0.3294 (3)0.0284 (7)
H22A0.38301.24500.37920.043*
H22B0.34851.12760.39190.043*
H22C0.33411.19140.23910.043*
C230.45225 (13)1.1824 (3)0.2065 (3)0.0228 (6)
H23A0.47621.13230.15900.027*
H23B0.41941.22090.12910.027*
C240.49675 (14)1.2726 (3)0.2937 (3)0.0263 (7)
H24A0.47311.32360.34100.032*
H24B0.53011.23490.37080.032*
C250.52703 (13)1.3430 (2)0.1990 (3)0.0216 (6)
H25A0.49361.38700.12970.026*
H25B0.54521.29020.14180.026*
C260.57833 (12)1.4256 (2)0.2788 (3)0.0205 (6)
H26A0.61141.38140.35080.025*
C270.60833 (15)1.4801 (3)0.1707 (3)0.0307 (7)
H27A0.64071.53420.22150.046*
H27B0.57611.52010.09580.046*
H27C0.62741.42080.12560.046*
C280.55335 (14)1.5163 (3)0.3599 (3)0.0330 (7)
H28A0.58761.56740.40940.049*
H28B0.53591.48000.43150.049*
H28C0.52041.56000.29130.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0200 (13)0.0226 (15)0.0225 (13)0.0045 (12)0.0088 (10)0.0041 (12)
C20.0297 (15)0.0215 (15)0.0303 (15)0.0038 (12)0.0146 (12)0.0040 (12)
C30.0224 (14)0.0284 (16)0.0189 (13)0.0070 (12)0.0090 (11)0.0049 (12)
C40.0311 (16)0.0308 (17)0.0285 (15)0.0091 (14)0.0144 (12)0.0083 (14)
C50.0181 (13)0.0316 (17)0.0249 (14)0.0042 (12)0.0099 (11)0.0009 (13)
C60.0202 (13)0.0249 (15)0.0259 (14)0.0031 (12)0.0115 (11)0.0030 (12)
C70.0167 (12)0.0183 (13)0.0192 (13)0.0028 (11)0.0065 (10)0.0008 (11)
C80.0279 (14)0.0253 (16)0.0203 (13)0.0025 (12)0.0102 (11)0.0007 (12)
C90.0174 (13)0.0186 (14)0.0171 (13)0.0036 (11)0.0062 (10)0.0018 (10)
C100.0159 (13)0.0204 (14)0.0179 (13)0.0001 (11)0.0045 (10)0.0020 (11)
C110.0163 (12)0.0236 (15)0.0318 (15)0.0010 (12)0.0096 (11)0.0028 (12)
C120.0206 (14)0.0178 (14)0.0302 (15)0.0008 (11)0.0094 (11)0.0017 (12)
C130.0167 (13)0.0226 (15)0.0249 (14)0.0005 (11)0.0106 (11)0.0000 (12)
C140.0164 (13)0.0207 (14)0.0223 (13)0.0016 (11)0.0080 (10)0.0012 (11)
C150.0172 (13)0.0191 (15)0.0171 (12)0.0005 (11)0.0070 (10)0.0026 (11)
C160.0241 (14)0.0261 (15)0.0175 (12)0.0035 (12)0.0078 (11)0.0004 (11)
C170.0143 (12)0.0209 (14)0.0162 (12)0.0014 (11)0.0056 (9)0.0010 (11)
C180.0182 (13)0.0207 (14)0.0259 (14)0.0011 (12)0.0092 (11)0.0012 (12)
C190.0199 (14)0.0230 (14)0.0246 (14)0.0043 (12)0.0103 (11)0.0012 (11)
C200.0168 (12)0.0236 (14)0.0169 (12)0.0023 (12)0.0060 (10)0.0046 (11)
C210.0207 (13)0.0253 (15)0.0200 (13)0.0038 (12)0.0078 (11)0.0016 (11)
C220.0275 (15)0.0223 (15)0.0384 (17)0.0014 (13)0.0143 (13)0.0020 (13)
C230.0249 (15)0.0220 (15)0.0223 (14)0.0047 (12)0.0081 (11)0.0010 (12)
C240.0290 (15)0.0284 (17)0.0211 (14)0.0083 (13)0.0064 (12)0.0009 (12)
C250.0241 (14)0.0214 (15)0.0194 (13)0.0051 (12)0.0063 (11)0.0009 (11)
C260.0179 (13)0.0209 (14)0.0223 (13)0.0025 (12)0.0054 (10)0.0000 (11)
C270.0324 (16)0.0277 (16)0.0344 (16)0.0086 (14)0.0133 (13)0.0018 (14)
C280.0269 (15)0.0346 (19)0.0387 (17)0.0073 (14)0.0114 (13)0.0130 (15)
Geometric parameters (Å, º) top
C1—C121.519 (4)C15—C161.537 (3)
C1—C21.528 (4)C15—C201.552 (4)
C1—C71.545 (4)C16—H16A0.9800
C1—H1A1.0000C16—H16B0.9800
C2—C31.495 (4)C16—H16C0.9800
C2—H2A0.9900C17—C181.525 (3)
C2—H2B0.9900C17—H17A1.0000
C3—C51.342 (4)C18—C191.554 (4)
C3—C41.499 (4)C18—H18A0.9900
C4—H4A0.9800C18—H18B0.9900
C4—H4B0.9800C19—C201.552 (4)
C4—H4C0.9800C19—H19A0.9900
C5—C61.499 (4)C19—H19B0.9900
C5—H5A0.9500C20—C211.538 (4)
C6—C71.541 (3)C20—H20A1.0000
C6—H6A0.9900C21—C221.529 (4)
C6—H6B0.9900C21—C231.533 (4)
C7—C81.539 (3)C21—H21A1.0000
C7—C91.546 (4)C22—H22A0.9800
C8—H8A0.9800C22—H22B0.9800
C8—H8B0.9800C22—H22C0.9800
C8—H8C0.9800C23—C241.527 (4)
C9—C101.538 (4)C23—H23A0.9900
C9—C131.542 (4)C23—H23B0.9900
C9—H9A1.0000C24—C251.524 (4)
C10—C171.520 (4)C24—H24A0.9900
C10—C111.521 (4)C24—H24B0.9900
C10—H10A1.0000C25—C261.527 (4)
C11—C121.520 (4)C25—H25A0.9900
C11—H11A0.9900C25—H25B0.9900
C11—H11B0.9900C26—C281.518 (4)
C12—H12A0.9900C26—C271.528 (4)
C12—H12B0.9900C26—H26A1.0000
C13—C141.534 (4)C27—H27A0.9800
C13—H13A0.9900C27—H27B0.9800
C13—H13B0.9900C27—H27C0.9800
C14—C151.529 (3)C28—H28A0.9800
C14—H14A0.9900C28—H28B0.9800
C14—H14B0.9900C28—H28C0.9800
C15—C171.537 (4)
C12—C1—C2111.0 (2)C14—C15—C20116.5 (2)
C12—C1—C7113.1 (2)C17—C15—C20100.38 (19)
C2—C1—C7112.1 (2)C16—C15—C20109.9 (2)
C12—C1—H1A106.7C15—C16—H16A109.5
C2—C1—H1A106.7C15—C16—H16B109.5
C7—C1—H1A106.7H16A—C16—H16B109.5
C3—C2—C1113.0 (2)C15—C16—H16C109.5
C3—C2—H2A109.0H16A—C16—H16C109.5
C1—C2—H2A109.0H16B—C16—H16C109.5
C3—C2—H2B109.0C10—C17—C18118.5 (2)
C1—C2—H2B109.0C10—C17—C15115.10 (19)
H2A—C2—H2B107.8C18—C17—C15104.3 (2)
C5—C3—C4122.7 (3)C10—C17—H17A106.0
C5—C3—C2121.1 (3)C18—C17—H17A106.0
C4—C3—C2116.2 (3)C15—C17—H17A106.0
C3—C4—H4A109.5C17—C18—C19102.6 (2)
C3—C4—H4B109.5C17—C18—H18A111.2
H4A—C4—H4B109.5C19—C18—H18A111.2
C3—C4—H4C109.5C17—C18—H18B111.2
H4A—C4—H4C109.5C19—C18—H18B111.2
H4B—C4—H4C109.5H18A—C18—H18B109.2
C3—C5—C6124.2 (2)C20—C19—C18107.4 (2)
C3—C5—H5A117.9C20—C19—H19A110.2
C6—C5—H5A117.9C18—C19—H19A110.2
C5—C6—C7114.1 (2)C20—C19—H19B110.2
C5—C6—H6A108.7C18—C19—H19B110.2
C7—C6—H6A108.7H19A—C19—H19B108.5
C5—C6—H6B108.7C21—C20—C19111.5 (2)
C7—C6—H6B108.7C21—C20—C15119.2 (2)
H6A—C6—H6B107.6C19—C20—C15103.5 (2)
C8—C7—C6108.1 (2)C21—C20—H20A107.4
C8—C7—C1110.9 (2)C19—C20—H20A107.4
C6—C7—C1106.8 (2)C15—C20—H20A107.4
C8—C7—C9111.8 (2)C22—C21—C20113.8 (2)
C6—C7—C9110.2 (2)C22—C21—C23110.4 (2)
C1—C7—C9108.90 (19)C20—C21—C23110.3 (2)
C7—C8—H8A109.5C22—C21—H21A107.3
C7—C8—H8B109.5C20—C21—H21A107.3
H8A—C8—H8B109.5C23—C21—H21A107.3
C7—C8—H8C109.5C21—C22—H22A109.5
H8A—C8—H8C109.5C21—C22—H22B109.5
H8B—C8—H8C109.5H22A—C22—H22B109.5
C10—C9—C13111.1 (2)C21—C22—H22C109.5
C10—C9—C7113.4 (2)H22A—C22—H22C109.5
C13—C9—C7114.1 (2)H22B—C22—H22C109.5
C10—C9—H9A105.8C24—C23—C21114.9 (2)
C13—C9—H9A105.8C24—C23—H23A108.5
C7—C9—H9A105.8C21—C23—H23A108.5
C17—C10—C11111.6 (2)C24—C23—H23B108.5
C17—C10—C9109.1 (2)C21—C23—H23B108.5
C11—C10—C9110.6 (2)H23A—C23—H23B107.5
C17—C10—H10A108.5C25—C24—C23112.0 (2)
C11—C10—H10A108.5C25—C24—H24A109.2
C9—C10—H10A108.5C23—C24—H24A109.2
C12—C11—C10111.7 (2)C25—C24—H24B109.2
C12—C11—H11A109.3C23—C24—H24B109.2
C10—C11—H11A109.3H24A—C24—H24B107.9
C12—C11—H11B109.3C24—C25—C26116.0 (2)
C10—C11—H11B109.3C24—C25—H25A108.3
H11A—C11—H11B107.9C26—C25—H25A108.3
C1—C12—C11111.2 (2)C24—C25—H25B108.3
C1—C12—H12A109.4C26—C25—H25B108.3
C11—C12—H12A109.4H25A—C25—H25B107.4
C1—C12—H12B109.4C28—C26—C27110.6 (2)
C11—C12—H12B109.4C28—C26—C25112.1 (2)
H12A—C12—H12B108.0C27—C26—C25109.4 (2)
C14—C13—C9113.1 (2)C28—C26—H26A108.2
C14—C13—H13A109.0C27—C26—H26A108.2
C9—C13—H13A109.0C25—C26—H26A108.2
C14—C13—H13B109.0C26—C27—H27A109.5
C9—C13—H13B109.0C26—C27—H27B109.5
H13A—C13—H13B107.8H27A—C27—H27B109.5
C15—C14—C13111.2 (2)C26—C27—H27C109.5
C15—C14—H14A109.4H27A—C27—H27C109.5
C13—C14—H14A109.4H27B—C27—H27C109.5
C15—C14—H14B109.4C26—C28—H28A109.5
C13—C14—H14B109.4C26—C28—H28B109.5
H14A—C14—H14B108.0H28A—C28—H28B109.5
C14—C15—C17107.4 (2)C26—C28—H28C109.5
C14—C15—C16110.4 (2)H28A—C28—H28C109.5
C17—C15—C16112.0 (2)H28B—C28—H28C109.5
C12—C1—C2—C3174.5 (2)C13—C14—C15—C1755.7 (3)
C7—C1—C2—C346.9 (3)C13—C14—C15—C1666.6 (3)
C1—C2—C3—C514.8 (4)C13—C14—C15—C20167.2 (2)
C1—C2—C3—C4166.6 (2)C11—C10—C17—C1855.8 (3)
C4—C3—C5—C6177.6 (3)C9—C10—C17—C18178.2 (2)
C2—C3—C5—C61.0 (4)C11—C10—C17—C15179.9 (2)
C3—C5—C6—C715.5 (4)C9—C10—C17—C1557.4 (3)
C5—C6—C7—C874.9 (3)C14—C15—C17—C1058.9 (3)
C5—C6—C7—C144.6 (3)C16—C15—C17—C1062.4 (3)
C5—C6—C7—C9162.8 (2)C20—C15—C17—C10178.9 (2)
C12—C1—C7—C870.1 (3)C14—C15—C17—C18169.6 (2)
C2—C1—C7—C856.4 (3)C16—C15—C17—C1869.1 (3)
C12—C1—C7—C6172.3 (2)C20—C15—C17—C1847.4 (2)
C2—C1—C7—C661.1 (3)C10—C17—C18—C19166.5 (2)
C12—C1—C7—C953.3 (3)C15—C17—C18—C1937.0 (2)
C2—C1—C7—C9179.8 (2)C17—C18—C19—C2012.3 (3)
C8—C7—C9—C1070.0 (3)C18—C19—C20—C21145.7 (2)
C6—C7—C9—C10169.8 (2)C18—C19—C20—C1516.4 (3)
C1—C7—C9—C1052.9 (3)C14—C15—C20—C2181.9 (3)
C8—C7—C9—C1358.6 (3)C17—C15—C20—C21162.6 (2)
C6—C7—C9—C1361.6 (3)C16—C15—C20—C2144.5 (3)
C1—C7—C9—C13178.5 (2)C14—C15—C20—C19153.6 (2)
C13—C9—C10—C1752.1 (3)C17—C15—C20—C1938.1 (2)
C7—C9—C10—C17177.8 (2)C16—C15—C20—C1979.9 (3)
C13—C9—C10—C11175.1 (2)C19—C20—C21—C22175.7 (2)
C7—C9—C10—C1154.7 (3)C15—C20—C21—C2255.2 (3)
C17—C10—C11—C12176.7 (2)C19—C20—C21—C2359.6 (3)
C9—C10—C11—C1255.2 (3)C15—C20—C21—C23180.0 (2)
C2—C1—C12—C11177.1 (2)C22—C21—C23—C2476.7 (3)
C7—C1—C12—C1155.8 (3)C20—C21—C23—C24156.7 (2)
C10—C11—C12—C156.1 (3)C21—C23—C24—C25179.9 (2)
C10—C9—C13—C1453.5 (3)C23—C24—C25—C26172.8 (3)
C7—C9—C13—C14176.7 (2)C24—C25—C26—C2862.8 (3)
C9—C13—C14—C1556.0 (3)C24—C25—C26—C27174.2 (2)

Experimental details

Crystal data
Chemical formulaC28H48
Mr384.66
Crystal system, space groupMonoclinic, C2
Temperature (K)100
a, b, c (Å)22.216 (3), 11.7576 (15), 9.6335 (13)
β (°) 106.652 (2)
V3)2410.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.786, 0.862
No. of measured, independent and
observed [I > 2σ(I)] reflections
11615, 2902, 2379
Rint0.060
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.02
No. of reflections2902
No. of parameters253
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and Qmol (Gans & Shalloway, 2001), publCIF (Westrip, 2010).

 

Footnotes

Additional correspondence author, e-mail: kketuly@um.edu.my.

Acknowledgements

The authors are grateful to the University of Malaya for support of the crystallographic facility.

References

First citationBarton, D. H. R., Campos-Neves, S. & Cookson, R. C. (1956). J. Chem. Soc. pp. 3500–3506.  CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGans, J. & Shalloway, D. (2001). J. Mol. Graph. Model. 19, 557–559.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKemlo, W. S., van Niekerk, J. C. & Nassimbeni, L. R. (1979). Cryst. Struct. Commun. 8, 107–114.  CAS Google Scholar
First citationKetuly, K. A. & Hadi, A. H. A. (2010). Molecules, 15, 2347–2356.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRajnikant, Dinesh & Bhavnaish, C. (2006). Acta Cryst. A62, 136–145.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds