organic compounds
1′-Acetyl-3-phenyl-6-oxa-4-thia-2-azaspiro[bicyclo[3.2.0]hept-2-ene-7,3′-indolin]-2′-one
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my
In the title indoline compound, C19H14N2O3S, the pyrrolidine ring adopts an with the four-connected (spiro) C atom as the flap [displacement = 0.148 (3) Å]. The mean plane formed through the indoline unit is inclined at dihedral angles of 89.92 (16) and 59.54 (12)° with the thiazole and phenyl rings, respectively; the dihedral angle between the latter rings is 9.55 (14)°. In the crystal, pairs of intermolecular C—H⋯O hydrogen bonds link neighbouring molecules into inversion dimers, producing R22(6) hydrogen-bond ring motifs. Weak intermolecular C—H⋯π as well as π–π interactions [centroid–centroid distance = 3.4041 (15) Å] further consolidate the crystal structure.
Related literature
For general background to and applications of compounds related to the title indoline compound, see: Aanandhi et al. (2008); Crews et al. (1988); Cutignano et al. (2001); DeRoy & Charette (2003); Gao et al. (2010); Kaleta et al. (2006); Lawrence et al. (2008); Muthukumar et al. (2008); Shi et al. (2010); Tsuruni et al. (1995); Wang et al. (2005); Williams et al. (2001); Xue et al. (2000); Yoshimura et al. (1995); Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Fun et al. (2010); Usman et al. (2001, 2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810031016/hb5595sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031016/hb5595Isup2.hkl
The title compound was one of the products from the photoreaction between N-acetylisatin and 2-phenylthiazole. The compound was purified by flash
with ethyl acetate/petroleum ether (1:4) as eluents. Colourless blocks of (I) were obtained from slow evaporation of an acetone and petroleum ether (1:6) solution. M.p. 442–444 K.All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl group.
Oxoindole and spiroindole are important
with diverse bioactivities (Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). Photoreactions of N-acetylisatin with or oxazoles are convenient ways to construct spiroindole frameworks (Wang et al., 2005; Zhang et al., 2004; Xue et al., 2000). Thiazole-containing compounds, such as the mycothiazole (Crews et al., 1988; Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound, (I), which contains spiroindole and thiazole rings is now described.In the title indoline compound (Fig. 1), the pyrrolidine ring (C1/C6/N1/C7/C8) of the indoline moiety adopts an φ = 106.4° (Cremer & Pople, 1975). The essentially planar thiazole ring (C9/C10/S1/C11/N2) and C12-C17 phenyl ring are inclined at dihedral angles of 89.92 (16) and 59.54 (12)°, respectively, with respect to the mean plane formed through the indoline moiety (C1-C8/N1). The geometric parameters agree well with those observed in the closely related structures (Fun et al., 2010; Usman et al., 2001, 2002).
with the C8 atom as the flap atom; the puckering parameters are Q = 0.090 (3) Å andIn the
(Fig. 2), pairs of intermolecular C10—H10A···O1 hydrogen bonds (Table 1) link neighbouring molecules into dimers incorporating R22(6) hydrogen bond ring motifs (Bernstein et al., 1995). The is further stabilized by weak intermolecular C14—H14A···Cg1 (Table 1) as well as Cg2···Cg3 [Cg2···Cg3 = 3.4041 (15); symmetry code: x, y, z] interactions where Cg1, Cg2 and Cg3 are the centroids of C1-C6 phenyl, thiazole and pyrrolidine rings, respectively.For general background to and applications of compounds related to the title indoline compound, see: Aanandhi et al. (2008); Crews et al. (1988); Cutignano et al. (2001); DeRoy & Charette (2003); Gao et al. (2010); Kaleta et al. (2006); Lawrence et al. (2008); Muthukumar et al. (2008); Shi et al. (2010); Tsuruni et al. (1995); Wang et al. (2005); Williams et al. (2001); Xue et al. (2000); Yoshimura et al. (1995); Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Fun et al. (2010); Usman et al. (2001, 2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C19H14N2O3S | Z = 2 |
Mr = 350.38 | F(000) = 364 |
Triclinic, P1 | Dx = 1.470 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5054 (3) Å | Cell parameters from 2361 reflections |
b = 9.4936 (3) Å | θ = 2.5–29.9° |
c = 11.6359 (4) Å | µ = 0.23 mm−1 |
α = 103.502 (3)° | T = 100 K |
β = 91.163 (3)° | Block, colourless |
γ = 100.200 (3)° | 0.24 × 0.10 × 0.05 mm |
V = 791.79 (5) Å3 |
Bruker SMART APEXII CCD diffractometer | 3627 independent reflections |
Radiation source: fine-focus sealed tube | 2548 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
φ and ω scans | θmax = 27.5°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −9→9 |
Tmin = 0.948, Tmax = 0.989 | k = −12→10 |
10748 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.058 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0437P)2 + 0.6382P] where P = (Fo2 + 2Fc2)/3 |
3627 reflections | (Δ/σ)max < 0.001 |
227 parameters | Δρmax = 0.35 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C19H14N2O3S | γ = 100.200 (3)° |
Mr = 350.38 | V = 791.79 (5) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5054 (3) Å | Mo Kα radiation |
b = 9.4936 (3) Å | µ = 0.23 mm−1 |
c = 11.6359 (4) Å | T = 100 K |
α = 103.502 (3)° | 0.24 × 0.10 × 0.05 mm |
β = 91.163 (3)° |
Bruker SMART APEXII CCD diffractometer | 3627 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2548 reflections with I > 2σ(I) |
Tmin = 0.948, Tmax = 0.989 | Rint = 0.062 |
10748 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.128 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.35 e Å−3 |
3627 reflections | Δρmin = −0.42 e Å−3 |
227 parameters |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K. |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.31424 (10) | 0.63788 (7) | 0.48799 (6) | 0.01816 (18) | |
O1 | 0.5459 (3) | 0.90182 (19) | 0.58975 (16) | 0.0190 (4) | |
O2 | 0.6257 (3) | 0.7176 (2) | 0.74453 (17) | 0.0244 (5) | |
O3 | 0.8183 (3) | 0.9955 (2) | 1.07309 (17) | 0.0229 (5) | |
N1 | 0.6758 (3) | 0.9398 (2) | 0.89013 (19) | 0.0156 (5) | |
N2 | 0.2265 (3) | 0.7250 (2) | 0.70929 (19) | 0.0158 (5) | |
C1 | 0.5502 (4) | 1.0821 (3) | 0.7864 (2) | 0.0161 (6) | |
C2 | 0.5067 (4) | 1.2098 (3) | 0.7631 (2) | 0.0186 (6) | |
H2A | 0.4462 | 1.2074 | 0.6919 | 0.022* | |
C3 | 0.5566 (4) | 1.3413 (3) | 0.8498 (3) | 0.0204 (6) | |
H3A | 0.5333 | 1.4291 | 0.8358 | 0.025* | |
C4 | 0.6407 (4) | 1.3411 (3) | 0.9567 (3) | 0.0212 (6) | |
H4A | 0.6693 | 1.4293 | 1.0143 | 0.025* | |
C5 | 0.6845 (4) | 1.2135 (3) | 0.9816 (2) | 0.0180 (6) | |
H5A | 0.7404 | 1.2149 | 1.0540 | 0.022* | |
C6 | 0.6399 (4) | 1.0849 (3) | 0.8924 (2) | 0.0159 (6) | |
C7 | 0.6062 (4) | 0.8429 (3) | 0.7805 (2) | 0.0173 (6) | |
C8 | 0.5034 (4) | 0.9279 (3) | 0.7127 (2) | 0.0161 (6) | |
C9 | 0.2983 (4) | 0.8603 (3) | 0.6760 (2) | 0.0156 (6) | |
H9A | 0.2192 | 0.9334 | 0.6934 | 0.019* | |
C10 | 0.3596 (4) | 0.8344 (3) | 0.5480 (2) | 0.0168 (6) | |
H10A | 0.3038 | 0.8885 | 0.4995 | 0.020* | |
C11 | 0.2314 (4) | 0.6112 (3) | 0.6260 (2) | 0.0156 (6) | |
C12 | 0.1634 (4) | 0.4594 (3) | 0.6374 (2) | 0.0157 (6) | |
C13 | 0.0699 (4) | 0.4403 (3) | 0.7366 (2) | 0.0180 (6) | |
H13A | 0.0553 | 0.5223 | 0.7949 | 0.022* | |
C14 | −0.0011 (4) | 0.3003 (3) | 0.7486 (2) | 0.0198 (6) | |
H14A | −0.0637 | 0.2881 | 0.8148 | 0.024* | |
C15 | 0.0213 (4) | 0.1773 (3) | 0.6613 (3) | 0.0213 (6) | |
H15A | −0.0262 | 0.0829 | 0.6691 | 0.026* | |
C16 | 0.1142 (4) | 0.1963 (3) | 0.5632 (3) | 0.0217 (6) | |
H16A | 0.1287 | 0.1142 | 0.5050 | 0.026* | |
C17 | 0.1866 (4) | 0.3371 (3) | 0.5504 (2) | 0.0181 (6) | |
H17A | 0.2497 | 0.3491 | 0.4844 | 0.022* | |
C18 | 0.7757 (4) | 0.9051 (3) | 0.9798 (2) | 0.0170 (6) | |
C19 | 0.8273 (4) | 0.7560 (3) | 0.9534 (3) | 0.0240 (7) | |
H19D | 0.8923 | 0.7446 | 1.0216 | 0.036* | |
H19A | 0.9029 | 0.7467 | 0.8875 | 0.036* | |
H19B | 0.7197 | 0.6812 | 0.9343 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0253 (4) | 0.0130 (3) | 0.0158 (3) | 0.0014 (3) | 0.0011 (3) | 0.0044 (3) |
O1 | 0.0228 (11) | 0.0163 (9) | 0.0174 (10) | 0.0026 (8) | 0.0010 (8) | 0.0037 (8) |
O2 | 0.0338 (13) | 0.0134 (10) | 0.0266 (11) | 0.0091 (9) | −0.0044 (9) | 0.0030 (8) |
O3 | 0.0289 (12) | 0.0223 (10) | 0.0180 (10) | 0.0053 (9) | 0.0006 (9) | 0.0060 (9) |
N1 | 0.0201 (13) | 0.0111 (10) | 0.0167 (11) | 0.0030 (9) | 0.0020 (9) | 0.0054 (9) |
N2 | 0.0177 (12) | 0.0115 (11) | 0.0184 (12) | 0.0027 (9) | 0.0012 (9) | 0.0042 (9) |
C1 | 0.0174 (15) | 0.0109 (12) | 0.0202 (14) | 0.0008 (11) | 0.0042 (11) | 0.0052 (11) |
C2 | 0.0188 (15) | 0.0152 (13) | 0.0237 (14) | 0.0041 (11) | −0.0008 (12) | 0.0081 (11) |
C3 | 0.0198 (15) | 0.0101 (13) | 0.0332 (16) | 0.0044 (11) | 0.0041 (12) | 0.0074 (12) |
C4 | 0.0237 (17) | 0.0133 (13) | 0.0241 (15) | 0.0022 (12) | 0.0052 (12) | 0.0002 (11) |
C5 | 0.0167 (15) | 0.0166 (13) | 0.0196 (14) | 0.0016 (11) | 0.0023 (11) | 0.0034 (11) |
C6 | 0.0167 (15) | 0.0125 (12) | 0.0204 (14) | 0.0027 (11) | 0.0025 (11) | 0.0075 (11) |
C7 | 0.0210 (16) | 0.0120 (13) | 0.0192 (14) | 0.0026 (11) | 0.0010 (11) | 0.0050 (11) |
C8 | 0.0226 (16) | 0.0111 (12) | 0.0151 (13) | 0.0020 (11) | 0.0023 (11) | 0.0049 (11) |
C9 | 0.0196 (15) | 0.0118 (12) | 0.0162 (13) | 0.0018 (11) | 0.0015 (11) | 0.0055 (11) |
C10 | 0.0193 (15) | 0.0116 (12) | 0.0202 (14) | 0.0018 (11) | −0.0006 (11) | 0.0062 (11) |
C11 | 0.0160 (14) | 0.0149 (13) | 0.0180 (13) | 0.0045 (11) | 0.0003 (11) | 0.0066 (11) |
C12 | 0.0145 (14) | 0.0134 (12) | 0.0191 (14) | 0.0012 (11) | −0.0019 (11) | 0.0049 (11) |
C13 | 0.0235 (16) | 0.0155 (13) | 0.0149 (13) | 0.0045 (12) | 0.0013 (11) | 0.0027 (11) |
C14 | 0.0211 (16) | 0.0212 (14) | 0.0193 (14) | 0.0032 (12) | 0.0025 (12) | 0.0100 (12) |
C15 | 0.0213 (16) | 0.0119 (13) | 0.0314 (16) | 0.0016 (11) | 0.0001 (13) | 0.0079 (12) |
C16 | 0.0244 (17) | 0.0136 (13) | 0.0256 (15) | 0.0046 (12) | 0.0013 (13) | 0.0011 (12) |
C17 | 0.0175 (15) | 0.0171 (14) | 0.0197 (14) | 0.0044 (11) | 0.0029 (11) | 0.0033 (11) |
C18 | 0.0166 (15) | 0.0184 (13) | 0.0178 (14) | 0.0017 (11) | 0.0025 (11) | 0.0086 (11) |
C19 | 0.0275 (17) | 0.0188 (14) | 0.0282 (16) | 0.0086 (12) | −0.0068 (13) | 0.0083 (12) |
S1—C11 | 1.790 (3) | C7—C8 | 1.538 (4) |
S1—C10 | 1.801 (3) | C8—C9 | 1.568 (4) |
O1—C8 | 1.446 (3) | C9—C10 | 1.544 (4) |
O1—C10 | 1.452 (3) | C9—H9A | 0.9800 |
O2—C7 | 1.201 (3) | C10—H10A | 0.9800 |
O3—C18 | 1.212 (3) | C11—C12 | 1.479 (4) |
N1—C18 | 1.406 (3) | C12—C17 | 1.390 (4) |
N1—C7 | 1.415 (3) | C12—C13 | 1.393 (4) |
N1—C6 | 1.444 (3) | C13—C14 | 1.382 (4) |
N2—C11 | 1.278 (3) | C13—H13A | 0.9300 |
N2—C9 | 1.444 (3) | C14—C15 | 1.396 (4) |
C1—C6 | 1.385 (4) | C14—H14A | 0.9300 |
C1—C2 | 1.393 (3) | C15—C16 | 1.380 (4) |
C1—C8 | 1.490 (4) | C15—H15A | 0.9300 |
C2—C3 | 1.396 (4) | C16—C17 | 1.394 (4) |
C2—H2A | 0.9300 | C16—H16A | 0.9300 |
C3—C4 | 1.383 (4) | C17—H17A | 0.9300 |
C3—H3A | 0.9300 | C18—C19 | 1.498 (4) |
C4—C5 | 1.400 (4) | C19—H19D | 0.9600 |
C4—H4A | 0.9300 | C19—H19A | 0.9600 |
C5—C6 | 1.389 (4) | C19—H19B | 0.9600 |
C5—H5A | 0.9300 | ||
C11—S1—C10 | 90.03 (12) | C8—C9—H9A | 113.1 |
C8—O1—C10 | 92.80 (19) | O1—C10—C9 | 91.54 (19) |
C18—N1—C7 | 126.1 (2) | O1—C10—S1 | 116.58 (17) |
C18—N1—C6 | 124.7 (2) | C9—C10—S1 | 106.43 (17) |
C7—N1—C6 | 109.1 (2) | O1—C10—H10A | 113.4 |
C11—N2—C9 | 112.1 (2) | C9—C10—H10A | 113.4 |
C6—C1—C2 | 121.3 (2) | S1—C10—H10A | 113.4 |
C6—C1—C8 | 110.1 (2) | N2—C11—C12 | 122.6 (2) |
C2—C1—C8 | 128.5 (2) | N2—C11—S1 | 118.4 (2) |
C1—C2—C3 | 117.9 (3) | C12—C11—S1 | 118.90 (19) |
C1—C2—H2A | 121.0 | C17—C12—C13 | 120.0 (2) |
C3—C2—H2A | 121.0 | C17—C12—C11 | 121.5 (2) |
C4—C3—C2 | 120.0 (2) | C13—C12—C11 | 118.5 (2) |
C4—C3—H3A | 120.0 | C14—C13—C12 | 120.3 (2) |
C2—C3—H3A | 120.0 | C14—C13—H13A | 119.8 |
C3—C4—C5 | 122.7 (3) | C12—C13—H13A | 119.8 |
C3—C4—H4A | 118.7 | C13—C14—C15 | 119.9 (3) |
C5—C4—H4A | 118.7 | C13—C14—H14A | 120.0 |
C6—C5—C4 | 116.4 (3) | C15—C14—H14A | 120.0 |
C6—C5—H5A | 121.8 | C16—C15—C14 | 119.7 (2) |
C4—C5—H5A | 121.8 | C16—C15—H15A | 120.2 |
C1—C6—C5 | 121.6 (2) | C14—C15—H15A | 120.2 |
C1—C6—N1 | 109.4 (2) | C15—C16—C17 | 120.8 (3) |
C5—C6—N1 | 128.9 (2) | C15—C16—H16A | 119.6 |
O2—C7—N1 | 126.9 (2) | C17—C16—H16A | 119.6 |
O2—C7—C8 | 125.5 (2) | C12—C17—C16 | 119.3 (3) |
N1—C7—C8 | 107.6 (2) | C12—C17—H17A | 120.3 |
O1—C8—C1 | 117.7 (2) | C16—C17—H17A | 120.3 |
O1—C8—C7 | 111.3 (2) | O3—C18—N1 | 119.7 (2) |
C1—C8—C7 | 102.8 (2) | O3—C18—C19 | 123.0 (2) |
O1—C8—C9 | 90.84 (19) | N1—C18—C19 | 117.2 (2) |
C1—C8—C9 | 118.2 (2) | C18—C19—H19D | 109.5 |
C7—C8—C9 | 116.3 (2) | C18—C19—H19A | 109.5 |
N2—C9—C10 | 113.0 (2) | H19D—C19—H19A | 109.5 |
N2—C9—C8 | 116.6 (2) | C18—C19—H19B | 109.5 |
C10—C9—C8 | 84.8 (2) | H19D—C19—H19B | 109.5 |
N2—C9—H9A | 113.1 | H19A—C19—H19B | 109.5 |
C10—C9—H9A | 113.1 | ||
C6—C1—C2—C3 | 0.1 (4) | C11—N2—C9—C8 | −94.8 (3) |
C8—C1—C2—C3 | 176.1 (3) | O1—C8—C9—N2 | 114.4 (2) |
C1—C2—C3—C4 | −2.3 (4) | C1—C8—C9—N2 | −123.2 (2) |
C2—C3—C4—C5 | 2.1 (4) | C7—C8—C9—N2 | 0.0 (3) |
C3—C4—C5—C6 | 0.4 (4) | O1—C8—C9—C10 | 1.18 (17) |
C2—C1—C6—C5 | 2.4 (4) | C1—C8—C9—C10 | 123.6 (2) |
C8—C1—C6—C5 | −174.2 (3) | C7—C8—C9—C10 | −113.2 (2) |
C2—C1—C6—N1 | −177.0 (3) | C8—O1—C10—C9 | 1.27 (18) |
C8—C1—C6—N1 | 6.4 (3) | C8—O1—C10—S1 | −107.98 (19) |
C4—C5—C6—C1 | −2.6 (4) | N2—C9—C10—O1 | −117.9 (2) |
C4—C5—C6—N1 | 176.7 (3) | C8—C9—C10—O1 | −1.18 (17) |
C18—N1—C6—C1 | 175.4 (3) | N2—C9—C10—S1 | 0.4 (3) |
C7—N1—C6—C1 | −0.3 (3) | C8—C9—C10—S1 | 117.15 (17) |
C18—N1—C6—C5 | −3.9 (4) | C11—S1—C10—O1 | 99.1 (2) |
C7—N1—C6—C5 | −179.7 (3) | C11—S1—C10—C9 | −1.19 (19) |
C18—N1—C7—O2 | −2.6 (5) | C9—N2—C11—C12 | −179.1 (2) |
C6—N1—C7—O2 | 173.1 (3) | C9—N2—C11—S1 | −2.2 (3) |
C18—N1—C7—C8 | 178.8 (2) | C10—S1—C11—N2 | 2.1 (2) |
C6—N1—C7—C8 | −5.6 (3) | C10—S1—C11—C12 | 179.2 (2) |
C10—O1—C8—C1 | −124.1 (2) | N2—C11—C12—C17 | −173.5 (3) |
C10—O1—C8—C7 | 117.6 (2) | S1—C11—C12—C17 | 9.6 (3) |
C10—O1—C8—C9 | −1.26 (18) | N2—C11—C12—C13 | 8.2 (4) |
C6—C1—C8—O1 | −132.0 (2) | S1—C11—C12—C13 | −168.7 (2) |
C2—C1—C8—O1 | 51.7 (4) | C17—C12—C13—C14 | −0.5 (4) |
C6—C1—C8—C7 | −9.3 (3) | C11—C12—C13—C14 | 177.8 (3) |
C2—C1—C8—C7 | 174.4 (3) | C12—C13—C14—C15 | 0.2 (4) |
C6—C1—C8—C9 | 120.4 (3) | C13—C14—C15—C16 | −0.1 (4) |
C2—C1—C8—C9 | −55.9 (4) | C14—C15—C16—C17 | 0.2 (4) |
O2—C7—C8—O1 | −42.9 (4) | C13—C12—C17—C16 | 0.6 (4) |
N1—C7—C8—O1 | 135.8 (2) | C11—C12—C17—C16 | −177.7 (3) |
O2—C7—C8—C1 | −169.8 (3) | C15—C16—C17—C12 | −0.4 (4) |
N1—C7—C8—C1 | 8.9 (3) | C7—N1—C18—O3 | −175.5 (3) |
O2—C7—C8—C9 | 59.3 (4) | C6—N1—C18—O3 | 9.5 (4) |
N1—C7—C8—C9 | −122.0 (2) | C7—N1—C18—C19 | 5.5 (4) |
C11—N2—C9—C10 | 1.1 (3) | C6—N1—C18—C19 | −169.5 (2) |
Cg1 is the centroid of C1–C6 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O1i | 0.98 | 2.56 | 3.261 (3) | 129 |
C14—H14A···Cg1ii | 0.93 | 2.67 | 3.423 (3) | 139 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H14N2O3S |
Mr | 350.38 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 100 |
a, b, c (Å) | 7.5054 (3), 9.4936 (3), 11.6359 (4) |
α, β, γ (°) | 103.502 (3), 91.163 (3), 100.200 (3) |
V (Å3) | 791.79 (5) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.23 |
Crystal size (mm) | 0.24 × 0.10 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.948, 0.989 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10748, 3627, 2548 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.128, 1.05 |
No. of reflections | 3627 |
No. of parameters | 227 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.35, −0.42 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
Cg1 is the centroid of C1–C6 phenyl ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···O1i | 0.98 | 2.56 | 3.261 (3) | 129 |
C14—H14A···Cg1ii | 0.93 | 2.67 | 3.423 (3) | 139 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x−1, y−1, z. |
Acknowledgements
HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.
References
Aanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588–4594. CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Crews, P., Kakou, Y. & Quinoa, E. (1988). J. Am. Chem. Soc. 110, 4365–4368. CrossRef CAS Web of Science Google Scholar
Cutignano, A., Bruno, I., Bifulco, G., Casapullo, A., Debitus, C., Gomez-Paloma, L. & Riccio, R. (2001). Eur. J. Org. Chem. pp. 775–778. CrossRef Google Scholar
DeRoy, P. L. & Charette, A. B. (2003). Org. Lett. 5, 4163–4165. Web of Science CrossRef PubMed CAS Google Scholar
Fun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010). Acta Cryst. E66, o737–o738. Web of Science CrossRef IUCr Journals Google Scholar
Gao, X., Pan, Y.-M., Lin, M., Chen, L. & Zhan, Z.-P. (2010). Org. Biomol. Chem. 8, 3259–3266. Web of Science CSD CrossRef CAS PubMed Google Scholar
Kaleta, Z., Makowshi, B. T., So'os, T. & Dembinski, R. (2006). Org. Lett. 8, 1625–1628. Web of Science CrossRef PubMed CAS Google Scholar
Lawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J. & Lawrence, N. J. (2008). J. Med. Chem. 51, 4948–4956. Web of Science CrossRef PubMed CAS Google Scholar
Muthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461–1464. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D. & Moody, C. J. (2010). J. Org. Chem. 75, 152–161. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tsuruni, Y., Ueda, H., Hayashi, K., Takase, S., Nishikawa, M., Kiyoto, S. & Okuhara, M. (1995). J. Antibiot. 48, 1066–1072. PubMed Web of Science Google Scholar
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070–o1072. Web of Science CSD CrossRef IUCr Journals Google Scholar
Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o37–o39. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wang, L., Zhang, Y., Hu, H.-Y., Fun, H. K. & Xu, J.-X. (2005). J. Org. Chem. 70, 3850–3858. Web of Science CSD CrossRef PubMed CAS Google Scholar
Williams, D. R., Patnaik, S. & Clark, M. P. (2001). J. Org. Chem. 66, 8463–8469. Web of Science CrossRef PubMed CAS Google Scholar
Xue, J., Zhang, Y., Wang, X.-L., Fun, H. K. & Xu, J.-X. (2000). Org. Lett. 2, 2583–2586. Web of Science CSD CrossRef PubMed CAS Google Scholar
Yoshimura, S., Tsuruni, Y., Takase, S. & Okuhara, M. (1995). J. Antibiot. 48, 1073–1075. CrossRef CAS PubMed Web of Science Google Scholar
Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893–4895. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Oxoindole and spiroindole are important heterocyclic compounds with diverse bioactivities (Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). Photoreactions of N-acetylisatin with alkenes or oxazoles are convenient ways to construct spiroindole frameworks (Wang et al., 2005; Zhang et al., 2004; Xue et al., 2000). Thiazole-containing compounds, such as the mycothiazole (Crews et al., 1988; Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound, (I), which contains spiroindole and thiazole rings is now described.
In the title indoline compound (Fig. 1), the pyrrolidine ring (C1/C6/N1/C7/C8) of the indoline moiety adopts an envelope conformation with the C8 atom as the flap atom; the puckering parameters are Q = 0.090 (3) Å and φ = 106.4° (Cremer & Pople, 1975). The essentially planar thiazole ring (C9/C10/S1/C11/N2) and C12-C17 phenyl ring are inclined at dihedral angles of 89.92 (16) and 59.54 (12)°, respectively, with respect to the mean plane formed through the indoline moiety (C1-C8/N1). The geometric parameters agree well with those observed in the closely related structures (Fun et al., 2010; Usman et al., 2001, 2002).
In the crystal structure (Fig. 2), pairs of intermolecular C10—H10A···O1 hydrogen bonds (Table 1) link neighbouring molecules into dimers incorporating R22(6) hydrogen bond ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by weak intermolecular C14—H14A···Cg1 (Table 1) as well as Cg2···Cg3 [Cg2···Cg3 = 3.4041 (15); symmetry code: x, y, z] interactions where Cg1, Cg2 and Cg3 are the centroids of C1-C6 phenyl, thiazole and pyrrolidine rings, respectively.