organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1′-Acetyl-3-phenyl-6-oxa-4-thia-2-aza­spiro­[bi­cyclo­[3.2.0]hept-2-ene-7,3′-indolin]-2′-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 2 August 2010; accepted 3 August 2010; online 11 August 2010)

In the title indoline compound, C19H14N2O3S, the pyrrolidine ring adopts an envelope conformation with the four-connected (spiro) C atom as the flap [displacement = 0.148 (3) Å]. The mean plane formed through the indoline unit is inclined at dihedral angles of 89.92 (16) and 59.54 (12)° with the thia­zole and phenyl rings, respectively; the dihedral angle between the latter rings is 9.55 (14)°. In the crystal, pairs of inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into inversion dimers, producing R22(6) hydrogen-bond ring motifs. Weak inter­molecular C—H⋯π as well as ππ inter­actions [centroid–centroid distance = 3.4041 (15) Å] further consolidate the crystal structure.

Related literature

For general background to and applications of compounds related to the title indoline compound, see: Aanandhi et al. (2008[Aanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588-4594.]); Crews et al. (1988[Crews, P., Kakou, Y. & Quinoa, E. (1988). J. Am. Chem. Soc. 110, 4365-4368.]); Cutignano et al. (2001[Cutignano, A., Bruno, I., Bifulco, G., Casapullo, A., Debitus, C., Gomez-Paloma, L. & Riccio, R. (2001). Eur. J. Org. Chem. pp. 775-778.]); DeRoy & Charette (2003[DeRoy, P. L. & Charette, A. B. (2003). Org. Lett. 5, 4163-4165.]); Gao et al. (2010[Gao, X., Pan, Y.-M., Lin, M., Chen, L. & Zhan, Z.-P. (2010). Org. Biomol. Chem. 8, 3259-3266.]); Kaleta et al. (2006[Kaleta, Z., Makowshi, B. T., So'os, T. & Dembinski, R. (2006). Org. Lett. 8, 1625-1628.]); Lawrence et al. (2008[Lawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J. & Lawrence, N. J. (2008). J. Med. Chem. 51, 4948-4956.]); Muthukumar et al. (2008[Muthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461-1464.]); Shi et al. (2010[Shi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D. & Moody, C. J. (2010). J. Org. Chem. 75, 152-161.]); Tsuruni et al. (1995[Tsuruni, Y., Ueda, H., Hayashi, K., Takase, S., Nishikawa, M., Kiyoto, S. & Okuhara, M. (1995). J. Antibiot. 48, 1066-1072.]); Wang et al. (2005[Wang, L., Zhang, Y., Hu, H.-Y., Fun, H. K. & Xu, J.-X. (2005). J. Org. Chem. 70, 3850-3858.]); Williams et al. (2001[Williams, D. R., Patnaik, S. & Clark, M. P. (2001). J. Org. Chem. 66, 8463-8469.]); Xue et al. (2000[Xue, J., Zhang, Y., Wang, X.-L., Fun, H. K. & Xu, J.-X. (2000). Org. Lett. 2, 2583-2586.]); Yoshimura et al. (1995[Yoshimura, S., Tsuruni, Y., Takase, S. & Okuhara, M. (1995). J. Antibiot. 48, 1073-1075.]); Zhang et al. (2004[Zhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893-4895.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For closely related structures, see: Fun et al. (2010[Fun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010). Acta Cryst. E66, o737-o738.]); Usman et al. (2001[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070-o1072.], 2002[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o37-o39.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C19H14N2O3S

  • Mr = 350.38

  • Triclinic, [P \overline 1]

  • a = 7.5054 (3) Å

  • b = 9.4936 (3) Å

  • c = 11.6359 (4) Å

  • α = 103.502 (3)°

  • β = 91.163 (3)°

  • γ = 100.200 (3)°

  • V = 791.79 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 100 K

  • 0.24 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.948, Tmax = 0.989

  • 10748 measured reflections

  • 3627 independent reflections

  • 2548 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.128

  • S = 1.05

  • 3627 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.98 2.56 3.261 (3) 129
C14—H14ACg1ii 0.93 2.67 3.423 (3) 139
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Oxoindole and spiroindole are important heterocyclic compounds with diverse bioactivities (Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). Photoreactions of N-acetylisatin with alkenes or oxazoles are convenient ways to construct spiroindole frameworks (Wang et al., 2005; Zhang et al., 2004; Xue et al., 2000). Thiazole-containing compounds, such as the mycothiazole (Crews et al., 1988; Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound, (I), which contains spiroindole and thiazole rings is now described.

In the title indoline compound (Fig. 1), the pyrrolidine ring (C1/C6/N1/C7/C8) of the indoline moiety adopts an envelope conformation with the C8 atom as the flap atom; the puckering parameters are Q = 0.090 (3) Å and φ = 106.4° (Cremer & Pople, 1975). The essentially planar thiazole ring (C9/C10/S1/C11/N2) and C12-C17 phenyl ring are inclined at dihedral angles of 89.92 (16) and 59.54 (12)°, respectively, with respect to the mean plane formed through the indoline moiety (C1-C8/N1). The geometric parameters agree well with those observed in the closely related structures (Fun et al., 2010; Usman et al., 2001, 2002).

In the crystal structure (Fig. 2), pairs of intermolecular C10—H10A···O1 hydrogen bonds (Table 1) link neighbouring molecules into dimers incorporating R22(6) hydrogen bond ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by weak intermolecular C14—H14A···Cg1 (Table 1) as well as Cg2···Cg3 [Cg2···Cg3 = 3.4041 (15); symmetry code: x, y, z] interactions where Cg1, Cg2 and Cg3 are the centroids of C1-C6 phenyl, thiazole and pyrrolidine rings, respectively.

Related literature top

For general background to and applications of compounds related to the title indoline compound, see: Aanandhi et al. (2008); Crews et al. (1988); Cutignano et al. (2001); DeRoy & Charette (2003); Gao et al. (2010); Kaleta et al. (2006); Lawrence et al. (2008); Muthukumar et al. (2008); Shi et al. (2010); Tsuruni et al. (1995); Wang et al. (2005); Williams et al. (2001); Xue et al. (2000); Yoshimura et al. (1995); Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Fun et al. (2010); Usman et al. (2001, 2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was one of the products from the photoreaction between N-acetylisatin and 2-phenylthiazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4) as eluents. Colourless blocks of (I) were obtained from slow evaporation of an acetone and petroleum ether (1:6) solution. M.p. 442–444 K.

Refinement top

All hydrogen atoms were placed in their calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). The rotating group model was applied to the methyl group.

Structure description top

Oxoindole and spiroindole are important heterocyclic compounds with diverse bioactivities (Aanandhi et al., 2008; Muthukumar et al., 2008; Lawrence et al., 2008). Photoreactions of N-acetylisatin with alkenes or oxazoles are convenient ways to construct spiroindole frameworks (Wang et al., 2005; Zhang et al., 2004; Xue et al., 2000). Thiazole-containing compounds, such as the mycothiazole (Crews et al., 1988; Cutignano et al.,2001), cystothiazole A (Williams et al.,2001; DeRoy & Charette,2003) and WS75624 B (Yoshimura et al.,1995; Tsuruni et al.,1995) have attracted considerable interest due to their potential application as bio-active species. Synthesis of organic molecules containing thiazole moieties therefore has been of current research interest (Gao et al.,2010; Shi et al.,2010; Kaleta et al.,2006). The title compound, (I), which contains spiroindole and thiazole rings is now described.

In the title indoline compound (Fig. 1), the pyrrolidine ring (C1/C6/N1/C7/C8) of the indoline moiety adopts an envelope conformation with the C8 atom as the flap atom; the puckering parameters are Q = 0.090 (3) Å and φ = 106.4° (Cremer & Pople, 1975). The essentially planar thiazole ring (C9/C10/S1/C11/N2) and C12-C17 phenyl ring are inclined at dihedral angles of 89.92 (16) and 59.54 (12)°, respectively, with respect to the mean plane formed through the indoline moiety (C1-C8/N1). The geometric parameters agree well with those observed in the closely related structures (Fun et al., 2010; Usman et al., 2001, 2002).

In the crystal structure (Fig. 2), pairs of intermolecular C10—H10A···O1 hydrogen bonds (Table 1) link neighbouring molecules into dimers incorporating R22(6) hydrogen bond ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by weak intermolecular C14—H14A···Cg1 (Table 1) as well as Cg2···Cg3 [Cg2···Cg3 = 3.4041 (15); symmetry code: x, y, z] interactions where Cg1, Cg2 and Cg3 are the centroids of C1-C6 phenyl, thiazole and pyrrolidine rings, respectively.

For general background to and applications of compounds related to the title indoline compound, see: Aanandhi et al. (2008); Crews et al. (1988); Cutignano et al. (2001); DeRoy & Charette (2003); Gao et al. (2010); Kaleta et al. (2006); Lawrence et al. (2008); Muthukumar et al. (2008); Shi et al. (2010); Tsuruni et al. (1995); Wang et al. (2005); Williams et al. (2001); Xue et al. (2000); Yoshimura et al. (1995); Zhang et al. (2004). For ring conformations, see: Cremer & Pople (1975). For graph-set theory of hydrogen-bond ring motifs, see: Bernstein et al. (1995). For closely related structures, see: Fun et al. (2010); Usman et al. (2001, 2002). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with displacement ellipsoids for non-hydrogen atoms are drawn at the 50 % probability level.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the b axis, showing adjacent molecules being linked into dimers. Intermolecular hydrogen bonds are shown as dashed lines.
1'-Acetyl-3-phenyl-6-oxa-4-thia-2-azaspiro[bicyclo[3.2.0]hept-2-ene- 7,3'-indolin]-2'-one top
Crystal data top
C19H14N2O3SZ = 2
Mr = 350.38F(000) = 364
Triclinic, P1Dx = 1.470 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5054 (3) ÅCell parameters from 2361 reflections
b = 9.4936 (3) Åθ = 2.5–29.9°
c = 11.6359 (4) ŵ = 0.23 mm1
α = 103.502 (3)°T = 100 K
β = 91.163 (3)°Block, colourless
γ = 100.200 (3)°0.24 × 0.10 × 0.05 mm
V = 791.79 (5) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3627 independent reflections
Radiation source: fine-focus sealed tube2548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
φ and ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.948, Tmax = 0.989k = 1210
10748 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.6382P]
where P = (Fo2 + 2Fc2)/3
3627 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C19H14N2O3Sγ = 100.200 (3)°
Mr = 350.38V = 791.79 (5) Å3
Triclinic, P1Z = 2
a = 7.5054 (3) ÅMo Kα radiation
b = 9.4936 (3) ŵ = 0.23 mm1
c = 11.6359 (4) ÅT = 100 K
α = 103.502 (3)°0.24 × 0.10 × 0.05 mm
β = 91.163 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3627 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2548 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.989Rint = 0.062
10748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.05Δρmax = 0.35 e Å3
3627 reflectionsΔρmin = 0.42 e Å3
227 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31424 (10)0.63788 (7)0.48799 (6)0.01816 (18)
O10.5459 (3)0.90182 (19)0.58975 (16)0.0190 (4)
O20.6257 (3)0.7176 (2)0.74453 (17)0.0244 (5)
O30.8183 (3)0.9955 (2)1.07309 (17)0.0229 (5)
N10.6758 (3)0.9398 (2)0.89013 (19)0.0156 (5)
N20.2265 (3)0.7250 (2)0.70929 (19)0.0158 (5)
C10.5502 (4)1.0821 (3)0.7864 (2)0.0161 (6)
C20.5067 (4)1.2098 (3)0.7631 (2)0.0186 (6)
H2A0.44621.20740.69190.022*
C30.5566 (4)1.3413 (3)0.8498 (3)0.0204 (6)
H3A0.53331.42910.83580.025*
C40.6407 (4)1.3411 (3)0.9567 (3)0.0212 (6)
H4A0.66931.42931.01430.025*
C50.6845 (4)1.2135 (3)0.9816 (2)0.0180 (6)
H5A0.74041.21491.05400.022*
C60.6399 (4)1.0849 (3)0.8924 (2)0.0159 (6)
C70.6062 (4)0.8429 (3)0.7805 (2)0.0173 (6)
C80.5034 (4)0.9279 (3)0.7127 (2)0.0161 (6)
C90.2983 (4)0.8603 (3)0.6760 (2)0.0156 (6)
H9A0.21920.93340.69340.019*
C100.3596 (4)0.8344 (3)0.5480 (2)0.0168 (6)
H10A0.30380.88850.49950.020*
C110.2314 (4)0.6112 (3)0.6260 (2)0.0156 (6)
C120.1634 (4)0.4594 (3)0.6374 (2)0.0157 (6)
C130.0699 (4)0.4403 (3)0.7366 (2)0.0180 (6)
H13A0.05530.52230.79490.022*
C140.0011 (4)0.3003 (3)0.7486 (2)0.0198 (6)
H14A0.06370.28810.81480.024*
C150.0213 (4)0.1773 (3)0.6613 (3)0.0213 (6)
H15A0.02620.08290.66910.026*
C160.1142 (4)0.1963 (3)0.5632 (3)0.0217 (6)
H16A0.12870.11420.50500.026*
C170.1866 (4)0.3371 (3)0.5504 (2)0.0181 (6)
H17A0.24970.34910.48440.022*
C180.7757 (4)0.9051 (3)0.9798 (2)0.0170 (6)
C190.8273 (4)0.7560 (3)0.9534 (3)0.0240 (7)
H19D0.89230.74461.02160.036*
H19A0.90290.74670.88750.036*
H19B0.71970.68120.93430.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (4)0.0130 (3)0.0158 (3)0.0014 (3)0.0011 (3)0.0044 (3)
O10.0228 (11)0.0163 (9)0.0174 (10)0.0026 (8)0.0010 (8)0.0037 (8)
O20.0338 (13)0.0134 (10)0.0266 (11)0.0091 (9)0.0044 (9)0.0030 (8)
O30.0289 (12)0.0223 (10)0.0180 (10)0.0053 (9)0.0006 (9)0.0060 (9)
N10.0201 (13)0.0111 (10)0.0167 (11)0.0030 (9)0.0020 (9)0.0054 (9)
N20.0177 (12)0.0115 (11)0.0184 (12)0.0027 (9)0.0012 (9)0.0042 (9)
C10.0174 (15)0.0109 (12)0.0202 (14)0.0008 (11)0.0042 (11)0.0052 (11)
C20.0188 (15)0.0152 (13)0.0237 (14)0.0041 (11)0.0008 (12)0.0081 (11)
C30.0198 (15)0.0101 (13)0.0332 (16)0.0044 (11)0.0041 (12)0.0074 (12)
C40.0237 (17)0.0133 (13)0.0241 (15)0.0022 (12)0.0052 (12)0.0002 (11)
C50.0167 (15)0.0166 (13)0.0196 (14)0.0016 (11)0.0023 (11)0.0034 (11)
C60.0167 (15)0.0125 (12)0.0204 (14)0.0027 (11)0.0025 (11)0.0075 (11)
C70.0210 (16)0.0120 (13)0.0192 (14)0.0026 (11)0.0010 (11)0.0050 (11)
C80.0226 (16)0.0111 (12)0.0151 (13)0.0020 (11)0.0023 (11)0.0049 (11)
C90.0196 (15)0.0118 (12)0.0162 (13)0.0018 (11)0.0015 (11)0.0055 (11)
C100.0193 (15)0.0116 (12)0.0202 (14)0.0018 (11)0.0006 (11)0.0062 (11)
C110.0160 (14)0.0149 (13)0.0180 (13)0.0045 (11)0.0003 (11)0.0066 (11)
C120.0145 (14)0.0134 (12)0.0191 (14)0.0012 (11)0.0019 (11)0.0049 (11)
C130.0235 (16)0.0155 (13)0.0149 (13)0.0045 (12)0.0013 (11)0.0027 (11)
C140.0211 (16)0.0212 (14)0.0193 (14)0.0032 (12)0.0025 (12)0.0100 (12)
C150.0213 (16)0.0119 (13)0.0314 (16)0.0016 (11)0.0001 (13)0.0079 (12)
C160.0244 (17)0.0136 (13)0.0256 (15)0.0046 (12)0.0013 (13)0.0011 (12)
C170.0175 (15)0.0171 (14)0.0197 (14)0.0044 (11)0.0029 (11)0.0033 (11)
C180.0166 (15)0.0184 (13)0.0178 (14)0.0017 (11)0.0025 (11)0.0086 (11)
C190.0275 (17)0.0188 (14)0.0282 (16)0.0086 (12)0.0068 (13)0.0083 (12)
Geometric parameters (Å, º) top
S1—C111.790 (3)C7—C81.538 (4)
S1—C101.801 (3)C8—C91.568 (4)
O1—C81.446 (3)C9—C101.544 (4)
O1—C101.452 (3)C9—H9A0.9800
O2—C71.201 (3)C10—H10A0.9800
O3—C181.212 (3)C11—C121.479 (4)
N1—C181.406 (3)C12—C171.390 (4)
N1—C71.415 (3)C12—C131.393 (4)
N1—C61.444 (3)C13—C141.382 (4)
N2—C111.278 (3)C13—H13A0.9300
N2—C91.444 (3)C14—C151.396 (4)
C1—C61.385 (4)C14—H14A0.9300
C1—C21.393 (3)C15—C161.380 (4)
C1—C81.490 (4)C15—H15A0.9300
C2—C31.396 (4)C16—C171.394 (4)
C2—H2A0.9300C16—H16A0.9300
C3—C41.383 (4)C17—H17A0.9300
C3—H3A0.9300C18—C191.498 (4)
C4—C51.400 (4)C19—H19D0.9600
C4—H4A0.9300C19—H19A0.9600
C5—C61.389 (4)C19—H19B0.9600
C5—H5A0.9300
C11—S1—C1090.03 (12)C8—C9—H9A113.1
C8—O1—C1092.80 (19)O1—C10—C991.54 (19)
C18—N1—C7126.1 (2)O1—C10—S1116.58 (17)
C18—N1—C6124.7 (2)C9—C10—S1106.43 (17)
C7—N1—C6109.1 (2)O1—C10—H10A113.4
C11—N2—C9112.1 (2)C9—C10—H10A113.4
C6—C1—C2121.3 (2)S1—C10—H10A113.4
C6—C1—C8110.1 (2)N2—C11—C12122.6 (2)
C2—C1—C8128.5 (2)N2—C11—S1118.4 (2)
C1—C2—C3117.9 (3)C12—C11—S1118.90 (19)
C1—C2—H2A121.0C17—C12—C13120.0 (2)
C3—C2—H2A121.0C17—C12—C11121.5 (2)
C4—C3—C2120.0 (2)C13—C12—C11118.5 (2)
C4—C3—H3A120.0C14—C13—C12120.3 (2)
C2—C3—H3A120.0C14—C13—H13A119.8
C3—C4—C5122.7 (3)C12—C13—H13A119.8
C3—C4—H4A118.7C13—C14—C15119.9 (3)
C5—C4—H4A118.7C13—C14—H14A120.0
C6—C5—C4116.4 (3)C15—C14—H14A120.0
C6—C5—H5A121.8C16—C15—C14119.7 (2)
C4—C5—H5A121.8C16—C15—H15A120.2
C1—C6—C5121.6 (2)C14—C15—H15A120.2
C1—C6—N1109.4 (2)C15—C16—C17120.8 (3)
C5—C6—N1128.9 (2)C15—C16—H16A119.6
O2—C7—N1126.9 (2)C17—C16—H16A119.6
O2—C7—C8125.5 (2)C12—C17—C16119.3 (3)
N1—C7—C8107.6 (2)C12—C17—H17A120.3
O1—C8—C1117.7 (2)C16—C17—H17A120.3
O1—C8—C7111.3 (2)O3—C18—N1119.7 (2)
C1—C8—C7102.8 (2)O3—C18—C19123.0 (2)
O1—C8—C990.84 (19)N1—C18—C19117.2 (2)
C1—C8—C9118.2 (2)C18—C19—H19D109.5
C7—C8—C9116.3 (2)C18—C19—H19A109.5
N2—C9—C10113.0 (2)H19D—C19—H19A109.5
N2—C9—C8116.6 (2)C18—C19—H19B109.5
C10—C9—C884.8 (2)H19D—C19—H19B109.5
N2—C9—H9A113.1H19A—C19—H19B109.5
C10—C9—H9A113.1
C6—C1—C2—C30.1 (4)C11—N2—C9—C894.8 (3)
C8—C1—C2—C3176.1 (3)O1—C8—C9—N2114.4 (2)
C1—C2—C3—C42.3 (4)C1—C8—C9—N2123.2 (2)
C2—C3—C4—C52.1 (4)C7—C8—C9—N20.0 (3)
C3—C4—C5—C60.4 (4)O1—C8—C9—C101.18 (17)
C2—C1—C6—C52.4 (4)C1—C8—C9—C10123.6 (2)
C8—C1—C6—C5174.2 (3)C7—C8—C9—C10113.2 (2)
C2—C1—C6—N1177.0 (3)C8—O1—C10—C91.27 (18)
C8—C1—C6—N16.4 (3)C8—O1—C10—S1107.98 (19)
C4—C5—C6—C12.6 (4)N2—C9—C10—O1117.9 (2)
C4—C5—C6—N1176.7 (3)C8—C9—C10—O11.18 (17)
C18—N1—C6—C1175.4 (3)N2—C9—C10—S10.4 (3)
C7—N1—C6—C10.3 (3)C8—C9—C10—S1117.15 (17)
C18—N1—C6—C53.9 (4)C11—S1—C10—O199.1 (2)
C7—N1—C6—C5179.7 (3)C11—S1—C10—C91.19 (19)
C18—N1—C7—O22.6 (5)C9—N2—C11—C12179.1 (2)
C6—N1—C7—O2173.1 (3)C9—N2—C11—S12.2 (3)
C18—N1—C7—C8178.8 (2)C10—S1—C11—N22.1 (2)
C6—N1—C7—C85.6 (3)C10—S1—C11—C12179.2 (2)
C10—O1—C8—C1124.1 (2)N2—C11—C12—C17173.5 (3)
C10—O1—C8—C7117.6 (2)S1—C11—C12—C179.6 (3)
C10—O1—C8—C91.26 (18)N2—C11—C12—C138.2 (4)
C6—C1—C8—O1132.0 (2)S1—C11—C12—C13168.7 (2)
C2—C1—C8—O151.7 (4)C17—C12—C13—C140.5 (4)
C6—C1—C8—C79.3 (3)C11—C12—C13—C14177.8 (3)
C2—C1—C8—C7174.4 (3)C12—C13—C14—C150.2 (4)
C6—C1—C8—C9120.4 (3)C13—C14—C15—C160.1 (4)
C2—C1—C8—C955.9 (4)C14—C15—C16—C170.2 (4)
O2—C7—C8—O142.9 (4)C13—C12—C17—C160.6 (4)
N1—C7—C8—O1135.8 (2)C11—C12—C17—C16177.7 (3)
O2—C7—C8—C1169.8 (3)C15—C16—C17—C120.4 (4)
N1—C7—C8—C18.9 (3)C7—N1—C18—O3175.5 (3)
O2—C7—C8—C959.3 (4)C6—N1—C18—O39.5 (4)
N1—C7—C8—C9122.0 (2)C7—N1—C18—C195.5 (4)
C11—N2—C9—C101.1 (3)C6—N1—C18—C19169.5 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.982.563.261 (3)129
C14—H14A···Cg1ii0.932.673.423 (3)139
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H14N2O3S
Mr350.38
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5054 (3), 9.4936 (3), 11.6359 (4)
α, β, γ (°)103.502 (3), 91.163 (3), 100.200 (3)
V3)791.79 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.24 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.948, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
10748, 3627, 2548
Rint0.062
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.128, 1.05
No. of reflections3627
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.982.563.261 (3)129
C14—H14A···Cg1ii0.932.673.423 (3)139
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7576-2009.

Acknowledgements

HKF and JHG thank Universiti Sains Malaysia (USM) for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). Financial support from the Ministry of Science and Technology of China of the Austria–China Cooperation project (2007DFA41590) is acknowledged. JHG also thanks USM for the award of a USM fellowship.

References

First citationAanandhi, M. V., Vaidhyalingam, V. & George, S. (2008). Asian J. Chem. 20, 4588–4594.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationCrews, P., Kakou, Y. & Quinoa, E. (1988). J. Am. Chem. Soc. 110, 4365–4368.  CrossRef CAS Web of Science Google Scholar
First citationCutignano, A., Bruno, I., Bifulco, G., Casapullo, A., Debitus, C., Gomez-Paloma, L. & Riccio, R. (2001). Eur. J. Org. Chem. pp. 775–778.  CrossRef Google Scholar
First citationDeRoy, P. L. & Charette, A. B. (2003). Org. Lett. 5, 4163–4165.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Goh, J. H., Liu, Y. & Zhang, Y. (2010). Acta Cryst. E66, o737–o738.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGao, X., Pan, Y.-M., Lin, M., Chen, L. & Zhan, Z.-P. (2010). Org. Biomol. Chem. 8, 3259–3266.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKaleta, Z., Makowshi, B. T., So'os, T. & Dembinski, R. (2006). Org. Lett. 8, 1625–1628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLawrence, H. R., Pireddu, R., Chen, L., Luo, Y., Sung, S.-S., Szymanski, A. M., Yip, M. L. R., Guida, W. C., Sebti, S. M., Wu, J. & Lawrence, N. J. (2008). J. Med. Chem. 51, 4948–4956.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMuthukumar, V. A., George, S. & Vaidhyalingam, V. (2008). Biol. Pharm. Bull. 31, 1461–1464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, B., Blake, A. J., Lewis, W., Campbell, I. B., Judkins, B. D. & Moody, C. J. (2010). J. Org. Chem. 75, 152–161.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsuruni, Y., Ueda, H., Hayashi, K., Takase, S., Nishikawa, M., Kiyoto, S. & Okuhara, M. (1995). J. Antibiot. 48, 1066–1072.  PubMed Web of Science Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2001). Acta Cryst. E57, o1070–o1072.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Zhang, Y. & Xu, J.-H. (2002). Acta Cryst. E58, o37–o39.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, L., Zhang, Y., Hu, H.-Y., Fun, H. K. & Xu, J.-X. (2005). J. Org. Chem. 70, 3850–3858.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWilliams, D. R., Patnaik, S. & Clark, M. P. (2001). J. Org. Chem. 66, 8463–8469.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXue, J., Zhang, Y., Wang, X.-L., Fun, H. K. & Xu, J.-X. (2000). Org. Lett. 2, 2583–2586.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoshimura, S., Tsuruni, Y., Takase, S. & Okuhara, M. (1995). J. Antibiot. 48, 1073–1075.  CrossRef CAS PubMed Web of Science Google Scholar
First citationZhang, Y., Wang, L., Zhang, M., Fun, H.-K. & Xu, J.-X. (2004). Org. Lett. 6, 4893–4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds