organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-chloro­pyridinium (Z)-3-carb­­oxy­prop-2-enoate 0.25-hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 2 August 2010; accepted 19 August 2010; online 28 August 2010)

In the title hydrated salt, C5H6ClN2+·C4H3O4·0.25H2O, the water O atom lies on a twofold axis with 0.25 occupancy. The 2-amino-5-chloro­pyridinium cation is almost planar, with a maximum deviation of 0.015 (3) Å. In the hydrogen malate anion, an intra­molecular O—H⋯O hydrogen bond generates an S(7) ring and results in a folded conformation. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to the ab plane which stack down the c axis.

Related literature

For hydrogen bonds in supra­molecular assemblies, see: Aakeröy & Seddon (1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. pp. 397-407.]); Fredericks & Hamilton (1996[Fredericks, J. R. & Hamilton, A. D. (1996). Comprehensive Supramolecular Chemistry, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol & F. Voégtle, pp. 161-180. Oxford: Pergamon.]). For related structures of maleate salts, see: Rajagopal et al. (2001a[Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001a). Acta Cryst. E57, o751-o753.],b[Rajagopal, K., Krishnakumar, R. V. & Natarajan, S. (2001b). Acta Cryst. E57, o922-o924.], 2002[Rajagopal, K., Subha Nandhini, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2002). Acta Cryst. E58, o478-o480.]); Alagar et al. (2001[Alagar, M., Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (2001). Acta Cryst. E57, o855-o857.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6ClN2+·C4H3O4·0.25H2O

  • Mr = 249.14

  • Orthorhombic, F d d 2

  • a = 23.899 (4) Å

  • b = 48.298 (8) Å

  • c = 3.7314 (7) Å

  • V = 4307.1 (13) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 100 K

  • 0.90 × 0.09 × 0.07 mm

Data collection
  • Bruker APEXII DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.739, Tmax = 0.976

  • 8113 measured reflections

  • 3485 independent reflections

  • 2896 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.109

  • S = 1.08

  • 3485 reflections

  • 151 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1354 Fridel pairs

  • Flack parameter: 0.03 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1 0.82 1.91 2.714 (3) 166
N2—H1N2⋯O2 0.86 2.04 2.870 (3) 161
N2—H2N2⋯O4 0.86 2.05 2.902 (3) 169
O3—H1O3⋯O2 0.95 1.53 2.447 (2) 162
O1W—H1W1⋯O1 0.82 2.00 2.718 (4) 146
C3—H3A⋯O4i 0.93 2.50 3.388 (3) 160
C4—H4A⋯O3 0.93 2.42 3.263 (3) 151
Symmetry code: (i) [x+{\script{1\over 2}}, y, z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

There is growing interest in the construction of supramolecular assemblies with hydrogen bonds as the building blocks (Aakeröy & Seddon, 1993; Fredericks & Hamilton, 1996). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate, with one of the carboxylic acid groups protonated. The crystal structures of glycinium maleate (Rajagopal et al., 2001a), β-alaninium maleate (Rajagopal et al., 2001b), sarcosinium maleate (Rajagopal et al., 2002) and L-alaninium maleate (Alagar et al., 2001) have been reported in the literature. The present study reports the crystal structure of 2-amino-5-chloropyridinium hydrogen maleate 0.25-hydrate, (I), a complex of 2-amino-5-chloropyridinium with maleic acid.

The asymmetric unit (Fig. 1), contains a 2-amino-5-chloropyridinium cation, a hydrogen malate anion and a water molecule with occupany 0.25 (the O atom of the water molecule lies on a twofold axis). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.015 (3) Å for atom C1. In the 2-amino-5-chloropyridinium cation, a wide angle [C1—N1—C5 = 123.39 (18)°] is subtended at the protonated N1 atom. The dihedral angle between the pyridine ring and the mean plane formed by the hydrogen maleate anion is 22.39 (10)°.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O1 and N2—H1N2···O2 hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O4, O1W—H1W1···O1, C3—H3A···O4 and C4—H4A···O3 (Table 1) hydrogen bonds, forming two-dimensional networks parallel to the ab plane (Fig. 2) which stacked down the c-axis. In the hydrogen malate anion, an intramolecular O3—H1O3···O2 hydrogen bond generates an S(7) ring and results in a folded conformation.

Related literature top

For hydrogen bonds in supramolecular assemblies, see: Aakeröy & Seddon (1993); Fredericks & Hamilton (1996). For related structures of maleate salts, see: Rajagopal et al. (2001a,b, 2002); Alagar et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and maleic acid (58 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement top

All hydrogen atoms were positioned geometrically [C—H = 0.93 Å, N—H = 0.8196–0.86 Å and O—H = 0.8190–0.9462 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). 1354 Friedel pairs were used to determine the absolute structure.

Structure description top

There is growing interest in the construction of supramolecular assemblies with hydrogen bonds as the building blocks (Aakeröy & Seddon, 1993; Fredericks & Hamilton, 1996). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate, with one of the carboxylic acid groups protonated. The crystal structures of glycinium maleate (Rajagopal et al., 2001a), β-alaninium maleate (Rajagopal et al., 2001b), sarcosinium maleate (Rajagopal et al., 2002) and L-alaninium maleate (Alagar et al., 2001) have been reported in the literature. The present study reports the crystal structure of 2-amino-5-chloropyridinium hydrogen maleate 0.25-hydrate, (I), a complex of 2-amino-5-chloropyridinium with maleic acid.

The asymmetric unit (Fig. 1), contains a 2-amino-5-chloropyridinium cation, a hydrogen malate anion and a water molecule with occupany 0.25 (the O atom of the water molecule lies on a twofold axis). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.015 (3) Å for atom C1. In the 2-amino-5-chloropyridinium cation, a wide angle [C1—N1—C5 = 123.39 (18)°] is subtended at the protonated N1 atom. The dihedral angle between the pyridine ring and the mean plane formed by the hydrogen maleate anion is 22.39 (10)°.

In the crystal packing, the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O1 and N2—H1N2···O2 hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O4, O1W—H1W1···O1, C3—H3A···O4 and C4—H4A···O3 (Table 1) hydrogen bonds, forming two-dimensional networks parallel to the ab plane (Fig. 2) which stacked down the c-axis. In the hydrogen malate anion, an intramolecular O3—H1O3···O2 hydrogen bond generates an S(7) ring and results in a folded conformation.

For hydrogen bonds in supramolecular assemblies, see: Aakeröy & Seddon (1993); Fredericks & Hamilton (1996). For related structures of maleate salts, see: Rajagopal et al. (2001a,b, 2002); Alagar et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The crystal packing of (I), showing hydrogen-bonded (dashed lines) 2D networks parallel to to the ab-plane. H atoms not involved in the intermolecular interactions have been omitted for clarity.
2-Amino-5-chloropyridinium (Z)-3-carboxyprop-2-enoate 0.25-hydrate top
Crystal data top
C5H6ClN2+·C4H3O4·0.25H2OF(000) = 2056
Mr = 249.14Dx = 1.537 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 2106 reflections
a = 23.899 (4) Åθ = 3.1–30.2°
b = 48.298 (8) ŵ = 0.36 mm1
c = 3.7314 (7) ÅT = 100 K
V = 4307.1 (13) Å3Needle, colourless
Z = 160.90 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
3485 independent reflections
Radiation source: fine-focus sealed tube2896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 32.1°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3519
Tmin = 0.739, Tmax = 0.976k = 7272
8113 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0339P)2 + 6.9914P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3485 reflectionsΔρmax = 0.28 e Å3
151 parametersΔρmin = 0.28 e Å3
1 restraintAbsolute structure: Flack (1983), 1354 Fridel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (8)
Crystal data top
C5H6ClN2+·C4H3O4·0.25H2OV = 4307.1 (13) Å3
Mr = 249.14Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 23.899 (4) ŵ = 0.36 mm1
b = 48.298 (8) ÅT = 100 K
c = 3.7314 (7) Å0.90 × 0.09 × 0.07 mm
Data collection top
Bruker APEXII DUO CCD
diffractometer
3485 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2896 reflections with I > 2σ(I)
Tmin = 0.739, Tmax = 0.976Rint = 0.037
8113 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.28 e Å3
S = 1.08Δρmin = 0.28 e Å3
3485 reflectionsAbsolute structure: Flack (1983), 1354 Fridel pairs
151 parametersAbsolute structure parameter: 0.03 (8)
1 restraint
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.69696 (2)0.016473 (11)0.8123 (2)0.03527 (16)
N10.55035 (7)0.05354 (4)0.7539 (6)0.0249 (4)
H1N10.51830.05120.68160.030*
N20.51706 (8)0.09744 (4)0.8771 (6)0.0314 (5)
H1N20.48430.09220.80930.038*
H2N20.52230.11410.95000.038*
C10.59109 (8)0.03419 (4)0.7366 (7)0.0247 (4)
H1A0.58300.01640.65490.030*
C20.64399 (8)0.04084 (4)0.8395 (7)0.0238 (4)
C30.65571 (9)0.06771 (4)0.9713 (6)0.0252 (4)
H3A0.69170.07231.04640.030*
C40.61411 (9)0.08674 (4)0.9871 (6)0.0251 (4)
H4A0.62150.10441.07510.030*
C50.55917 (8)0.07983 (4)0.8695 (6)0.0243 (4)
O10.44806 (7)0.03654 (4)0.5270 (6)0.0387 (4)
O20.41927 (7)0.08014 (4)0.4907 (5)0.0368 (4)
O30.34524 (7)0.10600 (3)0.1851 (5)0.0331 (4)
H1O30.37790.09910.29750.050*
O40.26906 (7)0.09571 (3)0.1213 (6)0.0354 (4)
C60.41315 (9)0.05435 (5)0.4340 (7)0.0314 (5)
C70.36132 (9)0.04403 (5)0.2533 (7)0.0309 (5)
H7A0.35780.02490.24610.037*
C80.31932 (9)0.05795 (5)0.1004 (7)0.0289 (5)
H8A0.29100.04680.00860.035*
C90.30996 (9)0.08816 (5)0.0515 (7)0.0280 (5)
O1W0.50000.00000.0840 (17)0.0348 (11)0.50
H1W10.47360.00670.19410.052*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0224 (2)0.0272 (2)0.0563 (4)0.00083 (19)0.0022 (3)0.0053 (3)
N10.0196 (7)0.0327 (8)0.0223 (10)0.0017 (6)0.0009 (8)0.0005 (7)
N20.0242 (8)0.0334 (9)0.0365 (13)0.0029 (7)0.0077 (9)0.0069 (9)
C10.0244 (9)0.0272 (9)0.0225 (11)0.0014 (7)0.0012 (9)0.0035 (8)
C20.0208 (8)0.0274 (8)0.0232 (11)0.0006 (7)0.0015 (9)0.0062 (9)
C30.0212 (9)0.0319 (10)0.0224 (11)0.0026 (7)0.0018 (8)0.0038 (9)
C40.0253 (9)0.0296 (9)0.0206 (11)0.0029 (7)0.0013 (8)0.0007 (9)
C50.0232 (9)0.0323 (9)0.0175 (11)0.0003 (7)0.0022 (9)0.0014 (9)
O10.0255 (7)0.0530 (9)0.0376 (11)0.0024 (7)0.0090 (8)0.0088 (10)
O20.0282 (8)0.0445 (9)0.0377 (11)0.0109 (7)0.0125 (8)0.0055 (8)
O30.0286 (8)0.0378 (8)0.0329 (10)0.0097 (6)0.0083 (7)0.0059 (7)
O40.0291 (8)0.0396 (8)0.0376 (11)0.0043 (7)0.0123 (8)0.0101 (8)
C60.0231 (10)0.0481 (13)0.0231 (12)0.0091 (9)0.0039 (9)0.0069 (10)
C70.0266 (10)0.0370 (11)0.0293 (13)0.0111 (8)0.0072 (10)0.0117 (10)
C80.0238 (9)0.0372 (10)0.0256 (12)0.0113 (8)0.0061 (9)0.0117 (10)
C90.0238 (9)0.0360 (10)0.0241 (12)0.0067 (8)0.0006 (9)0.0062 (10)
O1W0.033 (2)0.0282 (19)0.043 (3)0.0037 (17)0.0000.000
Geometric parameters (Å, º) top
Cl1—C21.731 (2)C4—H4A0.9300
N1—C11.351 (3)O1—C61.248 (3)
N1—C51.357 (3)O2—C61.272 (3)
N1—H1N10.8196O3—C91.304 (3)
N2—C51.318 (3)O3—H1O30.9462
N2—H1N20.8600O4—C91.226 (3)
N2—H2N20.8600C6—C71.496 (3)
C1—C21.360 (3)C7—C81.336 (3)
C1—H1A0.9300C7—H7A0.9300
C2—C31.416 (3)C8—C91.488 (3)
C3—C41.355 (3)C8—H8A0.9300
C3—H3A0.9300O1W—H1W10.8190
C4—C51.424 (3)
C1—N1—C5123.39 (18)C5—C4—H4A119.9
C1—N1—H1N1124.1N2—C5—N1119.47 (19)
C5—N1—H1N1112.3N2—C5—C4123.1 (2)
C5—N2—H1N2120.0N1—C5—C4117.41 (18)
C5—N2—H2N2120.0C9—O3—H1O3117.9
H1N2—N2—H2N2120.0O1—C6—O2123.5 (2)
N1—C1—C2119.54 (19)O1—C6—C7116.7 (2)
N1—C1—H1A120.2O2—C6—C7119.8 (2)
C2—C1—H1A120.2C8—C7—C6130.3 (2)
C1—C2—C3119.90 (19)C8—C7—H7A114.8
C1—C2—Cl1120.18 (17)C6—C7—H7A114.8
C3—C2—Cl1119.92 (15)C7—C8—C9131.2 (2)
C4—C3—C2119.45 (19)C7—C8—H8A114.4
C4—C3—H3A120.3C9—C8—H8A114.4
C2—C3—H3A120.3O4—C9—O3121.3 (2)
C3—C4—C5120.3 (2)O4—C9—C8118.4 (2)
C3—C4—H4A119.9O3—C9—C8120.2 (2)
C5—N1—C1—C20.2 (3)C3—C4—C5—N2179.8 (2)
N1—C1—C2—C31.4 (3)C3—C4—C5—N12.0 (3)
N1—C1—C2—Cl1178.96 (18)O1—C6—C7—C8174.0 (3)
C1—C2—C3—C41.2 (4)O2—C6—C7—C87.2 (4)
Cl1—C2—C3—C4179.14 (19)C6—C7—C8—C91.2 (5)
C2—C3—C4—C50.5 (4)C7—C8—C9—O4175.2 (3)
C1—N1—C5—N2179.8 (2)C7—C8—C9—O33.6 (4)
C1—N1—C5—C41.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.821.912.714 (3)166
N2—H1N2···O20.862.042.870 (3)161
N2—H2N2···O40.862.052.902 (3)169
O3—H1O3···O20.951.532.447 (2)162
O1W—H1W1···O10.822.002.718 (4)146
C3—H3A···O4i0.932.503.388 (3)160
C4—H4A···O30.932.423.263 (3)151
Symmetry code: (i) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC5H6ClN2+·C4H3O4·0.25H2O
Mr249.14
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)100
a, b, c (Å)23.899 (4), 48.298 (8), 3.7314 (7)
V3)4307.1 (13)
Z16
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.90 × 0.09 × 0.07
Data collection
DiffractometerBruker APEXII DUO CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.739, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
8113, 3485, 2896
Rint0.037
(sin θ/λ)max1)0.748
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.109, 1.08
No. of reflections3485
No. of parameters151
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28
Absolute structureFlack (1983), 1354 Fridel pairs
Absolute structure parameter0.03 (8)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O10.821.912.714 (3)166
N2—H1N2···O20.862.042.870 (3)161
N2—H2N2···O40.862.052.902 (3)169
O3—H1O3···O20.951.532.447 (2)162
O1W—H1W1···O10.822.002.718 (4)146
C3—H3A···O4i0.932.503.388 (3)160
C4—H4A···O30.932.423.263 (3)151
Symmetry code: (i) x+1/2, y, z+3/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. pp. 397–407.  Google Scholar
First citationAlagar, M., Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (2001). Acta Cryst. E57, o855–o857.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFredericks, J. R. & Hamilton, A. D. (1996). Comprehensive Supramolecular Chemistry, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol & F. Voégtle, pp. 161–180. Oxford: Pergamon.  Google Scholar
First citationRajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001a). Acta Cryst. E57, o751–o753.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajagopal, K., Krishnakumar, R. V. & Natarajan, S. (2001b). Acta Cryst. E57, o922–o924.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajagopal, K., Subha Nandhini, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2002). Acta Cryst. E58, o478–o480.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds