organic compounds
2-Amino-5-chloropyridinium (Z)-3-carboxyprop-2-enoate 0.25-hydrate
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my
In the title hydrated salt, C5H6ClN2+·C4H3O4−·0.25H2O, the water O atom lies on a twofold axis with 0.25 occupancy. The 2-amino-5-chloropyridinium cation is almost planar, with a maximum deviation of 0.015 (3) Å. In the hydrogen malate anion, an intramolecular O—H⋯O hydrogen bond generates an S(7) ring and results in a folded conformation. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxylate O atoms of the anion via a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The ion pairs are further connected via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to the ab plane which stack down the c axis.
Related literature
For hydrogen bonds in supramolecular assemblies, see: Aakeröy & Seddon (1993); Fredericks & Hamilton (1996). For related structures of maleate salts, see: Rajagopal et al. (2001a,b, 2002); Alagar et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536810033507/hb5596sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810033507/hb5596Isup2.hkl
A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and maleic acid (58 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.
All hydrogen atoms were positioned geometrically [C—H = 0.93 Å, N—H = 0.8196–0.86 Å and O—H = 0.8190–0.9462 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). 1354 Friedel pairs were used to determine the absolute structure.
There is growing interest in the construction of supramolecular assemblies with hydrogen bonds as the building blocks (Aakeröy & Seddon, 1993; Fredericks & Hamilton, 1996). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate, with one of the carboxylic acid groups protonated. The crystal structures of glycinium maleate (Rajagopal et al., 2001a), β-alaninium maleate (Rajagopal et al., 2001b), sarcosinium maleate (Rajagopal et al., 2002) and L-alaninium maleate (Alagar et al., 2001) have been reported in the literature. The present study reports the of 2-amino-5-chloropyridinium hydrogen maleate 0.25-hydrate, (I), a complex of 2-amino-5-chloropyridinium with maleic acid.
The
(Fig. 1), contains a 2-amino-5-chloropyridinium cation, a hydrogen malate anion and a water molecule with occupany 0.25 (the O atom of the water molecule lies on a twofold axis). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.015 (3) Å for atom C1. In the 2-amino-5-chloropyridinium cation, a wide angle [C1—N1—C5 = 123.39 (18)°] is subtended at the protonated N1 atom. The dihedral angle between the pyridine ring and the mean plane formed by the hydrogen maleate anion is 22.39 (10)°.In the crystal packing, the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O1 and N2—H1N2···O2 hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O4, O1W—H1W1···O1, C3—H3A···O4 and C4—H4A···O3 (Table 1) hydrogen bonds, forming two-dimensional networks parallel to the ab plane (Fig. 2) which stacked down the c-axis. In the hydrogen malate anion, an intramolecular O3—H1O3···O2 hydrogen bond generates an S(7) ring and results in a folded conformation.
For hydrogen bonds in supramolecular assemblies, see: Aakeröy & Seddon (1993); Fredericks & Hamilton (1996). For related structures of maleate salts, see: Rajagopal et al. (2001a,b, 2002); Alagar et al. (2001). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).
Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).C5H6ClN2+·C4H3O4−·0.25H2O | F(000) = 2056 |
Mr = 249.14 | Dx = 1.537 Mg m−3 |
Orthorhombic, Fdd2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: F 2 -2d | Cell parameters from 2106 reflections |
a = 23.899 (4) Å | θ = 3.1–30.2° |
b = 48.298 (8) Å | µ = 0.36 mm−1 |
c = 3.7314 (7) Å | T = 100 K |
V = 4307.1 (13) Å3 | Needle, colourless |
Z = 16 | 0.90 × 0.09 × 0.07 mm |
Bruker APEXII DUO CCD diffractometer | 3485 independent reflections |
Radiation source: fine-focus sealed tube | 2896 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
φ and ω scans | θmax = 32.1°, θmin = 3.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −35→19 |
Tmin = 0.739, Tmax = 0.976 | k = −72→72 |
8113 measured reflections | l = −5→5 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0339P)2 + 6.9914P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
3485 reflections | Δρmax = 0.28 e Å−3 |
151 parameters | Δρmin = −0.28 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1354 Fridel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.03 (8) |
C5H6ClN2+·C4H3O4−·0.25H2O | V = 4307.1 (13) Å3 |
Mr = 249.14 | Z = 16 |
Orthorhombic, Fdd2 | Mo Kα radiation |
a = 23.899 (4) Å | µ = 0.36 mm−1 |
b = 48.298 (8) Å | T = 100 K |
c = 3.7314 (7) Å | 0.90 × 0.09 × 0.07 mm |
Bruker APEXII DUO CCD diffractometer | 3485 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 2896 reflections with I > 2σ(I) |
Tmin = 0.739, Tmax = 0.976 | Rint = 0.037 |
8113 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.109 | Δρmax = 0.28 e Å−3 |
S = 1.08 | Δρmin = −0.28 e Å−3 |
3485 reflections | Absolute structure: Flack (1983), 1354 Fridel pairs |
151 parameters | Absolute structure parameter: 0.03 (8) |
1 restraint |
Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.69696 (2) | 0.016473 (11) | 0.8123 (2) | 0.03527 (16) | |
N1 | 0.55035 (7) | 0.05354 (4) | 0.7539 (6) | 0.0249 (4) | |
H1N1 | 0.5183 | 0.0512 | 0.6816 | 0.030* | |
N2 | 0.51706 (8) | 0.09744 (4) | 0.8771 (6) | 0.0314 (5) | |
H1N2 | 0.4843 | 0.0922 | 0.8093 | 0.038* | |
H2N2 | 0.5223 | 0.1141 | 0.9500 | 0.038* | |
C1 | 0.59109 (8) | 0.03419 (4) | 0.7366 (7) | 0.0247 (4) | |
H1A | 0.5830 | 0.0164 | 0.6549 | 0.030* | |
C2 | 0.64399 (8) | 0.04084 (4) | 0.8395 (7) | 0.0238 (4) | |
C3 | 0.65571 (9) | 0.06771 (4) | 0.9713 (6) | 0.0252 (4) | |
H3A | 0.6917 | 0.0723 | 1.0464 | 0.030* | |
C4 | 0.61411 (9) | 0.08674 (4) | 0.9871 (6) | 0.0251 (4) | |
H4A | 0.6215 | 0.1044 | 1.0751 | 0.030* | |
C5 | 0.55917 (8) | 0.07983 (4) | 0.8695 (6) | 0.0243 (4) | |
O1 | 0.44806 (7) | 0.03654 (4) | 0.5270 (6) | 0.0387 (4) | |
O2 | 0.41927 (7) | 0.08014 (4) | 0.4907 (5) | 0.0368 (4) | |
O3 | 0.34524 (7) | 0.10600 (3) | 0.1851 (5) | 0.0331 (4) | |
H1O3 | 0.3779 | 0.0991 | 0.2975 | 0.050* | |
O4 | 0.26906 (7) | 0.09571 (3) | −0.1213 (6) | 0.0354 (4) | |
C6 | 0.41315 (9) | 0.05435 (5) | 0.4340 (7) | 0.0314 (5) | |
C7 | 0.36132 (9) | 0.04403 (5) | 0.2533 (7) | 0.0309 (5) | |
H7A | 0.3578 | 0.0249 | 0.2461 | 0.037* | |
C8 | 0.31932 (9) | 0.05795 (5) | 0.1004 (7) | 0.0289 (5) | |
H8A | 0.2910 | 0.0468 | 0.0086 | 0.035* | |
C9 | 0.30996 (9) | 0.08816 (5) | 0.0515 (7) | 0.0280 (5) | |
O1W | 0.5000 | 0.0000 | 0.0840 (17) | 0.0348 (11) | 0.50 |
H1W1 | 0.4736 | 0.0067 | 0.1941 | 0.052* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0224 (2) | 0.0272 (2) | 0.0563 (4) | 0.00083 (19) | 0.0022 (3) | 0.0053 (3) |
N1 | 0.0196 (7) | 0.0327 (8) | 0.0223 (10) | −0.0017 (6) | −0.0009 (8) | 0.0005 (7) |
N2 | 0.0242 (8) | 0.0334 (9) | 0.0365 (13) | 0.0029 (7) | −0.0077 (9) | −0.0069 (9) |
C1 | 0.0244 (9) | 0.0272 (9) | 0.0225 (11) | −0.0014 (7) | 0.0012 (9) | 0.0035 (8) |
C2 | 0.0208 (8) | 0.0274 (8) | 0.0232 (11) | 0.0006 (7) | 0.0015 (9) | 0.0062 (9) |
C3 | 0.0212 (9) | 0.0319 (10) | 0.0224 (11) | −0.0026 (7) | −0.0018 (8) | 0.0038 (9) |
C4 | 0.0253 (9) | 0.0296 (9) | 0.0206 (11) | −0.0029 (7) | −0.0013 (8) | 0.0007 (9) |
C5 | 0.0232 (9) | 0.0323 (9) | 0.0175 (11) | −0.0003 (7) | −0.0022 (9) | 0.0014 (9) |
O1 | 0.0255 (7) | 0.0530 (9) | 0.0376 (11) | −0.0024 (7) | −0.0090 (8) | 0.0088 (10) |
O2 | 0.0282 (8) | 0.0445 (9) | 0.0377 (11) | −0.0109 (7) | −0.0125 (8) | 0.0055 (8) |
O3 | 0.0286 (8) | 0.0378 (8) | 0.0329 (10) | −0.0097 (6) | −0.0083 (7) | 0.0059 (7) |
O4 | 0.0291 (8) | 0.0396 (8) | 0.0376 (11) | −0.0043 (7) | −0.0123 (8) | 0.0101 (8) |
C6 | 0.0231 (10) | 0.0481 (13) | 0.0231 (12) | −0.0091 (9) | −0.0039 (9) | 0.0069 (10) |
C7 | 0.0266 (10) | 0.0370 (11) | 0.0293 (13) | −0.0111 (8) | −0.0072 (10) | 0.0117 (10) |
C8 | 0.0238 (9) | 0.0372 (10) | 0.0256 (12) | −0.0113 (8) | −0.0061 (9) | 0.0117 (10) |
C9 | 0.0238 (9) | 0.0360 (10) | 0.0241 (12) | −0.0067 (8) | −0.0006 (9) | 0.0062 (10) |
O1W | 0.033 (2) | 0.0282 (19) | 0.043 (3) | 0.0037 (17) | 0.000 | 0.000 |
Cl1—C2 | 1.731 (2) | C4—H4A | 0.9300 |
N1—C1 | 1.351 (3) | O1—C6 | 1.248 (3) |
N1—C5 | 1.357 (3) | O2—C6 | 1.272 (3) |
N1—H1N1 | 0.8196 | O3—C9 | 1.304 (3) |
N2—C5 | 1.318 (3) | O3—H1O3 | 0.9462 |
N2—H1N2 | 0.8600 | O4—C9 | 1.226 (3) |
N2—H2N2 | 0.8600 | C6—C7 | 1.496 (3) |
C1—C2 | 1.360 (3) | C7—C8 | 1.336 (3) |
C1—H1A | 0.9300 | C7—H7A | 0.9300 |
C2—C3 | 1.416 (3) | C8—C9 | 1.488 (3) |
C3—C4 | 1.355 (3) | C8—H8A | 0.9300 |
C3—H3A | 0.9300 | O1W—H1W1 | 0.8190 |
C4—C5 | 1.424 (3) | ||
C1—N1—C5 | 123.39 (18) | C5—C4—H4A | 119.9 |
C1—N1—H1N1 | 124.1 | N2—C5—N1 | 119.47 (19) |
C5—N1—H1N1 | 112.3 | N2—C5—C4 | 123.1 (2) |
C5—N2—H1N2 | 120.0 | N1—C5—C4 | 117.41 (18) |
C5—N2—H2N2 | 120.0 | C9—O3—H1O3 | 117.9 |
H1N2—N2—H2N2 | 120.0 | O1—C6—O2 | 123.5 (2) |
N1—C1—C2 | 119.54 (19) | O1—C6—C7 | 116.7 (2) |
N1—C1—H1A | 120.2 | O2—C6—C7 | 119.8 (2) |
C2—C1—H1A | 120.2 | C8—C7—C6 | 130.3 (2) |
C1—C2—C3 | 119.90 (19) | C8—C7—H7A | 114.8 |
C1—C2—Cl1 | 120.18 (17) | C6—C7—H7A | 114.8 |
C3—C2—Cl1 | 119.92 (15) | C7—C8—C9 | 131.2 (2) |
C4—C3—C2 | 119.45 (19) | C7—C8—H8A | 114.4 |
C4—C3—H3A | 120.3 | C9—C8—H8A | 114.4 |
C2—C3—H3A | 120.3 | O4—C9—O3 | 121.3 (2) |
C3—C4—C5 | 120.3 (2) | O4—C9—C8 | 118.4 (2) |
C3—C4—H4A | 119.9 | O3—C9—C8 | 120.2 (2) |
C5—N1—C1—C2 | 0.2 (3) | C3—C4—C5—N2 | −179.8 (2) |
N1—C1—C2—C3 | 1.4 (3) | C3—C4—C5—N1 | 2.0 (3) |
N1—C1—C2—Cl1 | −178.96 (18) | O1—C6—C7—C8 | −174.0 (3) |
C1—C2—C3—C4 | −1.2 (4) | O2—C6—C7—C8 | 7.2 (4) |
Cl1—C2—C3—C4 | 179.14 (19) | C6—C7—C8—C9 | 1.2 (5) |
C2—C3—C4—C5 | −0.5 (4) | C7—C8—C9—O4 | 175.2 (3) |
C1—N1—C5—N2 | 179.8 (2) | C7—C8—C9—O3 | −3.6 (4) |
C1—N1—C5—C4 | −1.9 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1 | 0.82 | 1.91 | 2.714 (3) | 166 |
N2—H1N2···O2 | 0.86 | 2.04 | 2.870 (3) | 161 |
N2—H2N2···O4 | 0.86 | 2.05 | 2.902 (3) | 169 |
O3—H1O3···O2 | 0.95 | 1.53 | 2.447 (2) | 162 |
O1W—H1W1···O1 | 0.82 | 2.00 | 2.718 (4) | 146 |
C3—H3A···O4i | 0.93 | 2.50 | 3.388 (3) | 160 |
C4—H4A···O3 | 0.93 | 2.42 | 3.263 (3) | 151 |
Symmetry code: (i) x+1/2, y, z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C5H6ClN2+·C4H3O4−·0.25H2O |
Mr | 249.14 |
Crystal system, space group | Orthorhombic, Fdd2 |
Temperature (K) | 100 |
a, b, c (Å) | 23.899 (4), 48.298 (8), 3.7314 (7) |
V (Å3) | 4307.1 (13) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.36 |
Crystal size (mm) | 0.90 × 0.09 × 0.07 |
Data collection | |
Diffractometer | Bruker APEXII DUO CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.739, 0.976 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8113, 3485, 2896 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.748 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.109, 1.08 |
No. of reflections | 3485 |
No. of parameters | 151 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.28 |
Absolute structure | Flack (1983), 1354 Fridel pairs |
Absolute structure parameter | 0.03 (8) |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N1···O1 | 0.82 | 1.91 | 2.714 (3) | 166 |
N2—H1N2···O2 | 0.86 | 2.04 | 2.870 (3) | 161 |
N2—H2N2···O4 | 0.86 | 2.05 | 2.902 (3) | 169 |
O3—H1O3···O2 | 0.95 | 1.53 | 2.447 (2) | 162 |
O1W—H1W1···O1 | 0.82 | 2.00 | 2.718 (4) | 146 |
C3—H3A···O4i | 0.93 | 2.50 | 3.388 (3) | 160 |
C4—H4A···O3 | 0.93 | 2.42 | 3.263 (3) | 151 |
Symmetry code: (i) x+1/2, y, z+3/2. |
Footnotes
‡Thomson Reuters ResearcherID: A-3561-2009.
Acknowledgements
MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.
References
Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. pp. 397–407. Google Scholar
Alagar, M., Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (2001). Acta Cryst. E57, o855–o857. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107. CrossRef CAS Web of Science IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Fredericks, J. R. & Hamilton, A. D. (1996). Comprehensive Supramolecular Chemistry, edited by J. L. Atwood, J. E. D. Davies, D. D. MacNicol & F. Voégtle, pp. 161–180. Oxford: Pergamon. Google Scholar
Rajagopal, K., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2001a). Acta Cryst. E57, o751–o753. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajagopal, K., Krishnakumar, R. V. & Natarajan, S. (2001b). Acta Cryst. E57, o922–o924. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajagopal, K., Subha Nandhini, M., Krishnakumar, R. V., Mostad, A. & Natarajan, S. (2002). Acta Cryst. E58, o478–o480. CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
There is growing interest in the construction of supramolecular assemblies with hydrogen bonds as the building blocks (Aakeröy & Seddon, 1993; Fredericks & Hamilton, 1996). The maleic acid anion can exist in the fully deprotonated form or as hydrogen maleate, with one of the carboxylic acid groups protonated. The crystal structures of glycinium maleate (Rajagopal et al., 2001a), β-alaninium maleate (Rajagopal et al., 2001b), sarcosinium maleate (Rajagopal et al., 2002) and L-alaninium maleate (Alagar et al., 2001) have been reported in the literature. The present study reports the crystal structure of 2-amino-5-chloropyridinium hydrogen maleate 0.25-hydrate, (I), a complex of 2-amino-5-chloropyridinium with maleic acid.
The asymmetric unit (Fig. 1), contains a 2-amino-5-chloropyridinium cation, a hydrogen malate anion and a water molecule with occupany 0.25 (the O atom of the water molecule lies on a twofold axis). The 2-amino-5-chloropyridinium cation is essentially planar, with a maximum deviation of 0.015 (3) Å for atom C1. In the 2-amino-5-chloropyridinium cation, a wide angle [C1—N1—C5 = 123.39 (18)°] is subtended at the protonated N1 atom. The dihedral angle between the pyridine ring and the mean plane formed by the hydrogen maleate anion is 22.39 (10)°.
In the crystal packing, the protonated N1 atom and the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O1 and N2—H1N2···O2 hydrogen bonds, forming a ring motif R22(8) (Bernstein et al., 1995). The ion pairs are further connected via N2—H2N2···O4, O1W—H1W1···O1, C3—H3A···O4 and C4—H4A···O3 (Table 1) hydrogen bonds, forming two-dimensional networks parallel to the ab plane (Fig. 2) which stacked down the c-axis. In the hydrogen malate anion, an intramolecular O3—H1O3···O2 hydrogen bond generates an S(7) ring and results in a folded conformation.