organic compounds
2-(3-Oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetohydrazide
aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and cDepartment of Chemistry, Gomal University, Dera Ismaeel Khan, Pakistan
*Correspondence e-mail: azherch82003@yahoo.com
In the title compound, C10H11N3O2S, the thiazine ring exists in a conformation intermediate between twist-boat and half-chair. The dihedral angle between the mean plane of the thiazine ring and the hydrazide group is 89.45 (13)°. In the crystal, N—H⋯O hydrogen bonds link the molecules into (100) sheets and weak C—H⋯O interactions further consolidate the packing.
Related literature
For the biological and medicinal activity of 1,4-benzothiazine compounds, see: Armenise et al. (1991); Gupta et al. (1993); Vicente et al. (2009); Schiaffella et al. (2006); Kaneko et al. (2002). For the pharmacological properties of and their derivatives, see: Sivasankar et al. (1995); Satyanarayana et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
https://doi.org/10.1107/S1600536810031272/hb5598sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810031272/hb5598Isup2.hkl
Ethyl 2-(3-oxo-2,3-dihydrobenzo[b][1,4]thiazin-4-yl)acetate (1.26 g, 5mmol) was refluxed in 50 ml ethanol with 2.0 ml of hydrazine for 5 hours. On completion the solution was evaporated under reduce pressure and solid obtained was purified from ethanol. Colourless needles of (I) were obtained by slow evaporation from methanol (m.p. 430 K).
The C-H H-atoms were positioned with idealized geometry with C—H = 0.93 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). The N-H H atoms were located in difference map with N—H= 0.76 (4)—0.83 (4) Å, Uiso(H) = 1.2 for N atoms.
The 4H-benzo(1,4)thiazine compounds exhibit a broad spectrum of biological activitives, such as tetramic acids substituted benzothiazine derivatives are potent inhibitors of HCV polymerase (Vicente et al., 2009)and the pyrazino subsituted 1,4-benzothiazine derivatives are inhibitors of adhesion molecule-1, (Kaneko et al., 2002).They are also known to have antibacterial (Armenise et al.,1991),anticancer (Gupta et al.,1993), antifungal (Schiaffella et al., 2006) activities. The hydrazone compounds were known for their coordinating capability, pharmacological activity, antibacterial and antifungal properties (Sivasankar et al., 1995) (Satyanarayana, et al., 2008). We paid attention to the preparation of hydrazone derivatives of 2-(3-oxo-2,3-dihydro-2H-1,4-benzothiazin-3-one and we report here the structure of the title compound.
The dihedral angle between the aromatic benzene ring C1–C6 and thiazine ring C1/C6/N1/C7/C8/S1 is 16.77(0.10)° while the hydrazide group C9/C10/N2/N3 is oriented at dihedral angle of 89.45(0.13)° with respect to the thiazine ring. The symmetry related intermolecular N—H···O and C—H···O interaction form the dimer along the b axis which results in a ring motif R22(9) (Bernstein et al., 1995). The
is further stabilized through the N—H···O and week C—H···O interaction to form three dimentional network.For the biological and medicinal activity of 1,4-benzothiazine compounds, see: Armenise et al. (1991); Gupta et al. (1993); Vicente et al. (2009); Schiaffella et al. (2006); Kaneko et al. (2002). For the pharmacological properties of
and their derivatives, see: Sivasankar et al. (1995); Satyanarayana et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).Data collection: APEX2 (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C10H11N3O2S | F(000) = 496 |
Mr = 237.28 | Dx = 1.423 Mg m−3 |
Monoclinic, Cc | Melting point: 430 K |
Hall symbol: C -2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.3744 (10) Å | Cell parameters from 4206 reflections |
b = 7.5162 (5) Å | θ = 3.0–31.2° |
c = 9.6256 (7) Å | µ = 0.28 mm−1 |
β = 95.413 (3)° | T = 296 K |
V = 1107.35 (13) Å3 | Needle, colorless |
Z = 4 | 0.46 × 0.23 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 2168 independent reflections |
Radiation source: fine-focus sealed tube | 2077 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
φ and ω scans | θmax = 28.4°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −12→20 |
Tmin = 0.882, Tmax = 0.946 | k = −8→10 |
6103 measured reflections | l = −12→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2667P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
2168 reflections | Δρmax = 0.18 e Å−3 |
157 parameters | Δρmin = −0.14 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 792 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.00 (7) |
C10H11N3O2S | V = 1107.35 (13) Å3 |
Mr = 237.28 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 15.3744 (10) Å | µ = 0.28 mm−1 |
b = 7.5162 (5) Å | T = 296 K |
c = 9.6256 (7) Å | 0.46 × 0.23 × 0.20 mm |
β = 95.413 (3)° |
Bruker Kappa APEXII CCD diffractometer | 2168 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 2077 reflections with I > 2σ(I) |
Tmin = 0.882, Tmax = 0.946 | Rint = 0.021 |
6103 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.076 | Δρmax = 0.18 e Å−3 |
S = 1.04 | Δρmin = −0.14 e Å−3 |
2168 reflections | Absolute structure: Flack (1983), 792 Friedel pairs |
157 parameters | Absolute structure parameter: 0.00 (7) |
2 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.81283 (13) | 0.1402 (3) | 0.4407 (2) | 0.0444 (4) | |
C2 | 0.88393 (15) | 0.1642 (4) | 0.3624 (3) | 0.0684 (7) | |
H2 | 0.9061 | 0.0674 | 0.3170 | 0.082* | |
C3 | 0.92138 (15) | 0.3276 (5) | 0.3514 (3) | 0.0727 (7) | |
H3 | 0.9691 | 0.3412 | 0.2998 | 0.087* | |
C4 | 0.88855 (14) | 0.4717 (4) | 0.4166 (3) | 0.0621 (6) | |
H4 | 0.9145 | 0.5827 | 0.4099 | 0.074* | |
C5 | 0.81688 (12) | 0.4524 (2) | 0.4924 (2) | 0.0451 (4) | |
H5 | 0.7944 | 0.5514 | 0.5347 | 0.054* | |
C6 | 0.77806 (10) | 0.2868 (2) | 0.50596 (15) | 0.0325 (3) | |
C7 | 0.64582 (13) | 0.1320 (2) | 0.56774 (18) | 0.0393 (4) | |
C8 | 0.65696 (13) | −0.0005 (2) | 0.4532 (2) | 0.0473 (4) | |
H8A | 0.6398 | 0.0537 | 0.3633 | 0.057* | |
H8B | 0.6194 | −0.1024 | 0.4638 | 0.057* | |
C9 | 0.68864 (12) | 0.3985 (2) | 0.69169 (16) | 0.0371 (4) | |
H9A | 0.7419 | 0.4638 | 0.7190 | 0.044* | |
H9B | 0.6710 | 0.3388 | 0.7738 | 0.044* | |
C10 | 0.61760 (11) | 0.52828 (19) | 0.63748 (15) | 0.0311 (3) | |
N1 | 0.70588 (9) | 0.26545 (17) | 0.58681 (13) | 0.0328 (3) | |
N2 | 0.57596 (11) | 0.60513 (19) | 0.73773 (16) | 0.0391 (3) | |
N3 | 0.50598 (12) | 0.7263 (3) | 0.70912 (19) | 0.0491 (4) | |
O1 | 0.60169 (9) | 0.56431 (16) | 0.51324 (12) | 0.0441 (3) | |
O2 | 0.58443 (11) | 0.1213 (2) | 0.63853 (16) | 0.0602 (4) | |
S1 | 0.76839 (4) | −0.07275 (6) | 0.45907 (6) | 0.06435 (19) | |
H1N | 0.5831 (14) | 0.561 (3) | 0.822 (3) | 0.036 (5)* | |
H2N | 0.4722 (19) | 0.678 (4) | 0.641 (3) | 0.072 (9)* | |
H3N | 0.5321 (18) | 0.834 (4) | 0.681 (3) | 0.065 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0391 (9) | 0.0492 (9) | 0.0446 (10) | 0.0071 (7) | 0.0020 (8) | −0.0098 (8) |
C2 | 0.0384 (11) | 0.108 (2) | 0.0598 (13) | 0.0113 (12) | 0.0099 (10) | −0.0256 (14) |
C3 | 0.0360 (10) | 0.126 (2) | 0.0580 (14) | −0.0063 (14) | 0.0133 (9) | 0.0076 (15) |
C4 | 0.0409 (10) | 0.0773 (15) | 0.0673 (14) | −0.0139 (10) | 0.0019 (10) | 0.0272 (12) |
C5 | 0.0411 (10) | 0.0407 (9) | 0.0531 (12) | −0.0021 (8) | 0.0022 (8) | 0.0107 (8) |
C6 | 0.0334 (8) | 0.0347 (7) | 0.0288 (8) | 0.0042 (6) | 0.0004 (6) | 0.0033 (6) |
C7 | 0.0462 (10) | 0.0359 (8) | 0.0360 (9) | −0.0013 (7) | 0.0057 (7) | 0.0027 (7) |
C8 | 0.0532 (11) | 0.0358 (9) | 0.0529 (11) | −0.0081 (7) | 0.0049 (8) | −0.0080 (7) |
C9 | 0.0463 (9) | 0.0382 (8) | 0.0266 (8) | 0.0068 (7) | 0.0026 (7) | −0.0034 (6) |
C10 | 0.0391 (8) | 0.0292 (7) | 0.0253 (7) | −0.0012 (6) | 0.0052 (6) | −0.0015 (5) |
N1 | 0.0393 (7) | 0.0293 (6) | 0.0304 (7) | 0.0025 (5) | 0.0068 (6) | −0.0012 (5) |
N2 | 0.0516 (9) | 0.0405 (7) | 0.0261 (7) | 0.0102 (6) | 0.0081 (6) | 0.0003 (6) |
N3 | 0.0518 (10) | 0.0517 (10) | 0.0455 (9) | 0.0147 (8) | 0.0134 (8) | 0.0016 (8) |
O1 | 0.0585 (8) | 0.0504 (7) | 0.0239 (6) | 0.0137 (6) | 0.0059 (5) | 0.0007 (5) |
O2 | 0.0559 (9) | 0.0728 (9) | 0.0553 (9) | −0.0161 (7) | 0.0223 (7) | −0.0008 (8) |
S1 | 0.0661 (3) | 0.0354 (2) | 0.0898 (4) | 0.0116 (2) | −0.0018 (3) | −0.0191 (3) |
C1—C2 | 1.397 (3) | C7—C8 | 1.508 (3) |
C1—C6 | 1.400 (2) | C8—S1 | 1.793 (2) |
C1—S1 | 1.756 (2) | C8—H8A | 0.9700 |
C2—C3 | 1.364 (4) | C8—H8B | 0.9700 |
C2—H2 | 0.9300 | C9—N1 | 1.463 (2) |
C3—C4 | 1.372 (4) | C9—C10 | 1.520 (2) |
C3—H3 | 0.9300 | C9—H9A | 0.9700 |
C4—C5 | 1.385 (3) | C9—H9B | 0.9700 |
C4—H4 | 0.9300 | C10—O1 | 1.228 (2) |
C5—C6 | 1.392 (2) | C10—N2 | 1.338 (2) |
C5—H5 | 0.9300 | N2—N3 | 1.417 (2) |
C6—N1 | 1.423 (2) | N2—H1N | 0.87 (2) |
C7—O2 | 1.218 (2) | N3—H2N | 0.87 (3) |
C7—N1 | 1.364 (2) | N3—H3N | 0.96 (3) |
C2—C1—C6 | 119.5 (2) | S1—C8—H8A | 109.5 |
C2—C1—S1 | 120.28 (17) | C7—C8—H8B | 109.5 |
C6—C1—S1 | 120.24 (15) | S1—C8—H8B | 109.5 |
C3—C2—C1 | 121.0 (2) | H8A—C8—H8B | 108.1 |
C3—C2—H2 | 119.5 | N1—C9—C10 | 111.90 (13) |
C1—C2—H2 | 119.5 | N1—C9—H9A | 109.2 |
C2—C3—C4 | 119.9 (2) | C10—C9—H9A | 109.2 |
C2—C3—H3 | 120.0 | N1—C9—H9B | 109.2 |
C4—C3—H3 | 120.0 | C10—C9—H9B | 109.2 |
C3—C4—C5 | 120.3 (2) | H9A—C9—H9B | 107.9 |
C3—C4—H4 | 119.9 | O1—C10—N2 | 122.83 (15) |
C5—C4—H4 | 119.9 | O1—C10—C9 | 123.14 (14) |
C4—C5—C6 | 120.8 (2) | N2—C10—C9 | 113.99 (13) |
C4—C5—H5 | 119.6 | C7—N1—C6 | 124.21 (13) |
C6—C5—H5 | 119.6 | C7—N1—C9 | 115.53 (14) |
C5—C6—C1 | 118.46 (16) | C6—N1—C9 | 120.12 (13) |
C5—C6—N1 | 121.03 (15) | C10—N2—N3 | 122.91 (15) |
C1—C6—N1 | 120.49 (15) | C10—N2—H1N | 118.4 (13) |
O2—C7—N1 | 121.60 (17) | N3—N2—H1N | 117.0 (14) |
O2—C7—C8 | 120.86 (17) | N2—N3—H2N | 105.3 (19) |
N1—C7—C8 | 117.53 (15) | N2—N3—H3N | 105.6 (16) |
C7—C8—S1 | 110.54 (14) | H2N—N3—H3N | 112 (2) |
C7—C8—H8A | 109.5 | C1—S1—C8 | 95.78 (9) |
C6—C1—C2—C3 | 1.6 (3) | O2—C7—N1—C6 | −178.88 (18) |
S1—C1—C2—C3 | −177.5 (2) | C8—C7—N1—C6 | −0.2 (2) |
C1—C2—C3—C4 | −0.8 (4) | O2—C7—N1—C9 | −3.3 (2) |
C2—C3—C4—C5 | −0.7 (4) | C8—C7—N1—C9 | 175.45 (16) |
C3—C4—C5—C6 | 1.2 (3) | C5—C6—N1—C7 | 155.73 (17) |
C4—C5—C6—C1 | −0.3 (3) | C1—C6—N1—C7 | −25.7 (2) |
C4—C5—C6—N1 | 178.29 (17) | C5—C6—N1—C9 | −19.7 (2) |
C2—C1—C6—C5 | −1.1 (3) | C1—C6—N1—C9 | 158.89 (15) |
S1—C1—C6—C5 | 178.02 (14) | C10—C9—N1—C7 | −76.87 (18) |
C2—C1—C6—N1 | −179.71 (19) | C10—C9—N1—C6 | 98.95 (17) |
S1—C1—C6—N1 | −0.6 (2) | O1—C10—N2—N3 | 4.2 (3) |
O2—C7—C8—S1 | −135.26 (18) | C9—C10—N2—N3 | −178.15 (17) |
N1—C7—C8—S1 | 46.0 (2) | C2—C1—S1—C8 | −143.10 (19) |
N1—C9—C10—O1 | −26.9 (2) | C6—C1—S1—C8 | 37.80 (16) |
N1—C9—C10—N2 | 155.47 (14) | C7—C8—S1—C1 | −58.15 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O2i | 0.96 (3) | 2.35 (3) | 3.299 (3) | 171 (2) |
N2—H1N···O1ii | 0.87 (2) | 2.07 (2) | 2.935 (2) | 175.5 (18) |
C3—H3···O2iii | 0.93 | 2.48 | 3.406 (3) | 174 |
C8—H8B···O1iv | 0.97 | 2.57 | 3.442 (2) | 150 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C10H11N3O2S |
Mr | 237.28 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 296 |
a, b, c (Å) | 15.3744 (10), 7.5162 (5), 9.6256 (7) |
β (°) | 95.413 (3) |
V (Å3) | 1107.35 (13) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.28 |
Crystal size (mm) | 0.46 × 0.23 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.882, 0.946 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6103, 2168, 2077 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.076, 1.04 |
No. of reflections | 2168 |
No. of parameters | 157 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.14 |
Absolute structure | Flack (1983), 792 Friedel pairs |
Absolute structure parameter | 0.00 (7) |
Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3N···O2i | 0.96 (3) | 2.35 (3) | 3.299 (3) | 171 (2) |
N2—H1N···O1ii | 0.87 (2) | 2.07 (2) | 2.935 (2) | 175.5 (18) |
C3—H3···O2iii | 0.93 | 2.48 | 3.406 (3) | 174 |
C8—H8B···O1iv | 0.97 | 2.57 | 3.442 (2) | 150 |
Symmetry codes: (i) x, y+1, z; (ii) x, −y+1, z+1/2; (iii) x+1/2, −y+1/2, z−1/2; (iv) x, y−1, z. |
Acknowledgements
The authors acknowledge the Higher Education Commission of Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN Code: 042-120614-PS2-128).
References
Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Il Farmaco, 46, 1023–1032. PubMed CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anti-Cancer Drugs, 4, 589–592. CrossRef CAS PubMed Web of Science Google Scholar
Kaneko, T., Clark, S. J. R., Ohi, N., Kawahara, T., Akamatsu, A., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922–929. Web of Science CrossRef PubMed CAS Google Scholar
Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V., (2008). Arkivoc, xvii, 221–233. Google Scholar
Schiaffella, F., Macchiarulo, A., Milanese, L., Anna Vecchiarelli, A. & Renata Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sivasankar, N. B. & Gavindaragam, S. (1995). Synth. React. Inorg. Met. Org. Chem. 25, 127–131. CrossRef CAS Web of Science Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Vicente, J. de et al. (2009). Bioorg. Med. Chem. Lett. 19, 5648–5651. Web of Science PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 4H-benzo(1,4)thiazine compounds exhibit a broad spectrum of biological activitives, such as tetramic acids substituted benzothiazine derivatives are potent inhibitors of HCV polymerase (Vicente et al., 2009)and the pyrazino subsituted 1,4-benzothiazine derivatives are inhibitors of adhesion molecule-1, (Kaneko et al., 2002).They are also known to have antibacterial (Armenise et al.,1991),anticancer (Gupta et al.,1993), antifungal (Schiaffella et al., 2006) activities. The hydrazone compounds were known for their coordinating capability, pharmacological activity, antibacterial and antifungal properties (Sivasankar et al., 1995) (Satyanarayana, et al., 2008). We paid attention to the preparation of hydrazone derivatives of 2-(3-oxo-2,3-dihydro-2H-1,4-benzothiazin-3-one and we report here the structure of the title compound.
The dihedral angle between the aromatic benzene ring C1–C6 and thiazine ring C1/C6/N1/C7/C8/S1 is 16.77(0.10)° while the hydrazide group C9/C10/N2/N3 is oriented at dihedral angle of 89.45(0.13)° with respect to the thiazine ring. The symmetry related intermolecular N—H···O and C—H···O interaction form the dimer along the b axis which results in a ring motif R22(9) (Bernstein et al., 1995). The crystal structure is further stabilized through the N—H···O and week C—H···O interaction to form three dimentional network.