organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl)acetohydrazide

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bDepartment of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China, and cDepartment of Chemistry, Gomal University, Dera Ismaeel Khan, Pakistan
*Correspondence e-mail: azherch82003@yahoo.com

(Received 3 August 2010; accepted 4 August 2010; online 11 August 2010)

In the title compound, C10H11N3O2S, the thia­zine ring exists in a conformation inter­mediate between twist-boat and half-chair. The dihedral angle between the mean plane of the thia­zine ring and the hydrazide group is 89.45 (13)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into (100) sheets and weak C—H⋯O inter­actions further consolidate the packing.

Related literature

For the biological and medicinal activity of 1,4-benzothia­zine compounds, see: Armenise et al. (1991[Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Il Farmaco, 46, 1023-1032.]); Gupta et al. (1993[Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anti-Cancer Drugs, 4, 589-592.]); Vicente et al. (2009[Vicente, J. de et al. (2009). Bioorg. Med. Chem. Lett. 19, 5648-5651.]); Schiaffella et al. (2006[Schiaffella, F., Macchiarulo, A., Milanese, L., Anna Vecchiarelli, A. & Renata Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196-5203.]); Kaneko et al. (2002[Kaneko, T., Clark, S. J. R., Ohi, N., Kawahara, T., Akamatsu, A., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922-929.]). For the pharmacological properties of hydrazones and their derivatives, see: Sivasankar et al. (1995[Sivasankar, N. B. & Gavindaragam, S. (1995). Synth. React. Inorg. Met. Org. Chem. 25, 127-131.]); Satyanarayana et al. (2008[Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V., (2008). Arkivoc, xvii, 221-233.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3O2S

  • Mr = 237.28

  • Monoclinic, C c

  • a = 15.3744 (10) Å

  • b = 7.5162 (5) Å

  • c = 9.6256 (7) Å

  • β = 95.413 (3)°

  • V = 1107.35 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 296 K

  • 0.46 × 0.23 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.946

  • 6103 measured reflections

  • 2168 independent reflections

  • 2077 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.04

  • 2168 reflections

  • 157 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 792 Friedel pairs

  • Flack parameter: 0.00 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O2i 0.96 (3) 2.35 (3) 3.299 (3) 171 (2)
N2—H1N⋯O1ii 0.87 (2) 2.07 (2) 2.935 (2) 175.5 (18)
C3—H3⋯O2iii 0.93 2.48 3.406 (3) 174
C8—H8B⋯O1iv 0.97 2.57 3.442 (2) 150
Symmetry codes: (i) x, y+1, z; (ii) [x, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The 4H-benzo(1,4)thiazine compounds exhibit a broad spectrum of biological activitives, such as tetramic acids substituted benzothiazine derivatives are potent inhibitors of HCV polymerase (Vicente et al., 2009)and the pyrazino subsituted 1,4-benzothiazine derivatives are inhibitors of adhesion molecule-1, (Kaneko et al., 2002).They are also known to have antibacterial (Armenise et al.,1991),anticancer (Gupta et al.,1993), antifungal (Schiaffella et al., 2006) activities. The hydrazone compounds were known for their coordinating capability, pharmacological activity, antibacterial and antifungal properties (Sivasankar et al., 1995) (Satyanarayana, et al., 2008). We paid attention to the preparation of hydrazone derivatives of 2-(3-oxo-2,3-dihydro-2H-1,4-benzothiazin-3-one and we report here the structure of the title compound.

The dihedral angle between the aromatic benzene ring C1–C6 and thiazine ring C1/C6/N1/C7/C8/S1 is 16.77(0.10)° while the hydrazide group C9/C10/N2/N3 is oriented at dihedral angle of 89.45(0.13)° with respect to the thiazine ring. The symmetry related intermolecular N—H···O and C—H···O interaction form the dimer along the b axis which results in a ring motif R22(9) (Bernstein et al., 1995). The crystal structure is further stabilized through the N—H···O and week C—H···O interaction to form three dimentional network.

Related literature top

For the biological and medicinal activity of 1,4-benzothiazine compounds, see: Armenise et al. (1991); Gupta et al. (1993); Vicente et al. (2009); Schiaffella et al. (2006); Kaneko et al. (2002). For the pharmacological properties of hydrazones and their derivatives, see: Sivasankar et al. (1995); Satyanarayana et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Ethyl 2-(3-oxo-2,3-dihydrobenzo[b][1,4]thiazin-4-yl)acetate (1.26 g, 5mmol) was refluxed in 50 ml ethanol with 2.0 ml of hydrazine for 5 hours. On completion the solution was evaporated under reduce pressure and solid obtained was purified from ethanol. Colourless needles of (I) were obtained by slow evaporation from methanol (m.p. 430 K).

Refinement top

The C-H H-atoms were positioned with idealized geometry with C—H = 0.93 Å and were refined using a riding model with Uiso(H) = 1.2 Ueq(C). The N-H H atoms were located in difference map with N—H= 0.76 (4)—0.83 (4) Å, Uiso(H) = 1.2 for N atoms.

Structure description top

The 4H-benzo(1,4)thiazine compounds exhibit a broad spectrum of biological activitives, such as tetramic acids substituted benzothiazine derivatives are potent inhibitors of HCV polymerase (Vicente et al., 2009)and the pyrazino subsituted 1,4-benzothiazine derivatives are inhibitors of adhesion molecule-1, (Kaneko et al., 2002).They are also known to have antibacterial (Armenise et al.,1991),anticancer (Gupta et al.,1993), antifungal (Schiaffella et al., 2006) activities. The hydrazone compounds were known for their coordinating capability, pharmacological activity, antibacterial and antifungal properties (Sivasankar et al., 1995) (Satyanarayana, et al., 2008). We paid attention to the preparation of hydrazone derivatives of 2-(3-oxo-2,3-dihydro-2H-1,4-benzothiazin-3-one and we report here the structure of the title compound.

The dihedral angle between the aromatic benzene ring C1–C6 and thiazine ring C1/C6/N1/C7/C8/S1 is 16.77(0.10)° while the hydrazide group C9/C10/N2/N3 is oriented at dihedral angle of 89.45(0.13)° with respect to the thiazine ring. The symmetry related intermolecular N—H···O and C—H···O interaction form the dimer along the b axis which results in a ring motif R22(9) (Bernstein et al., 1995). The crystal structure is further stabilized through the N—H···O and week C—H···O interaction to form three dimentional network.

For the biological and medicinal activity of 1,4-benzothiazine compounds, see: Armenise et al. (1991); Gupta et al. (1993); Vicente et al. (2009); Schiaffella et al. (2006); Kaneko et al. (2002). For the pharmacological properties of hydrazones and their derivatives, see: Sivasankar et al. (1995); Satyanarayana et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound and Intermolecular hydrogen bonds are shown by dashed lines.
2-(3-Oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetohydrazide top
Crystal data top
C10H11N3O2SF(000) = 496
Mr = 237.28Dx = 1.423 Mg m3
Monoclinic, CcMelting point: 430 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 15.3744 (10) ÅCell parameters from 4206 reflections
b = 7.5162 (5) Åθ = 3.0–31.2°
c = 9.6256 (7) ŵ = 0.28 mm1
β = 95.413 (3)°T = 296 K
V = 1107.35 (13) Å3Needle, colorless
Z = 40.46 × 0.23 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2168 independent reflections
Radiation source: fine-focus sealed tube2077 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
φ and ω scansθmax = 28.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1220
Tmin = 0.882, Tmax = 0.946k = 810
6103 measured reflectionsl = 1210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2667P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2168 reflectionsΔρmax = 0.18 e Å3
157 parametersΔρmin = 0.14 e Å3
2 restraintsAbsolute structure: Flack (1983), 792 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (7)
Crystal data top
C10H11N3O2SV = 1107.35 (13) Å3
Mr = 237.28Z = 4
Monoclinic, CcMo Kα radiation
a = 15.3744 (10) ŵ = 0.28 mm1
b = 7.5162 (5) ÅT = 296 K
c = 9.6256 (7) Å0.46 × 0.23 × 0.20 mm
β = 95.413 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2168 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2077 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.946Rint = 0.021
6103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076Δρmax = 0.18 e Å3
S = 1.04Δρmin = 0.14 e Å3
2168 reflectionsAbsolute structure: Flack (1983), 792 Friedel pairs
157 parametersAbsolute structure parameter: 0.00 (7)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.81283 (13)0.1402 (3)0.4407 (2)0.0444 (4)
C20.88393 (15)0.1642 (4)0.3624 (3)0.0684 (7)
H20.90610.06740.31700.082*
C30.92138 (15)0.3276 (5)0.3514 (3)0.0727 (7)
H30.96910.34120.29980.087*
C40.88855 (14)0.4717 (4)0.4166 (3)0.0621 (6)
H40.91450.58270.40990.074*
C50.81688 (12)0.4524 (2)0.4924 (2)0.0451 (4)
H50.79440.55140.53470.054*
C60.77806 (10)0.2868 (2)0.50596 (15)0.0325 (3)
C70.64582 (13)0.1320 (2)0.56774 (18)0.0393 (4)
C80.65696 (13)0.0005 (2)0.4532 (2)0.0473 (4)
H8A0.63980.05370.36330.057*
H8B0.61940.10240.46380.057*
C90.68864 (12)0.3985 (2)0.69169 (16)0.0371 (4)
H9A0.74190.46380.71900.044*
H9B0.67100.33880.77380.044*
C100.61760 (11)0.52828 (19)0.63748 (15)0.0311 (3)
N10.70588 (9)0.26545 (17)0.58681 (13)0.0328 (3)
N20.57596 (11)0.60513 (19)0.73773 (16)0.0391 (3)
N30.50598 (12)0.7263 (3)0.70912 (19)0.0491 (4)
O10.60169 (9)0.56431 (16)0.51324 (12)0.0441 (3)
O20.58443 (11)0.1213 (2)0.63853 (16)0.0602 (4)
S10.76839 (4)0.07275 (6)0.45907 (6)0.06435 (19)
H1N0.5831 (14)0.561 (3)0.822 (3)0.036 (5)*
H2N0.4722 (19)0.678 (4)0.641 (3)0.072 (9)*
H3N0.5321 (18)0.834 (4)0.681 (3)0.065 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (9)0.0492 (9)0.0446 (10)0.0071 (7)0.0020 (8)0.0098 (8)
C20.0384 (11)0.108 (2)0.0598 (13)0.0113 (12)0.0099 (10)0.0256 (14)
C30.0360 (10)0.126 (2)0.0580 (14)0.0063 (14)0.0133 (9)0.0076 (15)
C40.0409 (10)0.0773 (15)0.0673 (14)0.0139 (10)0.0019 (10)0.0272 (12)
C50.0411 (10)0.0407 (9)0.0531 (12)0.0021 (8)0.0022 (8)0.0107 (8)
C60.0334 (8)0.0347 (7)0.0288 (8)0.0042 (6)0.0004 (6)0.0033 (6)
C70.0462 (10)0.0359 (8)0.0360 (9)0.0013 (7)0.0057 (7)0.0027 (7)
C80.0532 (11)0.0358 (9)0.0529 (11)0.0081 (7)0.0049 (8)0.0080 (7)
C90.0463 (9)0.0382 (8)0.0266 (8)0.0068 (7)0.0026 (7)0.0034 (6)
C100.0391 (8)0.0292 (7)0.0253 (7)0.0012 (6)0.0052 (6)0.0015 (5)
N10.0393 (7)0.0293 (6)0.0304 (7)0.0025 (5)0.0068 (6)0.0012 (5)
N20.0516 (9)0.0405 (7)0.0261 (7)0.0102 (6)0.0081 (6)0.0003 (6)
N30.0518 (10)0.0517 (10)0.0455 (9)0.0147 (8)0.0134 (8)0.0016 (8)
O10.0585 (8)0.0504 (7)0.0239 (6)0.0137 (6)0.0059 (5)0.0007 (5)
O20.0559 (9)0.0728 (9)0.0553 (9)0.0161 (7)0.0223 (7)0.0008 (8)
S10.0661 (3)0.0354 (2)0.0898 (4)0.0116 (2)0.0018 (3)0.0191 (3)
Geometric parameters (Å, º) top
C1—C21.397 (3)C7—C81.508 (3)
C1—C61.400 (2)C8—S11.793 (2)
C1—S11.756 (2)C8—H8A0.9700
C2—C31.364 (4)C8—H8B0.9700
C2—H20.9300C9—N11.463 (2)
C3—C41.372 (4)C9—C101.520 (2)
C3—H30.9300C9—H9A0.9700
C4—C51.385 (3)C9—H9B0.9700
C4—H40.9300C10—O11.228 (2)
C5—C61.392 (2)C10—N21.338 (2)
C5—H50.9300N2—N31.417 (2)
C6—N11.423 (2)N2—H1N0.87 (2)
C7—O21.218 (2)N3—H2N0.87 (3)
C7—N11.364 (2)N3—H3N0.96 (3)
C2—C1—C6119.5 (2)S1—C8—H8A109.5
C2—C1—S1120.28 (17)C7—C8—H8B109.5
C6—C1—S1120.24 (15)S1—C8—H8B109.5
C3—C2—C1121.0 (2)H8A—C8—H8B108.1
C3—C2—H2119.5N1—C9—C10111.90 (13)
C1—C2—H2119.5N1—C9—H9A109.2
C2—C3—C4119.9 (2)C10—C9—H9A109.2
C2—C3—H3120.0N1—C9—H9B109.2
C4—C3—H3120.0C10—C9—H9B109.2
C3—C4—C5120.3 (2)H9A—C9—H9B107.9
C3—C4—H4119.9O1—C10—N2122.83 (15)
C5—C4—H4119.9O1—C10—C9123.14 (14)
C4—C5—C6120.8 (2)N2—C10—C9113.99 (13)
C4—C5—H5119.6C7—N1—C6124.21 (13)
C6—C5—H5119.6C7—N1—C9115.53 (14)
C5—C6—C1118.46 (16)C6—N1—C9120.12 (13)
C5—C6—N1121.03 (15)C10—N2—N3122.91 (15)
C1—C6—N1120.49 (15)C10—N2—H1N118.4 (13)
O2—C7—N1121.60 (17)N3—N2—H1N117.0 (14)
O2—C7—C8120.86 (17)N2—N3—H2N105.3 (19)
N1—C7—C8117.53 (15)N2—N3—H3N105.6 (16)
C7—C8—S1110.54 (14)H2N—N3—H3N112 (2)
C7—C8—H8A109.5C1—S1—C895.78 (9)
C6—C1—C2—C31.6 (3)O2—C7—N1—C6178.88 (18)
S1—C1—C2—C3177.5 (2)C8—C7—N1—C60.2 (2)
C1—C2—C3—C40.8 (4)O2—C7—N1—C93.3 (2)
C2—C3—C4—C50.7 (4)C8—C7—N1—C9175.45 (16)
C3—C4—C5—C61.2 (3)C5—C6—N1—C7155.73 (17)
C4—C5—C6—C10.3 (3)C1—C6—N1—C725.7 (2)
C4—C5—C6—N1178.29 (17)C5—C6—N1—C919.7 (2)
C2—C1—C6—C51.1 (3)C1—C6—N1—C9158.89 (15)
S1—C1—C6—C5178.02 (14)C10—C9—N1—C776.87 (18)
C2—C1—C6—N1179.71 (19)C10—C9—N1—C698.95 (17)
S1—C1—C6—N10.6 (2)O1—C10—N2—N34.2 (3)
O2—C7—C8—S1135.26 (18)C9—C10—N2—N3178.15 (17)
N1—C7—C8—S146.0 (2)C2—C1—S1—C8143.10 (19)
N1—C9—C10—O126.9 (2)C6—C1—S1—C837.80 (16)
N1—C9—C10—N2155.47 (14)C7—C8—S1—C158.15 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.96 (3)2.35 (3)3.299 (3)171 (2)
N2—H1N···O1ii0.87 (2)2.07 (2)2.935 (2)175.5 (18)
C3—H3···O2iii0.932.483.406 (3)174
C8—H8B···O1iv0.972.573.442 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H11N3O2S
Mr237.28
Crystal system, space groupMonoclinic, Cc
Temperature (K)296
a, b, c (Å)15.3744 (10), 7.5162 (5), 9.6256 (7)
β (°) 95.413 (3)
V3)1107.35 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.46 × 0.23 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.882, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
6103, 2168, 2077
Rint0.021
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.04
No. of reflections2168
No. of parameters157
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.14
Absolute structureFlack (1983), 792 Friedel pairs
Absolute structure parameter0.00 (7)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O2i0.96 (3)2.35 (3)3.299 (3)171 (2)
N2—H1N···O1ii0.87 (2)2.07 (2)2.935 (2)175.5 (18)
C3—H3···O2iii0.932.483.406 (3)174
C8—H8B···O1iv0.972.573.442 (2)150
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1/2; (iii) x+1/2, y+1/2, z1/2; (iv) x, y1, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Islamabad, Pakistan, for providing a scholarship under the Indigenous PhD Program (PIN Code: 042-120614-PS2-128).

References

First citationArmenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Il Farmaco, 46, 1023–1032.  PubMed CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anti-Cancer Drugs, 4, 589–592.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKaneko, T., Clark, S. J. R., Ohi, N., Kawahara, T., Akamatsu, A., Ozaki, F., Kamada, A., Okano, K., Yokohama, H., Muramoto, K., Ohkuro, M., Takenaka, O. & Kobayashi, S. (2002). Chem. Pharm. Bull. 50, 922–929.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSatyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V., (2008). Arkivoc, xvii, 221–233.  Google Scholar
First citationSchiaffella, F., Macchiarulo, A., Milanese, L., Anna Vecchiarelli, A. & Renata Fringuelli, R. (2006). Bioorg. Med. Chem. 14, 5196–5203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSivasankar, N. B. & Gavindaragam, S. (1995). Synth. React. Inorg. Met. Org. Chem. 25, 127–131.  CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVicente, J. de et al. (2009). Bioorg. Med. Chem. Lett. 19, 5648–5651.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds