organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Methyl­phen­yl)quinoxalin-2-amine monohydrate

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 4 August 2010; accepted 4 August 2010; online 11 August 2010)

The quinoxaline system in the title hydrate, C15H13N3·H2O, is roughly planar, the r.m.s. deviation for the 18 non-H atoms being 0.188 Å; this conformation features a short intra­molecular C—H⋯N(pyrazine) inter­action. In the crystal, the amine H atom forms an N—H⋯O hydrogen bond to the water mol­ecule, which in turn forms two O—H⋯N hydrogen bonds to the pyrazine N atoms of different organic mol­ecules. These inter­actions lead to supra­molecular arrays in the bc plane that are two mol­ecules thick; additional ππ inter­actions stabilize the layers [ring centroid–centroid distance = 3.5923 (7) Å]. The layers stack along the a-axis direction via C—H⋯π contacts.

Related literature

For a related structure, see: Fairuz et al. (2010[Fairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2186.]). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001[Kawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23-32.]); Abdullah (2005[Abdullah, Z. (2005). Int. J. Chem. Sci. 3, 9-15.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13N3·H2O

  • Mr = 253.30

  • Monoclinic, P 21 /c

  • a = 10.9002 (8) Å

  • b = 11.1048 (8) Å

  • c = 11.1715 (8) Å

  • β = 106.780 (1)°

  • V = 1294.67 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.30 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.942, Tmax = 1.000

  • 12521 measured reflections

  • 3100 independent reflections

  • 2608 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.02

  • 3100 reflections

  • 185 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C10–C15 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯N2 0.95 2.34 2.9482 (14) 122
N1—H1n⋯O1w 0.87 (1) 2.03 (1) 2.8951 (12) 176 (2)
O1w—H1w⋯N2i 0.85 (1) 2.13 (1) 2.9382 (13) 160 (2)
O1w—H2w⋯N3ii 0.84 (1) 2.15 (1) 2.9504 (12) 158 (2)
C7—H7b⋯Cg1iii 0.98 2.71 3.6532 (14) 161
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title hydrate, (I), was investigated in continuation of studies (Fairuz et al., 2010) into molecules that present interesting fluorescence properties (Kawai et al. 2001; Abdullah, 2005). The asymmetric unit of (I), Fig. 1, comprises a molecule of N-(3-methylphenyl)quinoxalin-2-amine and a water molecule of crystallization. The organic molecule is essentially planar with the r.m.s. deviation of the 18 non-hydrogen atoms being 0.188 Å [maximum deviations = 0.358 (1) Å for atom C7 and -0.243 (1) Å for C2]. The greatest twists in the molecule occur about the N(amine)–C bonds with the values of the C1–N1–C8–N2 and C8–N1–C1–C6 torsion angles being 9.51 (18) and 8.48 (18) °, respectively. An intramolecular C–H···N2 contact, Table 1, contributes to the stability of the almost planar arrangement. The latter association does not preclude this pyrazine-N atom from participating in an intermolecular interaction. The amine forms a N–H···O hydrogen bond to the water molecule and each water-H forms a O–H···N hydrogen to a pyrazine-N of different molecules, Table 1. The result of this is the formation of layers two molecules thick, Fig. 2. Layers are further stabilized by ππ interactions occurring between centrosymmetrically related pyrazine rings [ring..centroid···centroid distance = 3.5923 (7) Å for symmetry operation -x, 1 - y, 1 - z]. Layers are inter-digitated along the a axis, Fig. 3, with the primary connections between them being of the type C–H···O, Table 1.

Related literature top

For a related structure, see: Fairuz et al. (2010). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001); Abdullah (2005).

Experimental top

2-Chloroquinoxaline (0.3260 g, 0.002 mol) dissolved in ethanol (5 ml) was added to m-toluidine (0.21 ml, 0.002 mol). The mixture refluxed for 5 h and extracted with chloroform (3 × 10 ml). Evaporation of solvent gave the crude product and pure 2-N-(m-methyl)anilinoquinoxaline was obtained after separating using column chromatography with EtOAc:hexane (1:3) as the eluent. Recrystallization from its ethanol solution yield colorless prisms of (I) after few days.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 to 1.5Uequiv(C). The O– and N-bound H-atoms were located in a difference Fourier map, and were refined with distance restraints of O–H = 0.84±0.01 Å and N–H 0.86±0.01 Å, respectively; the Uiso values were freely refined.

Structure description top

The title hydrate, (I), was investigated in continuation of studies (Fairuz et al., 2010) into molecules that present interesting fluorescence properties (Kawai et al. 2001; Abdullah, 2005). The asymmetric unit of (I), Fig. 1, comprises a molecule of N-(3-methylphenyl)quinoxalin-2-amine and a water molecule of crystallization. The organic molecule is essentially planar with the r.m.s. deviation of the 18 non-hydrogen atoms being 0.188 Å [maximum deviations = 0.358 (1) Å for atom C7 and -0.243 (1) Å for C2]. The greatest twists in the molecule occur about the N(amine)–C bonds with the values of the C1–N1–C8–N2 and C8–N1–C1–C6 torsion angles being 9.51 (18) and 8.48 (18) °, respectively. An intramolecular C–H···N2 contact, Table 1, contributes to the stability of the almost planar arrangement. The latter association does not preclude this pyrazine-N atom from participating in an intermolecular interaction. The amine forms a N–H···O hydrogen bond to the water molecule and each water-H forms a O–H···N hydrogen to a pyrazine-N of different molecules, Table 1. The result of this is the formation of layers two molecules thick, Fig. 2. Layers are further stabilized by ππ interactions occurring between centrosymmetrically related pyrazine rings [ring..centroid···centroid distance = 3.5923 (7) Å for symmetry operation -x, 1 - y, 1 - z]. Layers are inter-digitated along the a axis, Fig. 3, with the primary connections between them being of the type C–H···O, Table 1.

For a related structure, see: Fairuz et al. (2010). For background to the fluorescence properties of compounds related to the title compound, see: Kawai et al. (2001); Abdullah (2005).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular layer in (I) in the bc plane mediated by O–H···N and N–H···O hydrogen bonds, shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. Unit-cell contents shown in projection down the c axis in (I), highlighting the stacking of layers. The O–H···N, N–H···O, C–H···π and ππ interactions are shown as orange, blue, pink and purple dashed lines, respectively.
N-(3-Methylphenyl)quinoxalin-2-amine monohydrate top
Crystal data top
C15H13N3·H2OF(000) = 536
Mr = 253.30Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4286 reflections
a = 10.9002 (8) Åθ = 2.7–28.1°
b = 11.1048 (8) ŵ = 0.08 mm1
c = 11.1715 (8) ÅT = 100 K
β = 106.780 (1)°Prism, colourless
V = 1294.67 (16) Å30.30 × 0.20 × 0.05 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3100 independent reflections
Radiation source: fine-focus sealed tube2608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.942, Tmax = 1.000k = 1414
12521 measured reflectionsl = 1314
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.3508P]
where P = (Fo2 + 2Fc2)/3
3100 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H13N3·H2OV = 1294.67 (16) Å3
Mr = 253.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.9002 (8) ŵ = 0.08 mm1
b = 11.1048 (8) ÅT = 100 K
c = 11.1715 (8) Å0.30 × 0.20 × 0.05 mm
β = 106.780 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3100 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2608 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 1.000Rint = 0.028
12521 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0393 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
3100 reflectionsΔρmin = 0.27 e Å3
185 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1W0.13500 (8)0.90644 (8)0.33421 (8)0.0223 (2)
N10.23584 (9)0.74212 (8)0.54040 (9)0.0164 (2)
N20.22297 (8)0.54565 (8)0.61373 (8)0.0155 (2)
N30.09733 (9)0.48107 (8)0.36216 (9)0.0173 (2)
C10.31138 (10)0.80081 (10)0.64828 (10)0.0160 (2)
C20.32032 (11)0.92624 (10)0.63975 (11)0.0197 (2)
H20.27190.96730.56680.024*
C30.40005 (11)0.99008 (11)0.73821 (12)0.0229 (3)
H30.40621.07510.73230.027*
C40.47106 (11)0.93112 (11)0.84546 (11)0.0221 (3)
H40.52670.97580.91170.027*
C50.46125 (10)0.80690 (11)0.85650 (10)0.0190 (2)
C60.38116 (10)0.74173 (10)0.75738 (10)0.0171 (2)
H60.37410.65690.76410.021*
C70.53811 (11)0.74244 (12)0.97319 (11)0.0241 (3)
H7A0.52890.78481.04710.036*
H7B0.62860.74100.97550.036*
H7C0.50660.65970.97270.036*
C80.20156 (10)0.62408 (10)0.52164 (10)0.0148 (2)
C90.13809 (10)0.58960 (10)0.39371 (10)0.0165 (2)
H90.12580.64900.33010.020*
C100.11971 (10)0.39634 (10)0.45706 (10)0.0158 (2)
C110.07801 (10)0.27676 (10)0.42863 (11)0.0197 (2)
H11A0.03440.25490.34490.024*
C120.10028 (11)0.19203 (10)0.52154 (12)0.0221 (3)
H12A0.07200.11150.50210.027*
C130.16493 (11)0.22376 (10)0.64566 (11)0.0216 (2)
H130.18040.16430.70950.026*
C140.20597 (11)0.34018 (10)0.67553 (11)0.0194 (2)
H140.24950.36060.75970.023*
C150.18364 (10)0.42907 (10)0.58167 (10)0.0155 (2)
H1n0.2046 (14)0.7886 (12)0.4763 (11)0.028 (4)*
H1w0.1780 (15)0.9131 (16)0.2821 (14)0.042 (5)*
H2w0.0595 (11)0.9256 (17)0.2944 (16)0.052 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1W0.0230 (4)0.0262 (5)0.0170 (4)0.0023 (3)0.0046 (3)0.0060 (3)
N10.0191 (4)0.0137 (4)0.0140 (4)0.0006 (3)0.0010 (3)0.0017 (3)
N20.0175 (4)0.0142 (4)0.0144 (4)0.0003 (3)0.0040 (3)0.0004 (3)
N30.0180 (4)0.0180 (5)0.0153 (5)0.0011 (3)0.0042 (3)0.0015 (4)
C10.0149 (5)0.0165 (5)0.0170 (5)0.0009 (4)0.0053 (4)0.0021 (4)
C20.0209 (5)0.0169 (5)0.0212 (6)0.0005 (4)0.0059 (4)0.0002 (4)
C30.0238 (6)0.0177 (5)0.0275 (6)0.0040 (4)0.0080 (5)0.0048 (5)
C40.0191 (5)0.0254 (6)0.0218 (6)0.0052 (4)0.0058 (4)0.0082 (5)
C50.0159 (5)0.0253 (6)0.0162 (5)0.0014 (4)0.0056 (4)0.0022 (4)
C60.0167 (5)0.0178 (5)0.0171 (5)0.0012 (4)0.0052 (4)0.0004 (4)
C70.0211 (6)0.0328 (7)0.0165 (6)0.0019 (5)0.0022 (4)0.0013 (5)
C80.0135 (5)0.0152 (5)0.0156 (5)0.0008 (4)0.0039 (4)0.0011 (4)
C90.0175 (5)0.0169 (5)0.0145 (5)0.0000 (4)0.0034 (4)0.0016 (4)
C100.0149 (5)0.0158 (5)0.0175 (5)0.0004 (4)0.0061 (4)0.0007 (4)
C110.0192 (5)0.0181 (5)0.0223 (6)0.0024 (4)0.0068 (4)0.0044 (4)
C120.0240 (6)0.0146 (5)0.0305 (6)0.0022 (4)0.0120 (5)0.0021 (5)
C130.0265 (6)0.0166 (5)0.0248 (6)0.0028 (4)0.0125 (5)0.0049 (4)
C140.0234 (5)0.0178 (5)0.0182 (5)0.0025 (4)0.0080 (4)0.0007 (4)
C150.0161 (5)0.0150 (5)0.0167 (5)0.0009 (4)0.0065 (4)0.0006 (4)
Geometric parameters (Å, º) top
O1W—H1w0.849 (9)C5—C71.5110 (16)
O1W—H2w0.842 (9)C6—H60.9500
N1—C81.3625 (14)C7—H7A0.9800
N1—C11.4080 (13)C7—H7B0.9800
N1—H1n0.869 (9)C7—H7C0.9800
N2—C81.3164 (14)C8—C91.4480 (15)
N2—C151.3781 (14)C9—H90.9500
N3—C91.2977 (14)C10—C111.4098 (15)
N3—C101.3855 (14)C10—C151.4126 (15)
C1—C61.3998 (15)C11—C121.3697 (17)
C1—C21.4015 (15)C11—H11A0.9500
C2—C31.3840 (16)C12—C131.4069 (17)
C2—H20.9500C12—H12A0.9500
C3—C41.3885 (17)C13—C141.3772 (16)
C3—H30.9500C13—H130.9500
C4—C51.3918 (17)C14—C151.4092 (15)
C4—H40.9500C14—H140.9500
C5—C61.3978 (15)
H1w—O1W—H2w105.3 (18)C5—C7—H7C109.5
C8—N1—C1130.07 (9)H7A—C7—H7C109.5
C8—N1—H1n114.8 (10)H7B—C7—H7C109.5
C1—N1—H1n115.1 (10)N2—C8—N1122.51 (10)
C8—N2—C15116.54 (9)N2—C8—C9121.52 (10)
C9—N3—C10116.87 (9)N1—C8—C9115.97 (9)
C6—C1—C2119.61 (10)N3—C9—C8122.84 (10)
C6—C1—N1124.39 (10)N3—C9—H9118.6
C2—C1—N1115.90 (10)C8—C9—H9118.6
C3—C2—C1119.67 (11)N3—C10—C11119.55 (10)
C3—C2—H2120.2N3—C10—C15120.48 (10)
C1—C2—H2120.2C11—C10—C15119.98 (10)
C2—C3—C4120.66 (11)C12—C11—C10120.08 (11)
C2—C3—H3119.7C12—C11—H11A120.0
C4—C3—H3119.7C10—C11—H11A120.0
C3—C4—C5120.39 (10)C11—C12—C13120.24 (10)
C3—C4—H4119.8C11—C12—H12A119.9
C5—C4—H4119.8C13—C12—H12A119.9
C4—C5—C6119.30 (10)C14—C13—C12120.61 (11)
C4—C5—C7120.55 (10)C14—C13—H13119.7
C6—C5—C7120.14 (11)C12—C13—H13119.7
C5—C6—C1120.34 (10)C13—C14—C15120.20 (11)
C5—C6—H6119.8C13—C14—H14119.9
C1—C6—H6119.8C15—C14—H14119.9
C5—C7—H7A109.5N2—C15—C14119.39 (10)
C5—C7—H7B109.5N2—C15—C10121.72 (10)
H7A—C7—H7B109.5C14—C15—C10118.89 (10)
C8—N1—C1—C68.48 (18)N2—C8—C9—N30.87 (17)
C8—N1—C1—C2175.06 (11)N1—C8—C9—N3178.34 (10)
C6—C1—C2—C31.34 (16)C9—N3—C10—C11179.84 (10)
N1—C1—C2—C3175.31 (10)C9—N3—C10—C150.27 (15)
C1—C2—C3—C40.14 (17)N3—C10—C11—C12179.60 (10)
C2—C3—C4—C51.21 (18)C15—C10—C11—C120.51 (16)
C3—C4—C5—C61.34 (17)C10—C11—C12—C130.07 (17)
C3—C4—C5—C7179.84 (10)C11—C12—C13—C140.36 (18)
C4—C5—C6—C10.13 (16)C12—C13—C14—C150.06 (17)
C7—C5—C6—C1178.95 (10)C8—N2—C15—C14178.78 (10)
C2—C1—C6—C51.20 (16)C8—N2—C15—C102.12 (15)
N1—C1—C6—C5175.14 (10)C13—C14—C15—N2178.62 (10)
C15—N2—C8—N1179.88 (9)C13—C14—C15—C100.51 (16)
C15—N2—C8—C90.96 (15)N3—C10—C15—N21.58 (16)
C1—N1—C8—N29.51 (18)C11—C10—C15—N2178.32 (10)
C1—N1—C8—C9171.29 (10)N3—C10—C15—C14179.31 (10)
C10—N3—C9—C81.45 (16)C11—C10—C15—C140.79 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···N20.952.342.9482 (14)122
N1—H1n···O1w0.87 (1)2.03 (1)2.8951 (12)176 (2)
O1w—H1w···N2i0.85 (1)2.13 (1)2.9382 (13)160 (2)
O1w—H2w···N3ii0.84 (1)2.15 (1)2.9504 (12)158 (2)
C7—H7b···Cg1iii0.982.713.6532 (14)161
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H13N3·H2O
Mr253.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.9002 (8), 11.1048 (8), 11.1715 (8)
β (°) 106.780 (1)
V3)1294.67 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.942, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12521, 3100, 2608
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.110, 1.02
No. of reflections3100
No. of parameters185
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C10–C15 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···N20.952.342.9482 (14)122
N1—H1n···O1w0.869 (9)2.028 (9)2.8951 (12)176.2 (15)
O1w—H1w···N2i0.849 (9)2.127 (11)2.9382 (13)159.9 (17)
O1w—H2w···N3ii0.842 (9)2.153 (11)2.9504 (12)158.0 (18)
C7—H7b···Cg1iii0.982.713.6532 (14)161
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: zana@um.edu.my.

Acknowledgements

ZA thanks the Ministry of Higher Education, Malaysia, for a research grant (RG027/09AFR). The authors are also grateful to the University of Malaya for support of the crystallographic facility.

References

First citationAbdullah, Z. (2005). Int. J. Chem. Sci. 3, 9–15.  CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, Z. A., Aiyub, Z., Abdullah, Z., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKawai, M., Lee, M. J., Evans, K. O. & Norlund, T. (2001). J. Fluoresc. 11, 23–32.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds