metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Monoclinic modification of aquadi-n-butyl­bis­­(pyrazine-2-carboxyl­ato-κ2N1,O)tin(IV)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 August 2010; accepted 14 August 2010; online 21 August 2010)

The asymmetric unit of the title organotin(IV) compound, [Sn(C4H9)2(C5H3N2O2)2(H2O)], contains one-and-a-half mol­ecules. The half-mol­ecule is completed by crystallographic twofold symmetry, with its Sn and water O atoms lying on the rotation axis. Both mol­ecules feature seven-coordinate Sn atoms in trans-C2SnN2O3 penta­gonal-bipyramidal coordination environments. The carboxyl­ate anions N,O-chelate to the Sn atom. In the crystal, the carboxyl­ate O atoms not involved in coordination serve as acceptors for O—H⋯O hydrogen bonds from adjacent water mol­ecules, generating a three-dimensional network.

Related literature

For the rhombohedral modification, see: Ma et al. (2004[Ma, C., Han, Y., Zhang, R. & Wang, D. (2004). J. Organomet. Chem. 689, 1675-1683.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C4H9)2(C5H3N2O2)2(H2O)]

  • Mr = 497.12

  • Monoclinic, C 2/c

  • a = 18.8872 (9) Å

  • b = 24.4940 (11) Å

  • c = 15.4417 (7) Å

  • β = 119.955 (1)°

  • V = 6189.4 (5) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 1.28 mm−1

  • T = 100 K

  • 0.30 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.701, Tmax = 0.883

  • 29386 measured reflections

  • 7105 independent reflections

  • 6558 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.056

  • S = 1.07

  • 7105 reflections

  • 392 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected bond lengths (Å)

Sn1—C1 2.129 (2)
Sn1—O1 2.2590 (13)
Sn1—O1W 2.306 (2)
Sn1—N1 2.5333 (15)
Sn2—C10 2.124 (2)
Sn2—C14 2.128 (2)
Sn2—O5 2.2598 (13)
Sn2—O3 2.2593 (13)
Sn2—O2W 2.3056 (13)
Sn2—N3 2.5232 (16)
Sn2—N5 2.5362 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H1⋯O4 0.83 (2) 1.79 (2) 2.611 (2) 170 (3)
O2w—H21⋯O2i 0.84 (2) 1.79 (2) 2.616 (2) 168 (2)
O2w—H22⋯O6ii 0.84 (2) 1.79 (2) 2.615 (2) 170 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The title compound (I) is reported to crystallize in the rhombohedral R3c space group; the molecule lies on a twofold rotation axis that relates one alkyl group and one carboxylate anion to the other (Ma et al., 2004). The present monoclinic modification features two molecules, one of which lies on a general position and the other on a twofold rotation axis. Bond dimensions between the two molecules (Fig. 1) are not significantly different, however. The molecules feature seven-coordinate tin in trans-C2SnN2O3 pentagonal bipyramidal environments. The carboxylate anions N,O-chelate to the tin atom. The carboxylate oxygen atoms not involved in coordination serve as hydrogen bond acceptor to adjacent water molecules to generate a three-dimensional hydrogen-bonded network.

Related literature top

For the rhombohedral modification, see: Ma et al. (2004).

Experimental top

The reaction was carried out under a nitrogen atmosphere. Pyrazine-2-carboxylic acid (0.124 g,1 mmol) and sodium ethoxide (0.068 g,1 mmol) were dissolved in to benzene (20 ml) in a Schlenk flask. Dibutyltin dichloride (0.153 g, 0.5 mmol) was added to the mixture; the mixture was stirred for 12 h at 318 K. After cooling down to the room temperature, the solution was filtered. The solvent was removed under reduced pressure to give a solid. The solid was recrystallized from ethanol to yield irregular colourless chunks of (I); yield, 72%; m.p. 517–519 K.

Refinement top

Hydrogen atoms were placed in calculated positions (C–H 0.95–0.98 Å) and included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5Ueq(C).

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of 0.84±0.01 Å; their temperature factors were refined.

The second value in the weighting scheme is somewhat large; lowering this had only marginal impact on the refinement. The weighting scheme was the one suggested by the refinement program.

Structure description top

The title compound (I) is reported to crystallize in the rhombohedral R3c space group; the molecule lies on a twofold rotation axis that relates one alkyl group and one carboxylate anion to the other (Ma et al., 2004). The present monoclinic modification features two molecules, one of which lies on a general position and the other on a twofold rotation axis. Bond dimensions between the two molecules (Fig. 1) are not significantly different, however. The molecules feature seven-coordinate tin in trans-C2SnN2O3 pentagonal bipyramidal environments. The carboxylate anions N,O-chelate to the tin atom. The carboxylate oxygen atoms not involved in coordination serve as hydrogen bond acceptor to adjacent water molecules to generate a three-dimensional hydrogen-bonded network.

For the rhombohedral modification, see: Ma et al. (2004).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement wllipses shown at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. One molecule lies on a twofold rotation axis; the symmetry-related atoms are not labeled.
aquadi-n-butylbis(pyrazine-2-carboxylato- κ2N1,O)tin(IV) top
Crystal data top
[Sn(C4H9)2(C5H3N2O2)2(H2O)]F(000) = 3024
Mr = 497.12Dx = 1.600 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9879 reflections
a = 18.8872 (9) Åθ = 2.5–28.3°
b = 24.4940 (11) ŵ = 1.28 mm1
c = 15.4417 (7) ÅT = 100 K
β = 119.955 (1)°Irregular, colorless
V = 6189.4 (5) Å30.30 × 0.15 × 0.10 mm
Z = 12
Data collection top
Bruker SMART APEX CCD
diffractometer
7105 independent reflections
Radiation source: fine-focus sealed tube6558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2424
Tmin = 0.701, Tmax = 0.883k = 3128
29386 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.021P)2 + 10.9233P]
where P = (Fo2 + 2Fc2)/3
7105 reflections(Δ/σ)max = 0.001
392 parametersΔρmax = 0.76 e Å3
3 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Sn(C4H9)2(C5H3N2O2)2(H2O)]V = 6189.4 (5) Å3
Mr = 497.12Z = 12
Monoclinic, C2/cMo Kα radiation
a = 18.8872 (9) ŵ = 1.28 mm1
b = 24.4940 (11) ÅT = 100 K
c = 15.4417 (7) Å0.30 × 0.15 × 0.10 mm
β = 119.955 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
7105 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6558 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 0.883Rint = 0.032
29386 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0233 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.021P)2 + 10.9233P]
where P = (Fo2 + 2Fc2)/3
7105 reflectionsΔρmax = 0.76 e Å3
392 parametersΔρmin = 0.50 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.50000.271645 (7)0.25000.01226 (5)
Sn20.239913 (7)0.510838 (5)0.272022 (9)0.01172 (4)
O10.58322 (8)0.19810 (5)0.29728 (10)0.0161 (3)
O20.70784 (9)0.16107 (6)0.38196 (11)0.0211 (3)
O50.20976 (8)0.49615 (6)0.11271 (10)0.0152 (3)
O30.34167 (8)0.45819 (6)0.28122 (10)0.0153 (3)
O40.46371 (9)0.41771 (6)0.37040 (10)0.0201 (3)
O60.12665 (9)0.50371 (6)0.05210 (11)0.0206 (3)
O1W0.50000.36578 (8)0.25000.0174 (4)
O2W0.19486 (9)0.55472 (6)0.36767 (11)0.0173 (3)
N10.64916 (9)0.29911 (6)0.33560 (12)0.0140 (3)
N20.81885 (11)0.31145 (7)0.42537 (14)0.0226 (4)
N30.34640 (10)0.49082 (6)0.45089 (12)0.0133 (3)
N40.47405 (10)0.45577 (7)0.63621 (12)0.0203 (4)
N50.10625 (9)0.55567 (6)0.14732 (12)0.0138 (3)
N60.03695 (10)0.59800 (7)0.01365 (13)0.0207 (4)
C10.51096 (12)0.27551 (8)0.39390 (15)0.0160 (4)
H1A0.54180.24290.43190.019*
H1B0.54460.30780.42880.019*
C20.43280 (12)0.27860 (9)0.40007 (15)0.0196 (4)
H2A0.39850.24630.36660.024*
H2B0.40160.31150.36400.024*
C30.45043 (13)0.28089 (9)0.50854 (16)0.0228 (4)
H3A0.48900.31120.54360.027*
H3B0.39890.28910.50810.027*
C40.48623 (15)0.22850 (10)0.56649 (18)0.0304 (5)
H4A0.49580.23270.63460.046*
H4B0.53810.22060.56900.046*
H4C0.44790.19840.53330.046*
C50.66054 (11)0.20028 (8)0.34647 (14)0.0149 (4)
C60.69917 (11)0.25600 (8)0.36406 (14)0.0145 (4)
C70.78340 (12)0.26246 (8)0.40881 (15)0.0187 (4)
H70.81700.23080.42830.022*
C80.76820 (12)0.35409 (9)0.39651 (15)0.0197 (4)
H80.79060.38980.40660.024*
C90.68399 (12)0.34850 (8)0.35234 (15)0.0172 (4)
H90.65060.38020.33370.021*
C100.30749 (11)0.58260 (8)0.28432 (14)0.0155 (4)
H10A0.32690.59840.35150.019*
H10B0.35640.57170.28070.019*
C110.26372 (12)0.62761 (8)0.20726 (16)0.0188 (4)
H11A0.21570.64010.21160.023*
H11B0.24360.61250.13940.023*
C120.31919 (13)0.67654 (9)0.22259 (17)0.0233 (4)
H12A0.28560.70670.17850.028*
H12B0.34330.68930.29250.028*
C130.38749 (14)0.66419 (10)0.20121 (19)0.0304 (5)
H13A0.42040.69710.21220.046*
H13B0.36420.65230.13160.046*
H13C0.42210.63510.24590.046*
C140.16848 (11)0.44272 (8)0.26816 (14)0.0150 (4)
H14A0.12060.45670.27110.018*
H14B0.14760.42440.20270.018*
C150.21022 (12)0.39971 (8)0.34983 (15)0.0185 (4)
H15A0.22710.41660.41560.022*
H15B0.26010.38660.35050.022*
C160.15458 (12)0.35109 (8)0.33474 (16)0.0213 (4)
H16A0.10410.36420.33250.026*
H16B0.13880.33350.26980.026*
C170.19607 (14)0.30907 (9)0.41807 (18)0.0273 (5)
H17A0.15850.27870.40590.041*
H17B0.21090.32620.48230.041*
H17C0.24540.29540.41960.041*
C180.40452 (11)0.44366 (8)0.36248 (14)0.0141 (4)
C190.40703 (11)0.45937 (7)0.45834 (14)0.0134 (4)
C200.47023 (12)0.44212 (8)0.55007 (14)0.0169 (4)
H200.51220.41990.55180.020*
C210.41298 (13)0.48679 (8)0.62802 (15)0.0193 (4)
H21A0.41300.49720.68730.023*
C220.34938 (12)0.50456 (8)0.53674 (15)0.0161 (4)
H22A0.30740.52670.53510.019*
C230.14592 (11)0.51309 (8)0.03584 (14)0.0144 (4)
C240.08750 (11)0.54742 (8)0.05262 (14)0.0136 (4)
C250.01660 (12)0.56846 (8)0.02682 (15)0.0175 (4)
H250.00560.56170.09300.021*
C260.01696 (12)0.60683 (8)0.08106 (16)0.0197 (4)
H260.05250.62830.09410.024*
C270.05379 (12)0.58593 (8)0.16149 (15)0.0175 (4)
H270.06510.59320.22760.021*
H10.4900 (17)0.3856 (10)0.2865 (18)0.035 (7)*
H210.1969 (15)0.5884 (7)0.3783 (18)0.023 (6)*
H220.1695 (16)0.5391 (11)0.392 (2)0.036 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01380 (9)0.01078 (9)0.01431 (9)0.0000.00861 (7)0.000
Sn20.01378 (6)0.01148 (7)0.01148 (7)0.00100 (5)0.00750 (5)0.00075 (4)
O10.0156 (6)0.0120 (6)0.0214 (7)0.0005 (5)0.0098 (6)0.0008 (5)
O20.0192 (7)0.0133 (7)0.0297 (8)0.0028 (6)0.0113 (6)0.0005 (6)
O50.0153 (6)0.0182 (7)0.0129 (7)0.0039 (5)0.0077 (5)0.0007 (5)
O30.0165 (6)0.0171 (7)0.0129 (6)0.0032 (5)0.0078 (5)0.0010 (5)
O40.0201 (7)0.0234 (8)0.0163 (7)0.0076 (6)0.0088 (6)0.0002 (6)
O60.0226 (7)0.0264 (8)0.0140 (7)0.0073 (6)0.0101 (6)0.0009 (6)
O1W0.0261 (10)0.0114 (9)0.0230 (11)0.0000.0185 (9)0.000
O2W0.0259 (7)0.0129 (7)0.0204 (7)0.0005 (6)0.0171 (6)0.0002 (6)
N10.0156 (7)0.0131 (8)0.0142 (8)0.0011 (6)0.0081 (6)0.0002 (6)
N20.0188 (8)0.0228 (9)0.0262 (10)0.0029 (7)0.0112 (8)0.0019 (7)
N30.0150 (7)0.0137 (8)0.0121 (8)0.0015 (6)0.0076 (6)0.0005 (6)
N40.0207 (8)0.0243 (9)0.0141 (8)0.0004 (7)0.0073 (7)0.0008 (7)
N50.0139 (7)0.0132 (8)0.0150 (8)0.0003 (6)0.0079 (6)0.0002 (6)
N60.0176 (8)0.0201 (9)0.0221 (9)0.0046 (7)0.0082 (7)0.0015 (7)
C10.0172 (9)0.0173 (10)0.0150 (9)0.0005 (7)0.0092 (8)0.0008 (7)
C20.0185 (9)0.0259 (11)0.0176 (10)0.0037 (8)0.0115 (8)0.0034 (8)
C30.0261 (11)0.0272 (11)0.0207 (10)0.0049 (9)0.0160 (9)0.0015 (9)
C40.0325 (12)0.0380 (14)0.0298 (12)0.0097 (10)0.0225 (11)0.0102 (10)
C50.0170 (9)0.0151 (9)0.0159 (9)0.0003 (7)0.0106 (8)0.0016 (7)
C60.0164 (9)0.0156 (9)0.0138 (9)0.0005 (7)0.0092 (7)0.0010 (7)
C70.0161 (9)0.0176 (10)0.0222 (10)0.0001 (7)0.0095 (8)0.0006 (8)
C80.0200 (10)0.0178 (10)0.0210 (10)0.0056 (8)0.0099 (8)0.0010 (8)
C90.0202 (9)0.0139 (9)0.0177 (10)0.0021 (7)0.0096 (8)0.0001 (7)
C100.0156 (9)0.0152 (9)0.0153 (9)0.0003 (7)0.0074 (7)0.0012 (7)
C110.0172 (9)0.0173 (10)0.0221 (10)0.0006 (7)0.0099 (8)0.0047 (8)
C120.0236 (10)0.0176 (10)0.0294 (12)0.0025 (8)0.0139 (9)0.0052 (9)
C130.0238 (11)0.0314 (13)0.0398 (14)0.0001 (9)0.0188 (10)0.0135 (11)
C140.0138 (8)0.0148 (9)0.0154 (9)0.0013 (7)0.0065 (7)0.0002 (7)
C150.0185 (9)0.0152 (9)0.0181 (10)0.0031 (7)0.0065 (8)0.0010 (8)
C160.0192 (9)0.0175 (10)0.0235 (11)0.0048 (8)0.0078 (8)0.0014 (8)
C170.0302 (12)0.0187 (11)0.0303 (12)0.0039 (9)0.0130 (10)0.0035 (9)
C180.0169 (9)0.0116 (9)0.0147 (9)0.0007 (7)0.0086 (8)0.0008 (7)
C190.0146 (8)0.0115 (9)0.0149 (9)0.0023 (7)0.0081 (7)0.0004 (7)
C200.0170 (9)0.0171 (10)0.0152 (9)0.0016 (7)0.0071 (8)0.0006 (7)
C210.0225 (10)0.0228 (10)0.0135 (9)0.0019 (8)0.0097 (8)0.0014 (8)
C220.0169 (9)0.0181 (9)0.0157 (9)0.0017 (7)0.0099 (8)0.0025 (7)
C230.0159 (9)0.0134 (9)0.0158 (9)0.0010 (7)0.0092 (8)0.0010 (7)
C240.0146 (8)0.0114 (9)0.0157 (9)0.0017 (7)0.0083 (7)0.0000 (7)
C250.0173 (9)0.0184 (10)0.0163 (9)0.0013 (7)0.0079 (8)0.0007 (8)
C260.0176 (9)0.0184 (10)0.0249 (11)0.0024 (8)0.0121 (8)0.0017 (8)
C270.0179 (9)0.0178 (10)0.0193 (10)0.0010 (8)0.0112 (8)0.0018 (8)
Geometric parameters (Å, º) top
Sn1—C12.129 (2)C4—H4B0.9800
Sn1—C1i2.129 (2)C4—H4C0.9800
Sn1—O1i2.2590 (13)C5—C61.507 (3)
Sn1—O12.2590 (13)C6—C71.391 (3)
Sn1—O1W2.306 (2)C7—H70.9500
Sn1—N12.5333 (15)C8—C91.389 (3)
Sn1—N1i2.5333 (15)C8—H80.9500
Sn2—C102.124 (2)C9—H90.9500
Sn2—C142.128 (2)C10—C111.527 (3)
Sn2—O52.2598 (13)C10—H10A0.9900
Sn2—O32.2593 (13)C10—H10B0.9900
Sn2—O2W2.3056 (13)C11—C121.530 (3)
Sn2—N32.5232 (16)C11—H11A0.9900
Sn2—N52.5362 (16)C11—H11B0.9900
O1—C51.267 (2)C12—C131.513 (3)
O2—C51.238 (2)C12—H12A0.9900
O5—C231.267 (2)C12—H12B0.9900
O3—C181.274 (2)C13—H13A0.9800
O4—C181.238 (2)C13—H13B0.9800
O6—C231.239 (2)C13—H13C0.9800
O1W—H10.833 (16)C14—C151.526 (3)
O2W—H210.839 (16)C14—H14A0.9900
O2W—H220.838 (17)C14—H14B0.9900
N1—C61.336 (2)C15—C161.527 (3)
N1—C91.339 (2)C15—H15A0.9900
N2—C81.334 (3)C15—H15B0.9900
N2—C71.335 (3)C16—C171.524 (3)
N3—C191.337 (2)C16—H16A0.9900
N3—C221.341 (2)C16—H16B0.9900
N4—C211.334 (3)C17—H17A0.9800
N4—C201.338 (3)C17—H17B0.9800
N5—C241.337 (2)C17—H17C0.9800
N5—C271.340 (2)C18—C191.507 (3)
N6—C261.333 (3)C19—C201.386 (3)
N6—C251.339 (3)C20—H200.9500
C1—C21.528 (3)C21—C221.389 (3)
C1—H1A0.9900C21—H21A0.9500
C1—H1B0.9900C22—H22A0.9500
C2—C31.537 (3)C23—C241.509 (3)
C2—H2A0.9900C24—C251.387 (3)
C2—H2B0.9900C25—H250.9500
C3—C41.517 (3)C26—C271.390 (3)
C3—H3A0.9900C26—H260.9500
C3—H3B0.9900C27—H270.9500
C4—H4A0.9800
C1—Sn1—C1i174.9 (1)N1—C6—C5117.21 (16)
C1—Sn1—O1i93.56 (6)C7—C6—C5121.55 (17)
C1i—Sn1—O1i90.50 (6)N2—C7—C6122.49 (19)
C1—Sn1—O190.50 (6)N2—C7—H7118.8
C1i—Sn1—O193.56 (6)C6—C7—H7118.8
O1i—Sn1—O174.22 (7)N2—C8—C9122.76 (19)
C1—Sn1—O1W87.45 (5)N2—C8—H8118.6
C1i—Sn1—O1W87.45 (5)C9—C8—H8118.6
O1i—Sn1—O1W142.89 (3)N1—C9—C8121.03 (19)
O1—Sn1—O1W142.89 (3)N1—C9—H9119.5
C1—Sn1—N186.58 (6)C8—C9—H9119.5
C1i—Sn1—N192.07 (6)C11—C10—Sn2117.40 (13)
O1i—Sn1—N1142.51 (5)C11—C10—H10A108.0
O1—Sn1—N168.29 (5)Sn2—C10—H10A108.0
O1W—Sn1—N174.60 (4)C11—C10—H10B108.0
C1—Sn1—N1i92.07 (6)Sn2—C10—H10B108.0
C1i—Sn1—N1i86.58 (6)H10A—C10—H10B107.2
O1i—Sn1—N1i68.29 (5)C10—C11—C12112.47 (17)
O1—Sn1—N1i142.51 (5)C10—C11—H11A109.1
O1W—Sn1—N1i74.60 (4)C12—C11—H11A109.1
N1—Sn1—N1i149.20 (7)C10—C11—H11B109.1
C10—Sn2—C14174.6 (1)C12—C11—H11B109.1
C10—Sn2—O592.44 (6)H11A—C11—H11B107.8
C14—Sn2—O591.90 (6)C13—C12—C11113.71 (19)
C10—Sn2—O390.71 (6)C13—C12—H12A108.8
C14—Sn2—O393.54 (6)C11—C12—H12A108.8
O5—Sn2—O373.84 (5)C13—C12—H12B108.8
C10—Sn2—O2W87.39 (6)C11—C12—H12B108.8
C14—Sn2—O2W87.24 (6)H12A—C12—H12B107.7
O5—Sn2—O2W143.00 (5)C12—C13—H13A109.5
O3—Sn2—O2W143.16 (5)C12—C13—H13B109.5
C10—Sn2—N387.01 (6)H13A—C13—H13B109.5
C14—Sn2—N391.49 (6)C12—C13—H13C109.5
O5—Sn2—N3142.24 (5)H13A—C13—H13C109.5
O3—Sn2—N368.42 (5)H13B—C13—H13C109.5
O2W—Sn2—N374.74 (5)C15—C14—Sn2117.36 (13)
C10—Sn2—N592.04 (6)C15—C14—H14A108.0
C14—Sn2—N586.64 (6)Sn2—C14—H14A108.0
O5—Sn2—N568.17 (5)C15—C14—H14B108.0
O3—Sn2—N5141.98 (5)Sn2—C14—H14B108.0
O2W—Sn2—N574.85 (5)H14A—C14—H14B107.2
N3—Sn2—N5149.59 (5)C14—C15—C16112.34 (16)
C5—O1—Sn1124.61 (12)C14—C15—H15A109.1
C23—O5—Sn2124.90 (12)C16—C15—H15A109.1
C18—O3—Sn2124.50 (12)C14—C15—H15B109.1
Sn1—O1W—H1125.6 (19)C16—C15—H15B109.1
Sn2—O2W—H21126.0 (17)H15A—C15—H15B107.9
Sn2—O2W—H22124 (2)C17—C16—C15111.92 (17)
H21—O2W—H22110 (3)C17—C16—H16A109.2
C6—N1—C9116.87 (16)C15—C16—H16A109.2
C6—N1—Sn1112.39 (12)C17—C16—H16B109.2
C9—N1—Sn1130.68 (13)C15—C16—H16B109.2
C8—N2—C7115.62 (17)H16A—C16—H16B107.9
C19—N3—C22116.63 (16)C16—C17—H17A109.5
C19—N3—Sn2112.74 (12)C16—C17—H17B109.5
C22—N3—Sn2130.56 (13)H17A—C17—H17B109.5
C21—N4—C20115.68 (17)C16—C17—H17C109.5
C24—N5—C27116.65 (17)H17A—C17—H17C109.5
C24—N5—Sn2112.63 (12)H17B—C17—H17C109.5
C27—N5—Sn2130.72 (13)O4—C18—O3126.31 (18)
C26—N6—C25115.64 (17)O4—C18—C19116.75 (17)
C2—C1—Sn1118.29 (13)O3—C18—C19116.94 (16)
C2—C1—H1A107.7N3—C19—C20121.82 (17)
Sn1—C1—H1A107.7N3—C19—C18117.20 (16)
C2—C1—H1B107.7C20—C19—C18120.98 (17)
Sn1—C1—H1B107.7N4—C20—C19122.09 (18)
H1A—C1—H1B107.1N4—C20—H20119.0
C1—C2—C3112.30 (17)C19—C20—H20119.0
C1—C2—H2A109.1N4—C21—C22122.94 (18)
C3—C2—H2A109.1N4—C21—H21A118.5
C1—C2—H2B109.1C22—C21—H21A118.5
C3—C2—H2B109.1N3—C22—C21120.84 (18)
H2A—C2—H2B107.9N3—C22—H22A119.6
C4—C3—C2113.71 (18)C21—C22—H22A119.6
C4—C3—H3A108.8O6—C23—O5125.95 (17)
C2—C3—H3A108.8O6—C23—C24116.85 (17)
C4—C3—H3B108.8O5—C23—C24117.20 (17)
C2—C3—H3B108.8N5—C24—C25121.52 (17)
H3A—C3—H3B107.7N5—C24—C23117.05 (16)
C3—C4—H4A109.5C25—C24—C23121.41 (17)
C3—C4—H4B109.5N6—C25—C24122.37 (18)
H4A—C4—H4B109.5N6—C25—H25118.8
C3—C4—H4C109.5C24—C25—H25118.8
H4A—C4—H4C109.5N6—C26—C27122.66 (18)
H4B—C4—H4C109.5N6—C26—H26118.7
O2—C5—O1126.44 (18)C27—C26—H26118.7
O2—C5—C6116.45 (17)N5—C27—C26121.14 (18)
O1—C5—C6117.11 (17)N5—C27—H27119.4
N1—C6—C7121.23 (18)C26—C27—H27119.4
C1—Sn1—O1—C581.98 (15)C9—N1—C6—C70.1 (3)
C1i—Sn1—O1—C594.95 (15)Sn1—N1—C6—C7177.36 (14)
O1i—Sn1—O1—C5175.54 (17)C9—N1—C6—C5179.39 (16)
O1W—Sn1—O1—C54.46 (17)Sn1—N1—C6—C53.17 (19)
N1—Sn1—O1—C54.14 (14)O2—C5—C6—N1173.10 (17)
N1i—Sn1—O1—C5176.03 (13)O1—C5—C6—N16.7 (2)
C10—Sn2—O5—C2392.57 (15)O2—C5—C6—C76.4 (3)
C14—Sn2—O5—C2384.26 (15)O1—C5—C6—C7173.81 (17)
O3—Sn2—O5—C23177.40 (16)C8—N2—C7—C60.2 (3)
O2W—Sn2—O5—C233.67 (19)N1—C6—C7—N20.3 (3)
N3—Sn2—O5—C23179.15 (13)C5—C6—C7—N2179.77 (18)
N5—Sn2—O5—C231.36 (14)C7—N2—C8—C90.2 (3)
C10—Sn2—O3—C1883.97 (15)C6—N1—C9—C80.5 (3)
C14—Sn2—O3—C1892.74 (15)Sn1—N1—C9—C8176.36 (14)
O5—Sn2—O3—C18176.31 (15)N2—C8—C9—N10.6 (3)
O2W—Sn2—O3—C182.62 (19)O5—Sn2—C10—C1155.92 (15)
N3—Sn2—O3—C182.54 (14)O3—Sn2—C10—C11129.77 (14)
N5—Sn2—O3—C18178.18 (13)O2W—Sn2—C10—C1187.04 (15)
C1—Sn1—N1—C691.88 (13)N3—Sn2—C10—C11161.89 (15)
C1i—Sn1—N1—C693.04 (13)N5—Sn2—C10—C1112.31 (15)
O1i—Sn1—N1—C60.48 (17)Sn2—C10—C11—C12178.77 (14)
O1—Sn1—N1—C60.03 (12)C10—C11—C12—C1368.0 (2)
O1W—Sn1—N1—C6179.83 (13)O5—Sn2—C14—C15125.86 (14)
N1i—Sn1—N1—C6179.83 (13)O3—Sn2—C14—C1551.94 (14)
C1—Sn1—N1—C991.14 (17)O2W—Sn2—C14—C1591.17 (14)
C1i—Sn1—N1—C983.95 (17)N3—Sn2—C14—C1516.53 (15)
O1i—Sn1—N1—C9177.47 (14)N5—Sn2—C14—C15166.15 (15)
O1—Sn1—N1—C9176.96 (18)Sn2—C14—C15—C16175.97 (13)
O1W—Sn1—N1—C92.84 (15)C14—C15—C16—C17178.56 (18)
N1i—Sn1—N1—C92.84 (15)Sn2—O3—C18—O4175.31 (15)
C10—Sn2—N3—C1992.41 (13)Sn2—O3—C18—C194.9 (2)
C14—Sn2—N3—C1992.76 (13)C22—N3—C19—C200.5 (3)
O5—Sn2—N3—C192.27 (17)Sn2—N3—C19—C20177.75 (14)
O3—Sn2—N3—C190.46 (12)C22—N3—C19—C18179.94 (16)
O2W—Sn2—N3—C19179.49 (13)Sn2—N3—C19—C182.8 (2)
N5—Sn2—N3—C19178.66 (11)O4—C18—C19—N3175.18 (17)
C10—Sn2—N3—C2290.84 (17)O3—C18—C19—N35.0 (2)
C14—Sn2—N3—C2284.00 (17)O4—C18—C19—C204.3 (3)
O5—Sn2—N3—C22179.03 (14)O3—C18—C19—C20175.54 (17)
O3—Sn2—N3—C22177.22 (17)C21—N4—C20—C190.3 (3)
O2W—Sn2—N3—C222.73 (16)N3—C19—C20—N40.2 (3)
N5—Sn2—N3—C221.9 (2)C18—C19—C20—N4179.64 (18)
C10—Sn2—N5—C2491.76 (13)C20—N4—C21—C220.5 (3)
C14—Sn2—N5—C2493.45 (13)C19—N3—C22—C210.3 (3)
O5—Sn2—N5—C240.05 (12)Sn2—N3—C22—C21176.94 (14)
O3—Sn2—N5—C241.99 (17)N4—C21—C22—N30.3 (3)
O2W—Sn2—N5—C24178.51 (13)Sn2—O5—C23—O6176.99 (15)
N3—Sn2—N5—C24179.33 (11)Sn2—O5—C23—C242.4 (2)
C10—Sn2—N5—C2787.34 (17)C27—N5—C24—C251.0 (3)
C14—Sn2—N5—C2787.45 (17)Sn2—N5—C24—C25179.77 (14)
O5—Sn2—N5—C27179.16 (18)C27—N5—C24—C23179.62 (16)
O3—Sn2—N5—C27178.90 (14)Sn2—N5—C24—C231.1 (2)
O2W—Sn2—N5—C270.60 (16)O6—C23—C24—N5177.18 (17)
N3—Sn2—N5—C270.2 (2)O5—C23—C24—N52.3 (3)
O1i—Sn1—C1—C254.71 (15)O6—C23—C24—C251.4 (3)
O1—Sn1—C1—C2128.93 (15)O5—C23—C24—C25179.07 (18)
O1W—Sn1—C1—C288.14 (15)C26—N6—C25—C241.3 (3)
N1—Sn1—C1—C2162.85 (15)N5—C24—C25—N60.1 (3)
N1i—Sn1—C1—C213.66 (15)C23—C24—C25—N6178.49 (18)
Sn1—C1—C2—C3179.73 (14)C25—N6—C26—C271.4 (3)
C1—C2—C3—C468.0 (2)C24—N5—C27—C260.9 (3)
Sn1—O1—C5—O2172.50 (15)Sn2—N5—C27—C26179.93 (14)
Sn1—O1—C5—C67.3 (2)N6—C26—C27—N50.4 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O40.83 (2)1.79 (2)2.611 (2)170 (3)
O2w—H21···O2ii0.84 (2)1.79 (2)2.616 (2)168 (2)
O2w—H22···O6iii0.84 (2)1.79 (2)2.615 (2)170 (3)
Symmetry codes: (ii) x1/2, y+1/2, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C4H9)2(C5H3N2O2)2(H2O)]
Mr497.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)18.8872 (9), 24.4940 (11), 15.4417 (7)
β (°) 119.955 (1)
V3)6189.4 (5)
Z12
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.701, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
29386, 7105, 6558
Rint0.032
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.056, 1.07
No. of reflections7105
No. of parameters392
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.021P)2 + 10.9233P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.76, 0.50

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Sn1—C12.129 (2)Sn2—O52.2598 (13)
Sn1—O12.2590 (13)Sn2—O32.2593 (13)
Sn1—O1W2.306 (2)Sn2—O2W2.3056 (13)
Sn1—N12.5333 (15)Sn2—N32.5232 (16)
Sn2—C102.124 (2)Sn2—N52.5362 (16)
Sn2—C142.128 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1···O40.83 (2)1.79 (2)2.611 (2)170 (3)
O2w—H21···O2i0.84 (2)1.79 (2)2.616 (2)168 (2)
O2w—H22···O6ii0.84 (2)1.79 (2)2.615 (2)170 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y+1, z+1/2.
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, C., Han, Y., Zhang, R. & Wang, D. (2004). J. Organomet. Chem. 689, 1675–1683.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds